## Medizin

### Refine

#### Document Type

- Article (2)
- Conference Proceeding (2)

#### Institute

- Frankfurt Institute for Advanced Studies (4) (remove)

- Learning more by sampling less: subsampling effects are model specific (2013)
- Poster presentation: Twenty Second Annual Computational Neuroscience Meeting: CNS*2013. Paris, France. 13-18 July 2013. When studying real world complex networks, one rarely has full access to all their components. As an example, the central nervous system of the human consists of 1011 neurons which are each connected to thousands of other neurons [1]. Of these 100 billion neurons, at most a few hundred can be recorded in parallel. Thus observations are hampered by immense subsampling. While subsampling does not affect the observables of single neuron activity, it can heavily distort observables which characterize interactions between pairs or groups of neurons [2]. Without a precise understanding how subsampling affects these observables, inference on neural network dynamics from subsampled neural data remains limited. We systematically studied subsampling effects in three self-organized critical (SOC) models, since this class of models can reproduce the spatio-temporal activity of spontaneous activity observed in vivo [2,3]. The models differed in their topology and in their precise interaction rules. The first model consisted of locally connected integrate- and fire units, thereby resembling cortical activity propagation mechanisms [2]. The second model had the same interaction rules but random connectivity [4]. The third model had local connectivity but different activity propagation rules [5]. As a measure of network dynamics, we characterized the spatio-temporal waves of activity, called avalanches. Avalanches are characteristic for SOC models and neural tissue [6]. Avalanche measures A (e.g. size, duration, shape) were calculated for the fully sampled and the subsampled models. To mimic subsampling in the models, we considered the activity of a subset of units only, discarding the activity of all the other units. Under subsampling the avalanche measures A depended on three main factors: First, A depended on the interaction rules of the model and its topology, thus each model showed its own characteristic subsampling effects on A. Second, A depended on the number of sampled sites n. With small and intermediate n, the true A¬ could not be recovered in any of the models. Third, A depended on the distance d between sampled sites. With small d, A was overestimated, while with large d, A was underestimated. Since under subsampling, the observables depended on the model's topology and interaction mechanisms, we propose that systematic subsampling can be exploited to compare models with neural data: When changing the number and the distance between electrodes in neural tissue and sampled units in a model analogously, the observables in a correct model should behave the same as in the neural tissue. Thereby, incorrect models can easily be discarded. Thus, systematic subsampling offers a promising and unique approach to model selection, even if brain activity was far from being fully sampled.

- Emergence of the mitochondrial reticulum from fission and fusion dynamics (2012)
- Mitochondria form a dynamic tubular reticulum within eukaryotic cells. Currently, quantitative understanding of its morphological characteristics is largely absent, despite major progress in deciphering the molecular fission and fusion machineries shaping its structure. Here we address the principles of formation and the large-scale organization of the cell-wide network of mitochondria. On the basis of experimentally determined structural features we establish the tip-to-tip and tip-to-side fission and fusion events as dominant reactions in the motility of this organelle. Subsequently, we introduce a graph-based model of the chondriome able to encompass its inherent variability in a single framework. Using both mean-field deterministic and explicit stochastic mathematical methods we establish a relationship between the chondriome structural network characteristics and underlying kinetic rate parameters. The computational analysis indicates that mitochondrial networks exhibit a percolation threshold. Intrinsic morphological instability of the mitochondrial reticulum resulting from its vicinity to the percolation transition is proposed as a novel mechanism that can be utilized by cells for optimizing their functional competence via dynamic remodeling of the chondriome. The detailed size distribution of the network components predicted by the dynamic graph representation introduces a relationship between chondriome characteristics and cell function. It forms a basis for understanding the architecture of mitochondria as a cell-wide but inhomogeneous organelle. Analysis of the reticulum adaptive configuration offers a direct clarification for its impact on numerous physiological processes strongly dependent on mitochondrial dynamics and organization, such as efficiency of cellular metabolism, tissue differentiation and aging.

- TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy (2011)
- Background: Transfer entropy (TE) is a measure for the detection of directed interactions. Transfer entropy is an information theoretic implementation of Wiener's principle of observational causality. It offers an approach to the detection of neuronal interactions that is free of an explicit model of the interactions. Hence, it offers the power to analyze linear and nonlinear interactions alike. This allows for example the comprehensive analysis of directed interactions in neural networks at various levels of description. Here we present the open-source MATLAB toolbox TRENTOOL that allows the user to handle the considerable complexity of this measure and to validate the obtained results using non-parametrical statistical testing. We demonstrate the use of the toolbox and the performance of the algorithm on simulated data with nonlinear (quadratic) coupling and on local field potentials (LFP) recorded from the retina and the optic tectum of the turtle (Pseudemys scripta elegans) where a neuronal one-way connection is likely present. Results: In simulated data TE detected information flow in the simulated direction reliably with false positives not exceeding the rates expected under the null hypothesis. In the LFP data we found directed interactions from the retina to the tectum, despite the complicated signal transformations between these stages. No false positive interactions in the reverse directions were detected. Conclusions: TRENTOOL is an implementation of transfer entropy and mutual information analysis that aims to support the user in the application of this information theoretic measure. TRENTOOL is implemented as a MATLAB toolbox and available under an open source license (GPL v3). For the use with neural data TRENTOOL seamlessly integrates with the popular FieldTrip toolbox.

- TRENTOOL: an open source toolbox to estimate neural directed interactions with transfer entropy (2011)
- Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. Poster presentation To investigate directed interactions in neural networks we often use Norbert Wiener's famous definition of observational causality. Wiener’s definition states that an improvement of the prediction of the future of a time series X from its own past by the incorporation of information from the past of a second time series Y is seen as an indication of a causal interaction from Y to X. Early implementations of Wiener's principle – such as Granger causality – modelled interacting systems by linear autoregressive processes and the interactions themselves were also assumed to be linear. However, in complex systems – such as the brain – nonlinear behaviour of its parts and nonlinear interactions between them have to be expected. In fact nonlinear power-to-power or phase-to-power interactions between frequencies are reported frequently. To cover all types of non-linear interactions in the brain, and thereby to fully chart the neural networks of interest, it is useful to implement Wiener's principle in a way that is free of a model of the interaction [1]. Indeed, it is possible to reformulate Wiener's principle based on information theoretic quantities to obtain the desired model-freeness. The resulting measure was originally formulated by Schreiber [2] and termed transfer entropy (TE). Shortly after its publication transfer entropy found applications to neurophysiological data. With the introduction of new, data efficient estimators (e.g. [3]) TE has experienced a rapid surge of interest (e.g. [4]). Applications of TE in neuroscience range from recordings in cultured neuronal populations to functional magnetic resonanace imaging (fMRI) signals. Despite widespread interest in TE, no publicly available toolbox exists that guides the user through the difficulties of this powerful technique. TRENTOOL (the TRansfer ENtropy TOOLbox) fills this gap for the neurosciences by bundling data efficient estimation algorithms with the necessary parameter estimation routines and nonparametric statistical testing procedures for comparison to surrogate data or between experimental conditions. TRENTOOL is an open source MATLAB toolbox based on the Fieldtrip data format. We evaluated the performance of the toolbox on simulation data and also a neuronal dataset that provides connections that are truly unidirectional to circumvent the following generic problem: typically, for any result of an analysis of directed interactions in the brain there will be a plausible explanation because of the combination of feedforward and feedback connectivity between any two measurement sites. Therefore, we estimated TE between the electroretinogram (ERG) and the LFP response in the tectum of the turtle (Chrysemys scripta elegans) under visual stimulation by random light pulses. In addition, we also investigated transfer entropy between the input to the light source (TTL pulse) and the ERG, to test the ability of TE to detect directed interactions between signals with vastly different properties. We found significant (p<0.0005) causal interactions from the TTL pulse to the ERG and from the ERG to the tectum – as expected. No significant TE was detected in the reverse direction. CONCLUSION: TRENTOOL is an easy to use implementation of transfer entropy estimation combined with statistical testing routines suitable for the analysis of directed interactions in neuronal data.