## Mathematik

### Refine

#### Year of publication

#### Document Type

- Article (23)
- Working Paper (4)
- Preprint (2)
- Report (2)

#### Keywords

- LLL-reduction (2)
- computational complexity (2)
- segments (2)
- Dirichlet bound (1)
- Householder reflection (1)
- NP-complete problems (1)
- SLLL-reduction (1)
- chosen ciphertext attack (1)
- clique problem (1)
- colorabdity (1)

#### Institute

- Informatik (31)
- Mathematik (31)

- Satisfiability is quasilinear complete in NQL (1978)
- Considered are the classes QL (quasilinear) and NQL (nondet quasllmear) of all those problems that can be solved by deterministic (nondetermlnlsttc, respectively) Turmg machines in time O(n(log n) ~) for some k Effloent algorithms have time bounds of th~s type, it is argued. Many of the "exhausUve search" type problems such as satlsflablhty and colorabdlty are complete in NQL with respect to reductions that take O(n(log n) k) steps This lmphes that QL = NQL iff satisfiabdlty is m QL CR CATEGORIES: 5.25

- The process complexity and effective random tests (1972)
- We propose a variant of the Kolmogorov concept of complexity which yields a common theory of finite and infinite random sequences. The process complexity does not oscillate. We establish some concepts of effective tests which are proved to be equivalent.

- An optimal, stable continued fraction algorithm for arbitrary dimension (1996)
- We analyse a continued fraction algorithm (abbreviated CFA) for arbitrary dimension n showing that it produces simultaneous diophantine approximations which are up to the factor 2^((n+2)/4) best possible. Given a real vector x=(x_1,...,x_{n-1},1) in R^n this CFA generates a sequence of vectors (p_1^(k),...,p_{n-1}^(k),q^(k)) in Z^n, k=1,2,... with increasing integers |q^{(k)}| satisfying for i=1,...,n-1 | x_i - p_i^(k)/q^(k) | <= 2^((n+2)/4) sqrt(1+x_i^2) |q^(k)|^(1+1/(n-1)) By a theorem of Dirichlet this bound is best possible in that the exponent 1+1/(n-1) can in general not be increased.

- Segment and strong segment LLL-reduction of lattice bases (2002)
- We present an efficient variant of LLL-reduction of lattice bases in the sense of Lenstra, Lenstra, Lov´asz [LLL82]. We organize LLL-reduction in segments of size k. Local LLL-reduction of segments is done using local coordinates of dimension 2k. Strong segment LLL-reduction yields bases of the same quality as LLL-reduction but the reduction is n-times faster for lattices of dimension n. We extend segment LLL-reduction to iterated subsegments. The resulting reduction algorithm runs in O(n3 log n) arithmetic steps for integer lattices of dimension n with basis vectors of length 2O(n), compared to O(n5) steps for LLL-reduction.

- Attacking the chor-rivest cryptosystem by improved lattice reduction (1995)
- We introduce algorithms for lattice basis reduction that are improvements of the famous L3-algorithm. If a random L3-reduced lattice basis b1,b2,...,bn is given such that the vector of reduced Gram-Schmidt coefficients ({µi,j} 1<= j< i<= n) is uniformly distributed in [0,1)n(n-1)/2, then the pruned enumeration finds with positive probability a shortest lattice vector. We demonstrate the power of these algorithms by solving random subset sum problems of arbitrary density with 74 and 82 many weights, by breaking the Chor-Rivest cryptoscheme in dimensions 103 and 151 and by breaking Damgard's hash function.

- Security Of Discrete Log Cryptosystems in the Random Oracle and the Generic Model (2000)
- We introduce novel security proofs that use combinatorial counting arguments rather than reductions to the discrete logarithm or to the Diffie-Hellman problem. Our security results are sharp and clean with no polynomial reduction times involved. We consider a combination of the random oracle model and the generic model. This corresponds to assuming an ideal hash function H given by an oracle and an ideal group of prime order q, where the binary encoding of the group elements is useless for cryptographic attacks In this model, we first show that Schnorr signatures are secure against the one-more signature forgery : A generic adversary performing t generic steps including l sequential interactions with the signer cannot produce l+1 signatures with a better probability than (t 2)/q. We also characterize the different power of sequential and of parallel attacks. Secondly, we prove signed ElGamal encryption is secure against the adaptive chosen ciphertext attack, in which an attacker can arbitrarily use a decryption oracle except for the challenge ciphertext. Moreover, signed ElGamal encryption is secure against the one-more decryption attack: A generic adversary performing t generic steps including l interactions with the decryption oracle cannot distinguish the plaintexts of l + 1 ciphertexts from random strings with a probability exceeding (t 2)/q.

- Fast signature generation with a fiat shamir-like scheme (1990)
- We propose two improvements to the Fiat Shamir authentication and signature scheme. We reduce the communication of the Fiat Shamir authentication scheme to a single round while preserving the e±ciency of the scheme. This also reduces the length of Fiat Shamir signatures. Using secret keys consisting of small integers we reduce the time for signature generation by a factor 3 to 4. We propose a variation of our scheme using class groups that may be secure even if factoring large integers becomes easy.