## Mathematik

### Refine

#### Year of publication

#### Document Type

- Article (99)
- Doctoral Thesis (51)
- Diplom Thesis (47)
- Other (16)
- Working Paper (10)
- Bachelor Thesis (6)
- Book (5)
- Preprint (5)
- Report (4)
- Master's Thesis (2)

#### Keywords

- Stochastik (4)
- Statistik (3)
- contraction method (3)
- Arithmetische Gruppe (2)
- Biographie (2)
- Finanzmathematik (2)
- Frankfurt <Main> / Universität (2)
- Heat kernel (2)
- Kombinatorische Optimierung (2)
- Krein space (2)

#### Institute

- Mathematik (249)
- Informatik (52)
- Präsidium (12)
- Biochemie und Chemie (3)
- Biowissenschaften (3)
- Erziehungswissenschaften (3)
- Geographie (3)
- Geowissenschaften (3)
- Pharmazie (3)
- Physik (3)

- A Gaussian limit process for optimal FIND algorithms (2014)
- We consider versions of the FIND algorithm where the pivot element used is the median of a subset chosen uniformly at random from the data. For the median selection we assume that subsamples of size asymptotic to c⋅nα are chosen, where 0<α≤12, c>0 and n is the size of the data set to be split. We consider the complexity of FIND as a process in the rank to be selected and measured by the number of key comparisons required. After normalization we show weak convergence of the complexity to a centered Gaussian process as n→∞, which depends on α. The proof relies on a contraction argument for probability distributions on càdlàg functions. We also identify the covariance function

- Coalescent trees and their lengths (2014)
- The work presented in this thesis is devoted to two classes of mathematical population genetics models, namely the Kingman-coalescent and the Beta-coalescents. Chapters 2, 3 and 4 of the thesis include results concerned with the first model, whereas Chapter 5 presents contributions to the second class of models.

- Partial symmetries of solutions to nonlinear elliptic and parabolic problems in bounded radial domains (2014)
- We consider a class of nonautonomous nonlinear competitive parabolic systems on bounded radial domains under Neumann or Dirichlet boundary conditions. We show that, if the initial profiles satisfy a reflection inequality with respect to a hyperplane, then bounded positive solutions are asymptotically (in time) foliated Schwarz symmetric with respect to antipodal points. Additionally, a related result for (positive and sign changing solutions) of scalar equations with Neumann or Dirichlet boundary conditions is given. The asymptotic shape of solutions to cooperative systems is also discussed.

- Nonnegative polynomials and sums of squares : boundary structure, symmetries and sparsity (2014)
- The cones of nonnegative polynomials and sums of squares arise as central objects in convex algebraic geometry and have their origin in the seminal work of Hilbert ([Hil88]). Depending on the number of variables n and the degree d of the polynomials, Hilbert famously characterizes all cases of equality between the cone of nonnegative polynomials and the cone of sums of squares. This equality precisely holds for bivariate forms, quadratic forms and ternary quartics ([Hil88]). Since then, a lot of work has been done in understanding the difference between these two cones, which has major consequences for many practical applications such as for polynomial optimization problems. Roughly speaking, minimizing polynomial functions (constrained as well as unconstrained) can be done efficiently whenever certain nonnegative polynomials can be written as sums of squares (see Section 2.3 for the precise relationship). The underlying reason is the fundamental difference that checking nonnegativity of polynomials is an NP-hard problem whenever the degree is greater or equal than four ([BCSS98]), whereas checking whether a polynomial can be written as a sum of squares is a semidefinite feasibility problem (see Section 2.2). Although the complexity status of the semidefinite feasibility problem is still an open problem, it is polynomial for fixed number of variables. Hence, understanding the difference between nonnegative polynomials and sums of squares is highly desirable both from a theoretical and a practical viewpoint.

- A multiple filter test for the detection of rate changes in renewal processes with varying variance (2014)
- The thesis provides novel procedures in the statistical field of change point detection in time series. Motivated by a variety of neuronal spike train patterns, a broad stochastic point process model is introduced. This model features points in time (change points), where the associated event rate changes. For purposes of change point detection, filtered derivative processes (MOSUM) are studied. Functional limit theorems for the filtered derivative processes are derived. These results are used to support novel procedures for change point detection; in particular, multiple filters (bandwidths) are applied simultaneously in oder to detect change points in different time scales.

- Entropy increase in switching systems (2013)
- The relation between the complexity of a time-switched dynamics and the complexity of its control sequence depends critically on the concept of a non-autonomous pullback attractor. For instance, the switched dynamics associated with scalar dissipative affine maps has a pullback attractor consisting of singleton component sets. This entails that the complexity of the control sequence and switched dynamics, as quantified by the topological entropy, coincide. In this paper we extend the previous framework to pullback attractors with nontrivial components sets in order to gain further insights in that relation. This calls, in particular, for distinguishing two distinct contributions to the complexity of the switched dynamics. One proceeds from trajectory segments connecting different component sets of the attractor; the other contribution proceeds from trajectory segments within the component sets. We call them “macroscopic” and “microscopic” complexity, respectively, because only the first one can be measured by our analytical tools. As a result of this picture, we obtain sufficient conditions for a switching system to be more complex than its unswitched subsystems, i.e., a complexity analogue of Parrondo’s paradox.

- On the existence and uniqueness of Glosten-Milgrom price processes (2013)
- We study the price-setting problem of market makers under perfect competition in continuous time. Thereby we follow the classic Glosten-Milgrom model that defines bid and ask prices as the expectation of a true value of the asset given the market makers partial information that includes the customers trading decisions. The true value is modeled as a Markov process that can be observed by the customers with some noise at Poisson times. We analyze the price-setting problem by solving a non-standard filtering problem with an endogenous filtration that depends on the bid and ask price process quoted by the market maker. Under some conditions we show existence and uniqueness of the price processes. In a different setting we construct a counterexample to uniqueness. Further, we discuss the behavior of the spread by a convergence result and simulations.

- Pólya urns via the contraction method (2013)
- In this thesis, the asymptotic behaviour of Pólya urn models is analyzed, using an approach based on the contraction method. For this, a combinatorial discrete time embedding of the evolution of the composition of the urn into random rooted trees is used. The recursive structure of the trees is used to study the asymptotic behavior using ideas from the contraction method. The approach is applied to a couple of concrete Pólya urns that lead to limit laws with normal distributions, with non-normal limit distributions, or with asymptotic periodic distributional behavior. Finally, an approach more in the spirit of earlier applications of the contraction method is discussed for one of the examples. A general transfer theorem of the contraction method is extended to cover this example, leading to conditions on the coefficients of the recursion that are not only weaker but also in general easier to check.