## Mathematik

### Refine

#### Year of publication

#### Document Type

- Article (99)
- Doctoral Thesis (50)
- Diplom Thesis (47)
- Other (16)
- Working Paper (10)
- Bachelor Thesis (6)
- Book (5)
- Preprint (5)
- Report (4)
- Master's Thesis (2)

#### Keywords

- Stochastik (4)
- Statistik (3)
- contraction method (3)
- Arithmetische Gruppe (2)
- Biographie (2)
- Finanzmathematik (2)
- Frankfurt <Main> / Universität (2)
- Heat kernel (2)
- Kombinatorische Optimierung (2)
- Krein space (2)

#### Institute

- Mathematik (248)
- Informatik (52)
- Präsidium (12)
- Biochemie und Chemie (3)
- Biowissenschaften (3)
- Erziehungswissenschaften (3)
- Geographie (3)
- Geowissenschaften (3)
- Pharmazie (3)
- Physik (3)

- A Gaussian limit process for optimal FIND algorithms (2014)
- We consider versions of the FIND algorithm where the pivot element used is the median of a subset chosen uniformly at random from the data. For the median selection we assume that subsamples of size asymptotic to c⋅nα are chosen, where 0<α≤12, c>0 and n is the size of the data set to be split. We consider the complexity of FIND as a process in the rank to be selected and measured by the number of key comparisons required. After normalization we show weak convergence of the complexity to a centered Gaussian process as n→∞, which depends on α. The proof relies on a contraction argument for probability distributions on càdlàg functions. We also identify the covariance function

- Coalescent trees and their lengths (2014)
- The work presented in this thesis is devoted to two classes of mathematical population genetics models, namely the Kingman-coalescent and the Beta-coalescents. Chapters 2, 3 and 4 of the thesis include results concerned with the first model, whereas Chapter 5 presents contributions to the second class of models.

- A multiple filter test for the detection of rate changes in renewal processes with varying variance (2014)

- Partial symmetries of solutions to nonlinear elliptic and parabolic problems in bounded radial domains (2014)
- We consider a class of nonautonomous nonlinear competitive parabolic systems on bounded radial domains under Neumann or Dirichlet boundary conditions. We show that, if the initial profiles satisfy a reflection inequality with respect to a hyperplane, then bounded positive solutions are asymptotically (in time) foliated Schwarz symmetric with respect to antipodal points. Additionally, a related result for (positive and sign changing solutions) of scalar equations with Neumann or Dirichlet boundary conditions is given. The asymptotic shape of solutions to cooperative systems is also discussed.

- Entropy increase in switching systems (2013)
- The relation between the complexity of a time-switched dynamics and the complexity of its control sequence depends critically on the concept of a non-autonomous pullback attractor. For instance, the switched dynamics associated with scalar dissipative affine maps has a pullback attractor consisting of singleton component sets. This entails that the complexity of the control sequence and switched dynamics, as quantified by the topological entropy, coincide. In this paper we extend the previous framework to pullback attractors with nontrivial components sets in order to gain further insights in that relation. This calls, in particular, for distinguishing two distinct contributions to the complexity of the switched dynamics. One proceeds from trajectory segments connecting different component sets of the attractor; the other contribution proceeds from trajectory segments within the component sets. We call them “macroscopic” and “microscopic” complexity, respectively, because only the first one can be measured by our analytical tools. As a result of this picture, we obtain sufficient conditions for a switching system to be more complex than its unswitched subsystems, i.e., a complexity analogue of Parrondo’s paradox.

- On the existence and uniqueness of Glosten-Milgrom price processes (2013)
- We study the price-setting problem of market makers under perfect competition in continuous time. Thereby we follow the classic Glosten-Milgrom model that defines bid and ask prices as the expectation of a true value of the asset given the market makers partial information that includes the customers trading decisions. The true value is modeled as a Markov process that can be observed by the customers with some noise at Poisson times. We analyze the price-setting problem by solving a non-standard filtering problem with an endogenous filtration that depends on the bid and ask price process quoted by the market maker. Under some conditions we show existence and uniqueness of the price processes. In a different setting we construct a counterexample to uniqueness. Further, we discuss the behavior of the spread by a convergence result and simulations.

