## Universitätspublikationen

- Equilibrium and nonequilibrium effects in nucleus nucleus collisions (1999)
- Abstract: Local thermal and chemical equilibration is studied for central AqA collisions at 10.7 160 AGeV in the Ultrarelativis- . tic Quantum Molecular Dynamics model UrQMD . The UrQMD model exhibits strong deviations from local equilibrium at the high density hadron string phase formed during the early stage of the collision. Equilibration of the hadron resonance matter is established in the central cell of volume Vs125 fm3 at later stages, tG10 fmrc, of the resulting quasi-isentropic expansion. The thermodynamical functions in the cell and their time evolution are presented. Deviations of the UrQMD quasi-equilibrium state from the statistical mechanics equilibrium are found. They increase with energy per baryon and lead to a strong enhancement of the pion number density as compared to statistical mechanics estimates at SPS energies. PACS: 25.75.-q; 24.10.Lx; 24.10.Pa; 64.30.qt

- Critical review of quark gluon plasma signatures (1999)
- Noneequilibrium models (three-fluid hydrodynamics and UrQMD) use to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions. It is demonstrated that these two models - although they do treat the most interesting early phase of the collisions quite differently(thermalizing QGP vs. coherent color fields with virtual particles) - both yields a reasonable agreement with a large variety of the available heavy ion data.

- Direct emission of multiple strange baryons in ultrarelativistic heavy-ion collisions from the phase boundary (1999)
- We discuss a model for the space-time evolution of ultrarelativistic heavy-ion collisions which employs relativistic hydrodynamics within one region of the forward light-cone, and microscopic transport theory (i.e. UrQMD) in the complement. Our initial condition consists of a quark-gluon plasma which expands hydrodynamically and hadronizes. After hadronization the solution eventually changes from expansion in local equilibrium to free streaming, as determined selfconsistently by the interaction rates between the hadrons and the local expansion rate. We show that in such a scenario the inverse slopes of the mT -spectra of multiple strange baryons ( Xi,Omega) are practically una ected by the purely hadronic stage of the reaction, while the flow of p's and Lambda's increases. Moreover, we find that the rather soft transverse expansion at RHIC energies (due to a first-order phase transition) is not washed out by strong rescattering in the hadronic stage. The earlier kinetic freeze-out as compared to SPS-energies results in similar inverse slopes (of the mT -spectra of the hadrons in the final state) at RHIC and SPS energies.

- Dissociation of expanding c anti-c states in heavy ion collisions (1999)
- We study J/psi suppression in AB collisions assuming that the charmonium states evolve from small, color transparent configurations. Their interaction with nucleons and nonequilibrated, secondary hadrons is simulated using the microscopic model UrQMD. The Drell-Yan lepton pair yield and the J/psi Drell-Yan ratio are calculated as a function of the neutral transverse energy in Pb+Pb collisions at 160 GeV and found to be in reasonable agreement with existing data.

- Modeling J /Psi production and absorption in a microscopic nonequilibrium approach (1999)
- Charmonium production and absorption in heavy ion collisions is studied with the Ultrarelativisitic Quantum Molecular Dynamics model. We compare the scenario of universal and time independent color-octet dissociation cross sections with one of distinct color-singlet J/psi, psi 2 and CHIc states, evolving from small, color transparent configurations to their asymptotic sizes. The measured J/psi production cross sections in pA and AB collisions at SPS energies are consistent with both purely hadronic scenarios. The predicted rapidity dependence of J/psi suppression can be used to discriminate between the two experimentally. The importance of interactions with secondary hadrons and the applicability of thermal reaction kinetics to J/psi absorption are in- vestigated. We discuss the e ect of nuclear stopping and the role of leading hadrons. The dependence of the 2/J/psi ratio on the model assumptions and the possible influence of refeeding processes is also studied.

- Hadronic freeze-out following a first order hadronization phase transition in ultrarelativistic heavy-ion collisions (1999)
- We analyze the hadronic freeze-out in ultra-relativistic heavy ion collisions at RHIC in a transport approach which combines hydrodynamics for the early, dense, deconfined stage of the reaction with a microscopic non-equilibrium model for the later hadronic stage at which the hydrodynamic equilibrium assumptions are not valid. With this ansatz we are able to self-consistently calculate the freeze-out of the system and determine space-time hypersurfaces for individual hadron species. The space-time domains of the freeze-out for several hadron species are found to be actually four-dimensional, and di er drastically for the individual hadrons species. Freeze-out radii distributions are similar in width for most hadron species, even though the is found to be emitted rather close to the phase boundary and shows the smallest freeze- out radii and times among all baryon species. The total lifetime of the system does not change by more than 10% when going from SPS to RHIC energies.

- Analysis of reaction dynamics at RHIC in a combined parton/hadron transport approach (1999)
- We introduce a transport approach which combines partonic and hadronic degrees of freedom on an equal footing and discuss the resulting reaction dynamics. The initial parton dynamics is modeled in the framework of the parton cascade model, hadronization is performed via a cluster hadronization model and configuration space coalescence, and the hadronic phase is described by a microscopic hadronic transport approach. The resulting reaction dynamics indicates a strong influence of hadronic rescattering on the space-time pattern of hadronic freeze-out and on the shape of transverse mass spectra. Freeze-out times and transverse radii increase by factors of 2 3 depending on the hadron species.

- Nonequilibrium dynamics of a hadronizing quark gluon plasma (1999)
- We investigate the hadronic cooling of a quark droplet within a microscopic model. The color flux tube approach is used to describe the hadronization of the quark phase. The model reproduces experimental particle ratios equally well compared to a static thermal hadronic source. Furthermore, the dynamics of the decomposition of a quark-gluon plasma is investigated and time dependent particle ratios are found.

- Moments of event observable distributions and many-body correlations (1999)
- We investigate event-by-event fluctuations for ensembles with non-fixed multiplicity. Moments of event observable distributions, like total energy distribution, total transverse momentum distribution, etc, are shown to be related to the multi-body correlations present in the system. For classical systems, these moments reduce in the absence of any correlations to the mo- ments of particle inclusive momentum distribution. As a consequence, a zero value for the recently introduced Phi-variable is shown to indicate the van- ishing of two-body correlations from one part, and of correlations between multiplicity and momentum distributions from the other part. It is often misunderstood as a measure of the degree of equilibration in the system.

- Deuterons and space-momentum correlations in high energy nuclear collisions (1999)
- Using a microscopic transport model together with a coalescence after-burner, we study the formation of deuterons in Au + Au central collisions at s = 200 AGeV . It is found that the deuteron transverse momentum distributions are strongly a ected by the nucleon space-momentum correlations, at the moment of freeze-out, which are mostly determined by the number of rescatterings. This feature is useful for studying collision dynamics at ultrarelativistic energies.