## 81T05 Axiomatic quantum field theory; operator algebras

### Refine

#### Keywords

- Krein space (2)
- Gelfand-Shilov space (1)
- Heisenberg algebra (1)
- Infrared singularity (1)
- Pontrjagin space (1)
- Schwinger model (1)
- indefinite inner product space (1)
- quantum field theory (1)

- Infinite infrared regularization and a state space for the Heisenberg algebra (2003)
- We present a method for the construction of a Krein space completion for spaces of test functions, equipped with an indefinite inner product induced by a kernel which is more singular than a distribution of finite order. This generalizes a regularization method for infrared singularities in quantum field theory, introduced by G. Morchio and F. Strocchi, to the case of singularites of infinite order. We give conditions for the possibility of this procedure in terms of local differential operators and the Gelfand-Shilov test function spaces, as well as an abstract sufficient condition. As a model case we construct a maximally positive definite state space for the Heisenberg algebra in the presence of an infinite infrared singularity. See the corresponding paper: Schmidt, Andreas U.: "Mathematical Problems of Gauge Quantum Field Theory: A Survey of the Schwinger Model" and the presentation "Infinite Infrared Regularization in Krein Spaces"

- Mathematical problems of gauge quantum field theory: A survey of the Schwinger model (2002)
- This extended write-up of a talk gives an introductory survey of mathematical problems of the quantization of gauge systems. Using the Schwinger model as an exactly tractable but nontrivial example which exhibits general features of gauge quantum field theory, I cover the following subjects: The axiomatics of quantum field theory, formulation of quantum field theory in terms of Wightman functions, reconstruction of the state space, the local formulation of gauge theories, indefiniteness of the Wightman functions in general and in the special case of the Schwinger model, the state space of the Schwinger model, special features of the model. New results are contained in the Mathematical Appendix, where I consider in an abstract setting the Pontrjagin space structure of a special class of indefinite inner product spaces - the so called quasi-positive ones. This is motivated by the indefinite inner product space structure appearing in the above context and generalizes results of Morchio and Strocchi [J. Math. Phys. 31 (1990) 1467], and Dubin and Tarski [J. Math. Phys. 7 (1966) 574]. See the corresponding paper: Schmidt, Andreas U.: "Infinite Infrared Regularization and a State Space for the Heisenberg Algebra" and the presentation "Infinite Infrared Regularization in Krein Spaces".