## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

### Refine

#### Year of publication

#### Keywords

- Lambda-Kalkül (14)
- Formale Semantik (8)
- Nebenläufigkeit (6)
- Programmiersprache (5)
- Verifikation (4)
- Funktionale Programmierung (3)
- Logik (3)
- Operationale Semantik (3)
- functional programming languages (3)
- lambda calculus (3)

- 34
- On proving the equivalence of concurrency primitives (2008)
- Various concurrency primitives have been added to sequential programming languages, in order to turn them concurrent. Prominent examples are concurrent buffers for Haskell, channels in Concurrent ML, joins in JoCaml, and handled futures in Alice ML. Even though one might conjecture that all these primitives provide the same expressiveness, proving this equivalence is an open challenge in the area of program semantics. In this paper, we establish a first instance of this conjecture. We show that concurrent buffers can be encoded in the lambda calculus with futures underlying Alice ML. Our correctness proof results from a systematic method, based on observational semantics with respect to may and must convergence.

- 37 [v.2]
- On correctness of buffer implementations in a concurrent lambda calculus with futures (2009)
- Motivated by the question of correctness of a specific implementation of concurrent buffers in the lambda calculus with futures underlying Alice ML, we prove that concurrent buffers and handled futures can correctly encode each other. Correctness means that our encodings preserve and reflect the observations of may- and must-convergence, and as a consequence also yields soundness of the encodings with respect to a contextually defined notion of program equivalence. While these translations encode blocking into queuing and waiting, we also describe an adequate encoding of buffers in a calculus without handles, which is more low-level and uses busy-waiting instead of blocking. Furthermore we demonstrate that our correctness concept applies to the whole compilation process from high-level to low-level concurrent languages, by translating the calculus with buffers, handled futures and data constructors into a small core language without those constructs.

- 37
- On correctness of buffer implementations in a concurrent lambda calculus with futures (2009)
- Motivated by the question of correctness of a specific implementation of concurrent buffers in the lambda calculus with futures underlying Alice ML, we prove that concurrent buffers and handled futures can correctly encode each other. Correctness means that our encodings preserve and reflect the observations of may- and must-convergence. This also shows correctness wrt. program semantics, since the encodings are adequate translations wrt. contextual semantics. While these translations encode blocking into queuing and waiting, we also provide an adequate encoding of buffers in a calculus without handles, which is more low-level and uses busy-waiting instead of blocking. Furthermore we demonstrate that our correctness concept applies to the whole compilation process from high-level to low-level concurrent languages, by translating the calculus with buffers, handled futures and data constructors into a small core language without those constructs.

- 19
- On the safety of Nöcker's strictness analysis (2004)
- This paper proves correctness of Nocker s method of strictness analysis, implemented for Clean, which is an e ective way for strictness analysis in lazy functional languages based on their operational semantics. We improve upon the work of Clark, Hankin and Hunt, which addresses correctness of the abstract reduction rules. Our method also addresses the cycle detection rules, which are the main strength of Nocker s strictness analysis. We reformulate Nocker s strictness analysis algorithm in a higherorder lambda-calculus with case, constructors, letrec, and a nondeterministic choice operator used as a union operator. Furthermore, the calculus is expressive enough to represent abstract constants like Top or Inf. The operational semantics is a small-step semantics and equality of expressions is defined by a contextual semantics that observes termination of expressions. The correctness of several reductions is proved using a context lemma and complete sets of forking and commuting diagrams. The proof is based mainly on an exact analysis of the lengths of normal order reductions. However, there remains a small gap: Currently, the proof for correctness of strictness analysis requires the conjecture that our behavioral preorder is contained in the contextual preorder. The proof is valid without referring to the conjecture, if no abstract constants are used in the analysis.

- 20
- A complete proof of the safety of Nöcker's strictness analysis (2005)
- This paper proves correctness of Nöcker's method of strictness analysis, implemented in the Clean compiler, which is an effective way for strictness analysis in lazy functional languages based on their operational semantics. We improve upon the work of Clark, Hankin and Hunt did on the correctness of the abstract reduction rules. Our method fully considers the cycle detection rules, which are the main strength of Nöcker's strictness analysis. Our algorithm SAL is a reformulation of Nöcker's strictness analysis algorithm in a higher-order call-by-need lambda-calculus with case, constructors, letrec, and seq, extended by set constants like Top or Inf, denoting sets of expressions. It is also possible to define new set constants by recursive equations with a greatest fixpoint semantics. The operational semantics is a small-step semantics. Equality of expressions is defined by a contextual semantics that observes termination of expressions. Basically, SAL is a non-termination checker. The proof of its correctness and hence of Nöcker's strictness analysis is based mainly on an exact analysis of the lengths of normal order reduction sequences. The main measure being the number of 'essential' reductions in a normal order reduction sequence. Our tools and results provide new insights into call-by-need lambda-calculi, the role of sharing in functional programming languages, and into strictness analysis in general. The correctness result provides a foundation for Nöcker's strictness analysis in Clean, and also for its use in Haskell.

- 23
- Deciding subset relationship of co-inductively defined set constants (2005)
- Static analysis of different non-strict functional programming languages makes use of set constants like Top, Inf, and Bot denoting all expressions, all lists without a last Nil as tail, and all non-terminating programs, respectively. We use a set language that permits union, constructors and recursive definition of set constants with a greatest fixpoint semantics. This paper proves decidability, in particular EXPTIMEcompleteness, of subset relationship of co-inductively defined sets by using algorithms and results from tree automata. This shows decidability of the test for set inclusion, which is required by certain strictness analysis algorithms in lazy functional programming languages.

- 52
- Observational program calculi and the correctness of translations (2013)
- Motivated by our experience in analyzing properties of translations between programming languages with observational semantics, this paper clarifies the notions, the relevant questions, and the methods, constructs a general framework, and provides several tools for proving various correctness properties of translations like adequacy and full abstractness. The presented framework can directly be applied to the observational equivalences derived from the operational semantics of programming calculi, and also to other situations, and thus has a wide range of applications.

- 40
- Simulation in the call-by-need lambda-calculus with letrec (2010)
- This paper shows the equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in the deterministic call-by-need lambda calculus with letrec. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. Although this property may be a natural one to expect, to the best of our knowledge, this paper is the first one providing a proof. The proof technique is to transfer the contextual approximation into Abramsky's lazy lambda calculus by a fully abstract and surjective translation. This also shows that the natural embedding of Abramsky's lazy lambda calculus into the call-by-need lambda calculus with letrec is an isomorphism between the respective term-models.We show that the equivalence property proven in this paper transfers to a call-by-need letrec calculus developed by Ariola and Felleisen.

- 49 [v.2]
- Simulation in the call-by-need lambda-calculus with letrec, case, constructors, and seq (2013)
- This paper shows equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seqoperator. LR models an untyped version of the core language of Haskell. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer of the contextual approximation into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of similarity and contextual approximation can be shown by Howe's method. Using an equivalent but inductive definition of behavioral preorder we then transfer similarity back to the calculus LR. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite tress, which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, and also with a call-by-need letrec calculus with a less complex definition of reduction than LR.

- 49
- Simulation in the call-by-need lambda-calculus with letrec, case, constructors, and seq (2012)
- This paper shows equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seqoperator. LR models an untyped version of the core language of Haskell. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer of the contextual approximation into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of similarity and contextual approximation can be shown by Howe's method. Using an equivalent but inductive definition of behavioral preorder we then transfer similarity back to the calculus LR. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite tress, which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, and also with a call-by-need letrec calculus with a less complex definition of reduction than LR.