## Universitätspublikationen

- Collective phenomena in the non-equilibrium quark-gluon plasma (2008)
- In this work we study the non-equilibrium dynamics of a quark-gluon plasma, as created in heavy-ion collisions. We investigate how big of a role plasma instabilities can play in the isotropization and equilibration of a quark-gluon plasma. In particular, we determine, among other things, how much collisions between the particles can reduce the growth rate of unstable modes. This is done both in a model calculation using the hard-loop approximation, as well as in a real-time lattice simulation combining both classical Yang-Mills-fields as well as inter-particle collisions. The new extended version of the simulation is also used to investigate jet transport in isotropic media, leading to a cutoff-independent result for the transport coefficient $hat{q}$. The precise determination of such transport coefficients is essential, since they can provide important information about the medium created in heavy-ion collisions. In anisotropic media, the effect of instabilities on jet transport is studied, leading to a possible explanation for the experimental observation that high-energy jets traversing the plasma perpendicular to the beam axis experience much stronger broadening in rapidity than in azimuth. The investigation of collective modes in the hard-loop limit is extended to fermionic modes, which are shown to be all stable. Finally, we study the possibility of using high energy photon production as a tool to experimentally determine the anisotropy of the created system. Knowledge of the degree of local momentum-space anisotropy reached in a heavy-ion collision is essential for the study of instabilities and their role for isotropization and thermalization, because their growth rate depends strongly on the anisotropy.

- Energy dependence of multiplicity fluctuations in heavy ion collisions at the CERN SPS (2008)
- In this work data of the NA49 experiment at CERN SPS on the energy dependence of multiplicity fluctuations in central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV, as well as the system size dependence at 158A GeV, is analysed for positively, negatively and all charged hadrons. Furthermore the rapidity and transverse momentum dependence of multiplicity fluctuations are studied. The experimental results are compared to predictions of statistical hadron-gas and string-hadronic models. It is expected that multiplicity fluctuations are sensitive to the phase transition to quark-gluon-plasma (QGP) and to the critical point of strongly interacting matter. It is predicted that both the onset of deconfinement, the lowest energy where QGP is created, and the critical point are located in the SPS energy range. Furthermore, the predictions for the multiplicity fluctuations of statistical and string-hadronic models are different, the experimental data might allow to distinguish between them. The used measure of multiplicity fluctuations is the scaled variance omega, defined as the ratio of the variance and the mean of the multiplicity distribution. In the NA49 experiment the tracks of charged particles are detected in four large volume time projection chambers (TPCs). In order to remove possible detector effects a detailed study of event and track selection criteria is performed. Naively one would expect Poisson fluctuations in central heavy ion collisions. A suppression of fluctuations compared to a Poisson distribution is observed for positively and negatively charged hadrons at forward rapidity in Pb+Pb collisions. At midrapidity and for all charged hadrons the fluctuations are larger than the Poisson ones. The fluctuations seem to increase with decreasing system size. It is suggested that this is due to increased relative fluctuations in the number of participants. Furthermore, it was discovered that omega increases for decreasing rapidity and transverse momentum. A hadron-gas model predicts different values of omega for different statistical ensembles. In the grand-canonical ensemble, where all conservation laws are fulfilled only on the average, not on an event-by-event basis, the predicted fluctuations are the largest ones. In the canonical ensemble the charges, namely the electrical charge, the baryon number and the strangeness, are conserved for each event. The scaled variance in this ensemble is smaller than for the grand-canonical ensemble. In the micro-canonical ensemble not only the charges, but also the energy and the momentum are conserved in each event, the predicted $omega$ is the smallest one. The grand-canonical and canonical formulations of the hadron-gas model over-predict fluctuations in the forward acceptance. In contrast to the experimental data no dependence of omega on rapidity and transverse momentum is expected. For the micro-canonical formulation, which predicts small fluctuations in the total phase space, no quantitative calculation is available yet for the limited experimental acceptance. The increase of fluctuations for low rapidities and transverse momenta can be qualitatively understood in a micro-canonical ensemble as an effect of energy and momentum conservation. The string-hadronic model UrQMD significantly over-predicts the mean multiplicities but approximately reproduces the scaled variance of the multiplicity distributions at all measured collision energies, systems and phase-space intervals. String-hadronic models predict for Pb+Pb collisions a monotonous increase of omega with collision energy, similar to the observations for p+p interactions. This is in contrast to the predictions of the hadron-gas model, where omega shows no energy dependence at higher energies. At SPS energies the predictions of the string-hadronic and hadron-gas models are in the same order of magnitude, but at RHIC and LHC energies the difference in omega in the full phase space is much larger. Experimental data should be able to distinguish between them rather easily. Narrower than Poissonian (omega < 1) multiplicity fluctuations measured in the forward kinematic region (1<y(pi)<y_{beam}) can be related to the reduced fluctuations predicted for relativistic gases with imposed conservation laws. This general feature of relativistic gases may be preserved also for some non-equilibrium systems as modeled by the string-hadronic approaches. A quantitative estimate shows that the predicted maximum in fluctuations due to a first order phase transition from hadron-gas to QGP is smaller than the experimental errors of the present experiment and can therefore neither be confirmed nor disproved. No sign of increased fluctuations as expected for a freeze-out near the critical point of strongly interacting matter is observed.