## Mathematik

### Refine

#### Year of publication

#### Document Type

- Article (99)
- Doctoral Thesis (51)
- Diplom Thesis (47)
- Other (16)
- Working Paper (10)
- Bachelor Thesis (6)
- Book (5)
- Preprint (5)
- Report (4)
- Master's Thesis (2)

#### Keywords

- Stochastik (4)
- Statistik (3)
- contraction method (3)
- Arithmetische Gruppe (2)
- Biographie (2)
- Finanzmathematik (2)
- Frankfurt <Main> / Universität (2)
- Heat kernel (2)
- Kombinatorische Optimierung (2)
- Krein space (2)

#### Institute

- Mathematik (249)
- Informatik (52)
- Präsidium (12)
- Biochemie und Chemie (3)
- Biowissenschaften (3)
- Erziehungswissenschaften (3)
- Geographie (3)
- Geowissenschaften (3)
- Pharmazie (3)
- Physik (3)

- Lyapunovfunktionen auf Zeitskalen (2004)
- Die Arbeiten von Alexander Michailowitsch Lyapunov (1857-1918) waren der Anfangspunkt intensiver Erforschung des Stabilitätsverhaltens von Differentialgleichungen. In der vorliegenden Arbeit sollen Lyapunovfunktionen auf Zeitskalen in Bezug auf das Stabilitätsverhalten des homogenen linearen Systems x-delta = A(t)x untersucht werden.

- Energy-based model of forming subgroups on finite metric space (2009)
- Local interactions between particles of a collection causes all particles to reorganize in new positions. The purpose of this paper is to construct an energy-based model of self-organizing subgroups, which describes the behavior of singular local moves of a particle. The present paper extends the Hegselmann-Krause model on consensus dynamics, where agents simultaneously move to the barycenter of all agents in an epsilon neighborhood. The Energy-based model presented here is analyzed and simulated on finite metric space. AMS Subject Classifications:81T80; 93A30; 37M05; 68U20

- Condensing of self-organizing groups (2010)
- Condensing phenomena for systems biology, ecology and sociology present in real life different complex behaviors. Based on local interaction between agents, we present another result of the Energy-based model presented by [20]. We involve an additional condition providing the total condensing (also called consensus) of a discrete positive measure. Key words: Condensing; consensus; random move; self-organizing groups; collective intelligence; stochastic modeling. AMS Subject Classifications: 81T80; 93A30; 37M05; 68U20

- Condensing on metric spaces : modeling, analysis and simulation (2009)
- In this work, we extend the Hegselmann and Krause (HK) model, presented in [16] to an arbitrary metric space. We also present some theoretical analysis and some numerical results of the condensing of particles in finite and continuous metric spaces. For simulations in a finite metric space, we introduce the notion "random metric" using the split metrics studies by Dress and al. [2, 11, 12].

