## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

### Refine

#### Year of publication

#### Keywords

- Lambda-Kalkül (7)
- Formale Semantik (4)
- Nebenläufigkeit (3)
- lambda calculus (3)
- Formale Semantik (2)
- Funktionale Programmierung (2)
- Kontextuelle Gleichheit (2)
- Operationale Semantik (2)
- semantics (2)
- Abstrakte Reduktion (1)

- 24
- A call-by-need lambda-calculus with locally bottom-avoiding choice : context lemma and correctness of transformations (2006)
- We present a higher-order call-by-need lambda calculus enriched with constructors, case-expressions, recursive letrec-expressions, a seq-operator for sequential evaluation and a non-deterministic operator amb, which is locally bottom-avoiding. We use a small-step operational semantics in form of a normal order reduction. As equational theory we use contextual equivalence, i.e. terms are equal if plugged into an arbitrary program context their termination behaviour is the same. We use a combination of may- as well as must-convergence, which is appropriate for non-deterministic computations. We evolve different proof tools for proving correctness of program transformations. We provide a context lemma for may- as well as must- convergence which restricts the number of contexts that need to be examined for proving contextual equivalence. In combination with so-called complete sets of commuting and forking diagrams we show that all the deterministic reduction rules and also some additional transformations keep contextual equivalence. In contrast to other approaches our syntax as well as semantics does not make use of a heap for sharing expressions. Instead we represent these expressions explicitely via letrec-bindings.

- 20
- A complete proof of the safety of Nöcker's strictness analysis (2005)
- This paper proves correctness of Nöcker's method of strictness analysis, implemented in the Clean compiler, which is an effective way for strictness analysis in lazy functional languages based on their operational semantics. We improve upon the work of Clark, Hankin and Hunt did on the correctness of the abstract reduction rules. Our method fully considers the cycle detection rules, which are the main strength of Nöcker's strictness analysis. Our algorithm SAL is a reformulation of Nöcker's strictness analysis algorithm in a higher-order call-by-need lambda-calculus with case, constructors, letrec, and seq, extended by set constants like Top or Inf, denoting sets of expressions. It is also possible to define new set constants by recursive equations with a greatest fixpoint semantics. The operational semantics is a small-step semantics. Equality of expressions is defined by a contextual semantics that observes termination of expressions. Basically, SAL is a non-termination checker. The proof of its correctness and hence of Nöcker's strictness analysis is based mainly on an exact analysis of the lengths of normal order reduction sequences. The main measure being the number of 'essential' reductions in a normal order reduction sequence. Our tools and results provide new insights into call-by-need lambda-calculi, the role of sharing in functional programming languages, and into strictness analysis in general. The correctness result provides a foundation for Nöcker's strictness analysis in Clean, and also for its use in Haskell.

- 44
- A contextual semantics for concurrent Haskell with futures (2011)
- In this paper we analyze the semantics of a higher-order functional language with concurrent threads, monadic IO and synchronizing variables as in Concurrent Haskell. To assure declarativeness of concurrent programming we extend the language by implicit, monadic, and concurrent futures. As semantic model we introduce and analyze the process calculus CHF, which represents a typed core language of Concurrent Haskell extended by concurrent futures. Evaluation in CHF is defined by a small-step reduction relation. Using contextual equivalence based on may- and should-convergence as program equivalence, we show that various transformations preserve program equivalence. We establish a context lemma easing those correctness proofs. An important result is that call-by-need and call-by-name evaluation are equivalent in CHF, since they induce the same program equivalence. Finally we show that the monad laws hold in CHF under mild restrictions on Haskell’s seq-operator, which for instance justifies the use of the do-notation.

- 42
- A termination proof of reduction in a simply typed calculus with constructors (2010)
- The well-known proof of termination of reduction in simply typed calculi is adapted to a monomorphically typed lambda-calculus with case and constructors and recursive data types. The proof differs at several places from the standard proof. Perhaps it is useful and can be extended also to more complex calculi.

- 33
- Adequacy of compositional translations for observational semantics (2008)
- We investigate methods and tools for analysing translations between programming languages with respect to observational semantics. The behaviour of programs is observed in terms of may- and must-convergence in arbitrary contexts, and adequacy of translations, i.e., the reﬂection of program equivalence, is taken to be the fundamental correctness condition. For compositional translations we propose a notion of convergence equivalence as a means for proving adequacy. This technique avoids explicit reasoning about contexts, and is able to deal with the subtle role of typing in implementations of language extension.

- 48
- An abstract machine for concurrent Haskell with futures (2012)
- We show how Sestoft’s abstract machine for lazy evaluation of purely functional programs can be extended to evaluate expressions of the calculus CHF – a process calculus that models Concurrent Haskell extended by imperative and implicit futures. The abstract machine is modularly constructed by first adding monadic IO-actions to the machine and then in a second step we add concurrency. Our main result is that the abstract machine coincides with the original operational semantics of CHF, w.r.t. may- and should-convergence.

- 35
- Closures of may and must convergence for contextual equivalence (2008)
- We show on an abstract level that contextual equivalence in non-deterministic program calculi defined by may- and must-convergence is maximal in the following sense. Using also all the test predicates generated by the Boolean, forall- and existential closure of may- and must-convergence does not change the contextual equivalence. The situation is different if may- and total must-convergence is used, where an expression totally must-converges if all reductions are finite and terminate with a value: There is an infinite sequence of test-predicates generated by the Boolean, forall- and existential closure of may- and total must-convergence, which also leads to an infinite sequence of different contextual equalities.

- 36
- Contextual equivalence in lambda-calculi extended with letrec and with a parametric polymorphic type system (2009)
- This paper describes a method to treat contextual equivalence in polymorphically typed lambda-calculi, and also how to transfer equivalences from the untyped versions of lambda-calculi to their typed variant, where our specific calculus has letrec, recursive types and is nondeterministic. An addition of a type label to every subexpression is all that is needed, together with some natural constraints for the consistency of the type labels and well-scopedness of expressions. One result is that an elementary but typed notion of program transformation is obtained and that untyped contextual equivalences also hold in the typed calculus as long as the expressions are well-typed. In order to have a nice interaction between reduction and typing, some reduction rules have to be accompanied with a type modification by generalizing or instantiating types.

- 50
- Correctness of an STM Haskell implementation (2012)
- A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of con icting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics.

- 38
- Counterexamples to simulation in non-deterministic call-by-need lambda-calculi with letrec (2009)
- This note shows that in non-deterministic extended lambda calculi with letrec, the tool of applicative (bi)simulation is in general not usable for contextual equivalence, by giving a counterexample adapted from data flow analysis. It also shown that there is a flaw in a lemma and a theorem concerning finite simulation in a conference paper by the first two authors.