## Universitätspublikationen

- A Fast Hybrid Approach to Air Shower Simulations and Applications (2003)
- The SENECA model, a new hybrid approach to air shower simulations, is presented. It combines the use of e cient cascade equations in the energy range where a shower can be treated as one-dimensional, with a traditional Monte Carlo method which traces individual particles. This allows one to reproduce natural fluctuations of individual showers as well as the lateral spread of low energy particles. The model is quite e cient in computation time. As an application of the new approach, the influence of the low energy hadronic models on shower properties for AUGER energies is studied. We conclude that these models have a significant impact on the tails of lateral distribution functions, and deserve therefore more attention.

- Model dependence of lateral distribution functions of high energy cosmic ray air showers (2003)
- The influence of high and low energy hadronic models on lateral distribution functions of cosmic ray air showers for Auger energies is explored. A large variety of presently used high and low energy hadron interaction models are analysed and the resulting lateral distribution functions are compared. We show that the slope depends on both the high and low energy hadronic model used. The models are confronted with available hadron-nucleus data from accelerator experiments.

- Exploring isospin, strangeness and charm distillation in heavy ion collisions (2003)
- The isospin and strangeness dimensions of the Equation of State are explored. RIA and the SIS200 accelerator at GSI will allow to explore these regions in compressed baryonic matter. 132 Sn + 132 Sn and 100 Sn + 100 Sn collisions as well as the excitation functions of K/pi, Lambda/pi and the centrality dependence of charmonium suppression from the UrQMD and HSD transport models are presented and compared to data. Unambiguous proof for the creation of a 'novel phase of matter' from strangeness and charm yields is not in sight.

- A micro-canonical description of hadron production in proton-proton collisions (2003)
- A micro-canonical treatment is used to study particle production in pp collisions. First this micro-canonical treatment is compared to some canonical ones. Then proton, antiproton and pion 4 pi multiplicities from proton-proton collisions at various center of mass energies are used to fix the micro-canonical parameters (E) and (V). The dependences of the micro-canonical parameters on the collision energy are parameterised for the further study of pp reactions with this micro-canonical treatment.

- Probing the minimal length scale by precision tests of the muon g-2 (2003)
- Modifications of the gyromagnetic moment of electrons and muons due to a minimal length scale combined with a modified fundamental scale M_f are explored. Deviations from the theoretical Standard Model value for g-2 are derived. Constraints for the fundamental scale M_f are given.

- Micro-canonical hadron production in pp collisions (2003)
- We apply a microcanonical statistical model to investigate hadron production in pp collisions. The parameters of the model are the energy E and the volume V of the system, which we determine via fitting the average multiplicity of charged pions, protons and antiprotons in pp collisions at different collision energies. We then make predictions of mean multiplicities and mean transverse momenta of all identified hadrons. Our predictions on nonstrange hadrons are in good agreement with the data, the mean transverse momenta of strange hadron as well. However, the mean multiplicities of strange hadrons are overpredicted. This agrees with canonical and grandcanonical studies, where a strange suppression factor is needed. We also investigate the influence of event-by-event fluctuations of the E parameter.

- Signatures in the Planck regime (2003)
- String theory suggests the existence of a minimum length scale. An exciting quantum mechanical implication of this feature is a modification of the uncertainty principle. In contrast to the conventional approach, this generalised uncertainty principle does not allow to resolve space time distances below the Planck length. In models with extra dimensions, which are also motivated by string theory, the Planck scale can be lowered to values accessible by ultra high energetic cosmic rays (UHECRs) and by future colliders, i.e. M f approximately equal to 1 TeV. It is demonstrated that in this novel scenario, short distance physics below 1/M f is completely cloaked by the uncertainty principle. Therefore, Planckian effects could be the final physics discovery at future colliders and in UHECRs. As an application, we predict the modifications to the e+ e- to f+ f- cross-sections.

- Black hole relics in large extra dimensions (2003)
- Recent calculations applying statistical mechanics indicate that in a setting with compactified large extra dimensions a black hole might evolve into a (quasi-)stable state with mass close to the new fundamental scale M f. Black holes and therefore their relics might be produced at the LHC in the case of extra-dimensional topologies. In this energy regime, Hawking's evaporation scenario is modified due to energy conservation and quantum effects. We reanalyse the evaporation of small black holes including the quantisation of the emitted radiation due to the finite surface of the black hole. It is found that observable stable black hole relics with masses sim 1-3 M f would form which could be identified by a delayed single jet with a corresponding hard momentum kick to the relic and by ionisation, e.g. in a TPC.

- Dynamics and freeze-out of hadron resonances at RHIC (2003)
- Yields, rapidity and transverse momentum spectra of Delta++(1232), Lambda(1520), Sigma+-(1385) and the meson resonances K0(892), Phi, rho0 and f0(980) are predicted. Hadronic rescattering leads to a suppression of reconstructable resonances, especially at low p_perp. A mass shift of the rho of 10 MeV is obtained from the microscopic simulation, due to late stage rho formation in the cooling pion gas.

- Strangeness dynamics in relativistic nucleus-nucleus collision (2003)
- We investigate hadron production as well as transverse hadron spectra in nucleus-nucleus collisions from 2 A.GeV to 21.3 A.TeV within two independent transport approaches (UrQMD and HSD) that are based on quark, diquark, string and hadronic degrees of freedom. The comparison to experimental data demonstrates that both approaches agree quite well with each other and with the experimental data on hadron production. The enhancement of pion production in central Au+Au (Pb+Pb) collisions relative to scaled pp collisions (the 'kink') is well described by both approaches without involving any phase transition. However, the maximum in the K+/Pi+ ratio at 20 to 30 A.GeV (the 'horn') is missed by ~ 40%. A comparison to the transverse mass spectra from pp and C+C (or Si+Si) reactions shows the reliability of the transport models for light systems. For central Au+Au (Pb+Pb) collisions at bombarding energies above ~ 5 A.GeV, however, the measured K +/- m-theta-spectra have a larger inverse slope parameter than expected from the calculations. The approximately constant slope of K+/-spectra at SPS (the 'step') is not reproduced either. Thus the pressure generated by hadronic interactions in the transport models above ~ 5 A.GeV is lower than observed in the experimental data. This finding suggests that the additional pressure - as expected from lattice QCD calculations at finite quark chemical potential and temperature - might be generated by strong interactions in the early pre-hadronic/partonic phase of central Au+Au (Pb+Pb) collisions.