- On the geometry, topology and approximation of amoebas (2013)
- We investigate multivariate Laurent polynomials f \in \C[\mathbf{z}^{\pm 1}] = \C[z_1^{\pm 1},\ldots,z_n^{\pm 1}] with varieties \mathcal{V}(f) restricted to the algebraic torus (\C^*)^n = (\C \setminus \{0\})^n. For such Laurent polynomials f one defines the amoeba \mathcal{A}(f) of f as the image of the variety \mathcal{V}(f) under the \Log-map \Log : (\C^*)^n \to \R^n, (z_1,\ldots,z_n) \mapsto (\log|z_1|, \ldots, \log|z_n|). I.e., the amoeba \mathcal{A}(f) is the projection of the variety \mathcal{V}(f) on its (componentwise logarithmized) absolute values. Amoebas were first defined in 1994 by Gelfand, Kapranov and Zelevinksy. Amoeba theory has been strongly developed since the beginning of the new century. It is related to various mathematical subjects, e.g., complex analysis or real algebraic curves. In particular, amoeba theory can be understood as a natural connection between algebraic and tropical geometry. In this thesis we investigate the geometry, topology and methods for the approximation of amoebas. Let \C^A denote the space of all Laurent polynomials with a given, finite support set A \subset \Z^n and coefficients in \C^*. It is well known that, in general, the existence of specific complement components of the amoebas \mathcal{A}(f) for f \in \C^A depends on the choice of coefficients of f. One prominent key problem is to provide bounds on the coefficients in order to guarantee the existence of certain complement components. A second key problem is the question whether the set U_\alpha^A \subseteq \C^A of all polynomials whose amoeba has a complement component of order \alpha \in \conv(A) \cap \Z^n is always connected. We prove such (upper and lower) bounds for multivariate Laurent polynomials supported on a circuit. If the support set A \subset \Z^n satisfies some additional barycentric condition, we can even give an exact description of the particular sets U_\alpha^A and, especially, prove that they are path-connected. For the univariate case of polynomials supported on a circuit, i.e., trinomials f = z^{s+t} + p z^t + q (with p,q \in \C^*), we show that a couple of classical questions from the late 19th / early 20th century regarding the connection between the coefficients and the roots of trinomials can be traced back to questions in amoeba theory. This yields nice geometrical and topological counterparts for classical algebraic results. We show for example that a trinomial has a root of a certain, given modulus if and only if the coefficient p is located on a particular hypotrochoid curve. Furthermore, there exist two roots with the same modulus if and only if the coefficient p is located on a particular 1-fan. This local description of the configuration space \C^A yields in particular that all sets U_\alpha^A for \alpha \in \{0,1,\ldots,s+t\} \setminus \{t\} are connected but not simply connected. We show that for a given lattice polytope P the set of all configuration spaces \C^A of amoebas with \conv(A) = P is a boolean lattice with respect to some order relation \sqsubseteq induced by the set theoretic order relation \subseteq. This boolean lattice turns out to have some nice structural properties and gives in particular an independent motivation for Passare's and Rullgard's conjecture about solidness of amoebas of maximally sparse polynomials. We prove this conjecture for special instances of support sets. A further key problem in the theory of amoebas is the description of their boundaries. Obviously, every boundary point \mathbf{w} \in \partial \mathcal{A}(f) is the image of a critical point under the \Log-map (where \mathcal{V}(f) is supposed to be non-singular here). Mikhalkin showed that this is equivalent to the fact that there exists a point in the intersection of the variety \mathcal{V}(f) and the fiber \F_{\mathbf{w}} of \mathbf{w} (w.r.t. the \Log-map), which has a (projective) real image under the logarithmic Gauss map. We strengthen this result by showing that a point \mathbf{w} may only be contained in the boundary of \mathcal{A}(f), if every point in the intersection of \mathcal{V}(f) and \F_{\mathbf{w}} has a (projective) real image under the logarithmic Gauss map. With respect to the approximation of amoebas one is in particular interested in deciding membership, i.e., whether a given point \mathbf{w} \in \R^n is contained in a given amoeba \mathcal{A}(f). We show that this problem can be traced back to a semidefinite optimization problem (SDP), basically via usage of the Real Nullstellensatz. This SDP can be implemented and solved with standard software (we use SOSTools and SeDuMi here). As main theoretic result we show that, from the complexity point of view, our approach is at least as good as Purbhoo's approximation process (which is state of the art).

- Gitter (2000)
- Skriptum zum Kapitel III der Vorlesung Höhere Algebra und Zahlentheorie, WS 2000/01.

- ABC for polynomials, dessins d'enfants, and uniformization - a survey (2004)
- The main subject of this survey are Belyi functions and dessins d'enfants on Riemann surfaces. Dessins are certain bipartite graphs on 2-mainfolds defining there are conformal and even an algebraic structure. In principle, all deeper properties of the resulting Riemann surfaces or algebraic curves should be encoded in these dessins, but the decoding turns out to be difficult and leads to many open problems. We emphasize arithmetical aspects like Galois actions, the relation to the ABC theorem in function filds and arithemtic questions in uniformization theory of algebraic curves defined over number fields.