- Pólya urns via the contraction method (2013)
- In this thesis, the asymptotic behaviour of Pólya urn models is analyzed, using an approach based on the contraction method. For this, a combinatorial discrete time embedding of the evolution of the composition of the urn into random rooted trees is used. The recursive structure of the trees is used to study the asymptotic behavior using ideas from the contraction method. The approach is applied to a couple of concrete Pólya urns that lead to limit laws with normal distributions, with non-normal limit distributions, or with asymptotic periodic distributional behavior. Finally, an approach more in the spirit of earlier applications of the contraction method is discussed for one of the examples. A general transfer theorem of the contraction method is extended to cover this example, leading to conditions on the coefficients of the recursion that are not only weaker but also in general easier to check.

- A stochastic model for the joint evaluation of burstiness and regularity in oscillatory spike trains (2013)
- The thesis provides a stochastic model to quantify and classify neuronal firing patterns of oscillatory spike trains. A spike train is a finite sequence of time points at which a neuron has an electric discharge (spike) which is recorded over a finite time interval. In this work, these spike times are analyzed regarding special firing patterns like the presence or absence of oscillatory activity and clusters (so called bursts). These bursts do not have a clear and unique definition in the literature. They are often fired in response to behaviorally relevant stimuli, e.g., an unexpected reward or a novel stimulus, but may also appear spontaneously. Oscillatory activity has been found to be related to complex information processing such as feature binding or figure ground segregation in the visual cortex. Thus, in the context of neurophysiology, it is important to quantify and classify these firing patterns and their change under certain experimental conditions like pharmacological treatment or genetical manipulation. In neuroscientific practice, the classification is often done by visual inspection criteria without giving reproducible results. Furthermore, descriptive methods are used for the quantification of spike trains without relating the extracted measures to properties of the underlying processes. For that reason, a doubly stochastic point process model is proposed and termed 'Gaussian Locking to a free Oscillator' - GLO. The model has been developed on the basis of empirical observations in dopaminergic neurons and in cooperation with neurophysiologists. The GLO model uses as a first stage an unobservable oscillatory background rhythm which is represented by a stationary random walk whose increments are normally distributed. Two different model types are used to describe single spike firing or clusters of spikes. For both model types, the distribution of the random number of spikes per beat has different probability distributions (Bernoulli in the single spike case or Poisson in the cluster case). In the second stage, the random spike times are placed around their birth beat according to a normal distribution. These spike times represent the observed point process which has five easily interpretable parameters to describe the regularity and the burstiness of the firing patterns. It turns out that the point process is stationary, simple and ergodic. It can be characterized as a cluster process and for the bursty firing mode as a Cox process. Furthermore, the distribution of the waiting times between spikes can be derived for some parameter combination. The conditional intensity function of the point process is derived which is also called autocorrelation function (ACF) in the neuroscience literature. This function arises by conditioning on a spike at time zero and measures the intensity of spikes x time units later. The autocorrelation histogram (ACH) is an estimate for the ACF. The parameters of the GLO are estimated by fitting the ACF to the ACH with a nonlinear least squares algorithm. This is a common procedure in neuroscientific practice and has the advantage that the GLO ACF can be computed for all parameter combinations and that its properties are closely related to the burstiness and regularity of the process. The precision of estimation is investigated for different scenarios using Monte-Carlo simulations and bootstrap methods. The GLO provides the neuroscientist with objective and reproducible classification rules for the firing patterns on the basis of the model ACF. These rules are inspired by visual inspection criteria often used in neuroscientific practice and thus support and complement usual analysis of empirical spike trains. When applied to a sample data set, the model is able to detect significant changes in the regularity and burst behavior of the cells and provides confidence intervals for the parameter estimates.