## Mathematik

### Refine

#### Year of publication

#### Document Type

- Article (23)
- Working Paper (4)
- Preprint (2)
- Report (2)

#### Keywords

- LLL-reduction (2)
- computational complexity (2)
- segments (2)
- Dirichlet bound (1)
- Householder reflection (1)
- NP-complete problems (1)
- SLLL-reduction (1)
- chosen ciphertext attack (1)
- clique problem (1)
- colorabdity (1)

#### Institute

- Informatik (31)
- Mathematik (31)

- Satisfiability is quasilinear complete in NQL (1978)
- Considered are the classes QL (quasilinear) and NQL (nondet quasllmear) of all those problems that can be solved by deterministic (nondetermlnlsttc, respectively) Turmg machines in time O(n(log n) ~) for some k Effloent algorithms have time bounds of th~s type, it is argued. Many of the "exhausUve search" type problems such as satlsflablhty and colorabdlty are complete in NQL with respect to reductions that take O(n(log n) k) steps This lmphes that QL = NQL iff satisfiabdlty is m QL CR CATEGORIES: 5.25

- The process complexity and effective random tests (1972)
- We propose a variant of the Kolmogorov concept of complexity which yields a common theory of finite and infinite random sequences. The process complexity does not oscillate. We establish some concepts of effective tests which are proved to be equivalent.

- An optimal, stable continued fraction algorithm for arbitrary dimension (1996)
- We analyse a continued fraction algorithm (abbreviated CFA) for arbitrary dimension n showing that it produces simultaneous diophantine approximations which are up to the factor 2^((n+2)/4) best possible. Given a real vector x=(x_1,...,x_{n-1},1) in R^n this CFA generates a sequence of vectors (p_1^(k),...,p_{n-1}^(k),q^(k)) in Z^n, k=1,2,... with increasing integers |q^{(k)}| satisfying for i=1,...,n-1 | x_i - p_i^(k)/q^(k) | <= 2^((n+2)/4) sqrt(1+x_i^2) |q^(k)|^(1+1/(n-1)) By a theorem of Dirichlet this bound is best possible in that the exponent 1+1/(n-1) can in general not be increased.

- Segment and strong segment LLL-reduction of lattice bases (2002)
- We present an efficient variant of LLL-reduction of lattice bases in the sense of Lenstra, Lenstra, Lov´asz [LLL82]. We organize LLL-reduction in segments of size k. Local LLL-reduction of segments is done using local coordinates of dimension 2k. Strong segment LLL-reduction yields bases of the same quality as LLL-reduction but the reduction is n-times faster for lattices of dimension n. We extend segment LLL-reduction to iterated subsegments. The resulting reduction algorithm runs in O(n3 log n) arithmetic steps for integer lattices of dimension n with basis vectors of length 2O(n), compared to O(n5) steps for LLL-reduction.

- Attacking the chor-rivest cryptosystem by improved lattice reduction (1995)
- We introduce algorithms for lattice basis reduction that are improvements of the famous L3-algorithm. If a random L3-reduced lattice basis b1,b2,...,bn is given such that the vector of reduced Gram-Schmidt coefficients ({µi,j} 1<= j< i<= n) is uniformly distributed in [0,1)n(n-1)/2, then the pruned enumeration finds with positive probability a shortest lattice vector. We demonstrate the power of these algorithms by solving random subset sum problems of arbitrary density with 74 and 82 many weights, by breaking the Chor-Rivest cryptoscheme in dimensions 103 and 151 and by breaking Damgard's hash function.

- Block Reduced Lattice Bases and Successive Minima (1996)
- Let b1, . . . , bm 2 IRn be an arbitrary basis of lattice L that is a block Korkin Zolotarev basis with block size ¯ and let ¸i(L) denote the successive minima of lattice L. We prove that for i = 1, . . . ,m 4 i + 3 ° 2 i 1 ¯ 1 ¯ · kbik2/¸i(L)2 · ° 2m i ¯ 1 ¯ i + 3 4 where °¯ is the Hermite constant. For ¯ = 3 we establish the optimal upper bound kb1k2/¸1(L)2 · µ3 2¶m 1 2 1 and we present block Korkin Zolotarev lattice bases for which this bound is tight. We improve the Nearest Plane Algorithm of Babai (1986) using block Korkin Zolotarev bases. Given a block Korkin Zolotarev basis b1, . . . , bm with block size ¯ and x 2 L(b1, . . . , bm) a lattice point v can be found in time ¯O(¯) satisfying kx vk2 · m° 2m ¯ 1 ¯ minu2L kx uk2.

- Security Of Signed ELGamal Encryption (2000)
- Assuming a cryptographically strong cyclic group G of prime order q and a random hash function H, we show that ElGamal encryption with an added Schnorr signature is secure against the adaptive chosen ciphertext attack, in which an attacker can freely use a decryption oracle except for the target ciphertext. We also prove security against the novel one-more-decyption attack. Our security proofs are in a new model, corresponding to a combination of two previously introduced models, the Random Oracle model and the Generic model. The security extends to the distributed threshold version of the scheme. Moreover, we propose a very practical scheme for private information retrieval that is based on blind decryption of ElGamal ciphertexts.