## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

### Refine

#### Year of publication

#### Keywords

- Lambda-Kalkül (14)
- Formale Semantik (8)
- Nebenläufigkeit (6)
- Programmiersprache (5)
- Verifikation (4)
- Funktionale Programmierung (3)
- Logik (3)
- Operationale Semantik (3)
- functional programming languages (3)
- lambda calculus (3)

- 49
- Simulation in the call-by-need lambda-calculus with letrec, case, constructors, and seq (2012)
- This paper shows equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seqoperator. LR models an untyped version of the core language of Haskell. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer of the contextual approximation into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of similarity and contextual approximation can be shown by Howe's method. Using an equivalent but inductive definition of behavioral preorder we then transfer similarity back to the calculus LR. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite tress, which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, and also with a call-by-need letrec calculus with a less complex definition of reduction than LR.

- 49 [v.2]
- Simulation in the call-by-need lambda-calculus with letrec, case, constructors, and seq (2013)
- This paper shows equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seqoperator. LR models an untyped version of the core language of Haskell. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer of the contextual approximation into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of similarity and contextual approximation can be shown by Howe's method. Using an equivalent but inductive definition of behavioral preorder we then transfer similarity back to the calculus LR. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite tress, which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, and also with a call-by-need letrec calculus with a less complex definition of reduction than LR.

- 40
- Simulation in the call-by-need lambda-calculus with letrec (2010)
- This paper shows the equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in the deterministic call-by-need lambda calculus with letrec. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. Although this property may be a natural one to expect, to the best of our knowledge, this paper is the first one providing a proof. The proof technique is to transfer the contextual approximation into Abramsky's lazy lambda calculus by a fully abstract and surjective translation. This also shows that the natural embedding of Abramsky's lazy lambda calculus into the call-by-need lambda calculus with letrec is an isomorphism between the respective term-models.We show that the equivalence property proven in this paper transfers to a call-by-need letrec calculus developed by Ariola and Felleisen.

- 39
- Reconstruction of a logic for inductive proofs of properties of functional programs (2010)
- The interactive verification system VeriFun is based on a polymorphic call-by-value functional language and on a first-order logic with initial model semantics w.r.t. constructors. This paper provides a reconstruction of the corresponding logic when partial functions are permitted. Typing is polymorphic for the definition of functions but monomorphic for terms in formulas. Equality of terms is defined as contextual equivalence based on observing termination in all contexts. The reconstruction also allows several generalizations of the functional language like mutual recursive functions and abstractions in the data values. The main results are: Correctness of several program transformations for all extensions of a program, which have a potential usage in a deduction system. We also proved that universally quantified equations are conservative, i.e. if a universally quantified equation is valid w.r.t. a program P, then it remains valid if the program is extended by new functions and/or new data types.

- 39 [v.2]
- Reconstruction of a logic for inductive proofs of properties of functional programs (2010)
- The interactive verification system VeriFun is based on a polymorphic call-by-value functional language and on a first-order logic with initial model semantics w.r.t. constructors. It is designed to perform automatic induction proofs and can also deal with partial functions. This paper provides a reconstruction of the corresponding logic and semantics using the standard treatment of undefinedness which adapts and improves the VeriFun-logic by allowing reasoning on nonterminating expressions and functions. Equality of expressions is defined as contextual equivalence based on observing termination in all closing contexts. The reconstruction shows that several restrictions of the VeriFun framework can easily be removed, by natural generalizations: mutual recursive functions, abstractions in the data values, and formulas with arbitrary quantifier prefix can be formulated. The main results of this paper are: an extended set of deduction rules usable in VeriFun under the adapted semantics is proved to be correct, i.e. they respect the observational equivalence in all extensions of a program. We also show that certain classes of theorems are conservative under extensions, like universally quantified equations. Also other special classes of theorems are analyzed for conservativity.

- 39 [v.3]
- Reconstructing a logic for inductive proofs of properties of functional programs (2010)
- A logical framework consisting of a polymorphic call-by-value functional language and a first-order logic on the values is presented, which is a reconstruction of the logic of the verification system VeriFun. The reconstruction uses contextual semantics to define the logical value of equations. It equates undefinedness and non-termination, which is a standard semantical approach. The main results of this paper are: Meta-theorems about the globality of several classes of theorems in the logic, and proofs of global correctness of transformations and deduction rules. The deduction rules of VeriFun are globally correct if rules depending on termination are appropriately formulated. The reconstruction also gives hints on generalizations of the VeriFun framework: reasoning on nonterminating expressions and functions, mutual recursive functions and abstractions in the data values, and formulas with arbitrary quantifier prefix could be allowed.

- 17
- Realising nondeterministic I/O in the Glasgow Haskell Compiler (2003)
- In this paper we demonstrate how to relate the semantics given by the nondeterministic call-by-need calculus FUNDIO [SS03] to Haskell. After introducing new correct program transformations for FUNDIO, we translate the core language used in the Glasgow Haskell Compiler into the FUNDIO language, where the IO construct of FUNDIO corresponds to direct-call IO-actions in Haskell. We sketch the investigations of [Sab03b] where a lot of program transformations performed by the compiler have been shown to be correct w.r.t. the FUNDIO semantics. This enabled us to achieve a FUNDIO-compatible Haskell-compiler, by turning o not yet investigated transformations and the small set of incompatible transformations. With this compiler, Haskell programs which use the extension unsafePerformIO in arbitrary contexts, can be compiled in a "safe" manner.

- 30
- Program transformation for functional circuit descriptions (2007)
- We model sequential synchronous circuits on the logical level by signal-processing programs in an extended lambda calculus Lpor with letrec, constructors, case and parallel or (por) employing contextual equivalence. The model describes gates as (parallel) boolean operators, memory using a delay, which in turn is modeled as a shift of the list of signals, and permits also constructive cycles due to the parallel or. It opens the possibility of a large set of program transformations that correctly transform the expressions and thus the represented circuits and provides basic tools for equivalence testing and optimizing circuits. A further application is the correct manipulation by transformations of software components combined with circuits. The main part of our work are proof methods for correct transformations of expressions in the lambda calculus Lpor, and to propose the appropriate program transformations.

- 26
- Program equivalence for a concurrent lambda calculus with futures (2006)
- Reasoning about the correctness of program transformations requires a notion of program equivalence. We present an observational semantics for the concurrent lambda calculus with futures Lambda(fut), which formalizes the operational semantics of the programming language Alice ML. We show that natural program optimizations, as well as partial evaluation with respect to deterministic rules, are correct for Lambda(fut). This relies on a number of fundamental properties that we establish for our observational semantics.