## Mathematik

### Refine

#### Year of publication

- 2004 (16) (remove)

#### Document Type

- Article (5)
- Diplom Thesis (3)
- Doctoral Thesis (3)
- Preprint (3)
- Other (1)
- Working Paper (1)

#### Keywords

- Dessins d'enfants (1)
- Householder reflection (1)
- Kochen-Specker theorem (1)
- LLL-reduction (1)
- Quantum Zeno Effect (1)
- Quantum Zeno dynamics (1)
- SLLL-reduction (1)
- Stonesches Spektrum (1)
- Trotter's product formula (1)
- Typ-In-Algebra (1)

#### Institute

- Mathematik (16)
- Informatik (2)

- Cm-smoothness of invariant fiber bundles for dynamic equations on measure chains (2004)
- We present a new self-contained and rigorous proof of the smoothness of invariant fiber bundles for dynamic equations on measure chains or time scales. Here, an invariant fiber bundle is the generalization of an invariant manifold to the nonautonomous case. Our main result generalizes the “Hadamard-Perron theorem” to the time-dependent, infinite-dimensional, noninvertible, and parameter-dependent case, where the linear part is not necessarily hyperbolic with variable growth rates. As a key feature, our proof works without using complicated technical tools.

- Hierarchical equilibria of branching populations (2004)
- The objective of this paper is the study of the equilibrium behavior of a population on the hierarchical group ΩN consisting of families of individuals undergoing critical branching random walk and in addition these families also develop according to a critical branching process. Strong transience of the random walk guarantees existence of an equilibrium for this two-level branching system. In the limit N→∞ (called the hierarchical mean field limit), the equilibrium aggregated populations in a nested sequence of balls B(N)ℓ of hierarchical radius ℓ converge to a backward Markov chain on R+. This limiting Markov chain can be explicitly represented in terms of a cascade of subordinators which in turn makes possible a description of the genealogy of the population.

- Fast LLL-type lattice reduction (2004)
- We modify the concept of LLL-reduction of lattice bases in the sense of Lenstra, Lenstra, Lovasz [LLL82] towards a faster reduction algorithm. We organize LLL-reduction in segments of the basis. Our SLLL-bases approximate the successive minima of the lattice in nearly the same way as LLL-bases. For integer lattices of dimension n given by a basis of length 2exp(O(n)), SLLL-reduction runs in O(n.exp(5+epsilon)) bit operations for every epsilon > 0, compared to O(exp(n7+epsilon)) for the original LLL and to O(exp(n6+epsilon)) for the LLL-algorithms of Schnorr (1988) and Storjohann (1996). We present an even faster algorithm for SLLL-reduction via iterated subsegments running in O(n*exp(3)*log n) arithmetic steps.

- Conjugators of Fuchsian groups and quasiplatonic surfaces (2004)
- Let G be a Fuchsian group containing two torsion free subgroups defining isomorphic Riemann surfaces. Then these surface subgroups K and alpha-Kalpha exp(-1) are conjugate in PSl(2,R), but in general the conjugating element alpha cannot be taken in G or a finite index Fuchsian extension of G. We will show that in the case of a normal inclusion in a triangle group G these alpha can be chosen in some triangle group extending G. It turns out that the method leading to this result allows also to answer the question how many different regular dessins of the same type can exist on a given quasiplatonic Riemann surface.

- How many quasiplatonic surfaces? (2004)
- We show that the number of isomorphism classes of quasiplatonic Riemann surfaces of genus <= g has o growth of typ g exp (log g). The number of non-isomorphic regular dessins of genus <= g has the same growth type.

- ABC for polynomials, dessins d'enfants, and uniformization - a survey (2004)
- The main subject of this survey are Belyi functions and dessins d'enfants on Riemann surfaces. Dessins are certain bipartite graphs on 2-mainfolds defining there are conformal and even an algebraic structure. In principle, all deeper properties of the resulting Riemann surfaces or algebraic curves should be encoded in these dessins, but the decoding turns out to be difficult and leads to many open problems. We emphasize arithmetical aspects like Galois actions, the relation to the ABC theorem in function filds and arithemtic questions in uniformization theory of algebraic curves defined over number fields.

- Approximation stochastischer Differentialgleichungen mit Markovschen Sprüngen (2004)
- In dieser Arbeit geht es darum, für die Lösung eindimensionaler stochastischer Differentialgleichungen mit Markovschen Sprüngen gute Näherungen zu finden, genauer gesagt die erwartete quadratische Abweichung der Approximation von der Lösung soll möglichst klein sein.

- Mathematics of the quantum Zeno effect (2004)
- We present an overview of the mathematics underlying the quantum Zeno effect. Classical, functional analytic results are put into perspective and compared with more recent ones. This yields some new insights into mathematical preconditions entailing the Zeno paradox, in particular a simplified proof of Misra's and Sudarshan's theorem. We empahsise the complex-analytic structures associated to the issue of existence of the Zeno dynamics. On grounds of the assembled material, we reason about possible future mathematical developments pertaining to the Zeno paradox and its counterpart, the anti-Zeno paradox, both of which seem to be close to complete characterisations. PACS-Klassifikation: 03.65.Xp, 03.65Db, 05.30.-d, 02.30.T . See the corresponding presentation: Schmidt, Andreas U.: "Zeno Dynamics of von Neumann Algebras" and "Zeno Dynamics in Quantum Statistical Mechanics"

- Zeno dynamics in quantum statistical mechanics (2004)
- We study the quantum Zeno effect in quantum statistical mechanics within the operator algebraic framework. We formulate a condition for the appearance of the effect in W*-dynamical systems, in terms of the short-time behaviour of the dynamics. Examples of quantum spin systems show that this condition can be effectively applied to quantum statistical mechanical models. Furthermore, we derive an explicit form of the Zeno generator, and use it to construct Gibbs equilibrium states for the Zeno dynamics. As a concrete example, we consider the X-Y model, for which we show that a frequent measurement at a microscopic level, e.g. a single lattice site, can produce a macroscopic effect in changing the global equilibrium. PACS - Klassifikation: 03.65.Xp, 05.30.-d, 02.30. See the corresponding papers: Schmidt, Andreas U.: "Zeno Dynamics of von Neumann Algebras" and "Mathematics of the Quantum Zeno Effect" and the talk "Zeno Dynamics in Quantum Statistical Mechanics" - http://publikationen.ub.uni-frankfurt.de/volltexte/2005/1167/