## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

### Refine

#### Year of publication

#### Keywords

- Lambda-Kalkül (14)
- Formale Semantik (8)
- Nebenläufigkeit (6)
- Programmiersprache (5)
- Verifikation (4)
- Funktionale Programmierung (3)
- Logik (3)
- Operationale Semantik (3)
- functional programming languages (3)
- lambda calculus (3)

- 17
- Realising nondeterministic I/O in the Glasgow Haskell Compiler (2003)
- In this paper we demonstrate how to relate the semantics given by the nondeterministic call-by-need calculus FUNDIO [SS03] to Haskell. After introducing new correct program transformations for FUNDIO, we translate the core language used in the Glasgow Haskell Compiler into the FUNDIO language, where the IO construct of FUNDIO corresponds to direct-call IO-actions in Haskell. We sketch the investigations of [Sab03b] where a lot of program transformations performed by the compiler have been shown to be correct w.r.t. the FUNDIO semantics. This enabled us to achieve a FUNDIO-compatible Haskell-compiler, by turning o not yet investigated transformations and the small set of incompatible transformations. With this compiler, Haskell programs which use the extension unsafePerformIO in arbitrary contexts, can be compiled in a "safe" manner.

- 19
- On the safety of Nöcker's strictness analysis (2004)
- This paper proves correctness of Nocker s method of strictness analysis, implemented for Clean, which is an e ective way for strictness analysis in lazy functional languages based on their operational semantics. We improve upon the work of Clark, Hankin and Hunt, which addresses correctness of the abstract reduction rules. Our method also addresses the cycle detection rules, which are the main strength of Nocker s strictness analysis. We reformulate Nocker s strictness analysis algorithm in a higherorder lambda-calculus with case, constructors, letrec, and a nondeterministic choice operator used as a union operator. Furthermore, the calculus is expressive enough to represent abstract constants like Top or Inf. The operational semantics is a small-step semantics and equality of expressions is defined by a contextual semantics that observes termination of expressions. The correctness of several reductions is proved using a context lemma and complete sets of forking and commuting diagrams. The proof is based mainly on an exact analysis of the lengths of normal order reductions. However, there remains a small gap: Currently, the proof for correctness of strictness analysis requires the conjecture that our behavioral preorder is contained in the contextual preorder. The proof is valid without referring to the conjecture, if no abstract constants are used in the analysis.

- 23
- Deciding subset relationship of co-inductively defined set constants (2005)
- Static analysis of different non-strict functional programming languages makes use of set constants like Top, Inf, and Bot denoting all expressions, all lists without a last Nil as tail, and all non-terminating programs, respectively. We use a set language that permits union, constructors and recursive definition of set constants with a greatest fixpoint semantics. This paper proves decidability, in particular EXPTIMEcompleteness, of subset relationship of co-inductively defined sets by using algorithms and results from tree automata. This shows decidability of the test for set inclusion, which is required by certain strictness analysis algorithms in lazy functional programming languages.

- 20
- A complete proof of the safety of Nöcker's strictness analysis (2005)
- This paper proves correctness of Nöcker's method of strictness analysis, implemented in the Clean compiler, which is an effective way for strictness analysis in lazy functional languages based on their operational semantics. We improve upon the work of Clark, Hankin and Hunt did on the correctness of the abstract reduction rules. Our method fully considers the cycle detection rules, which are the main strength of Nöcker's strictness analysis. Our algorithm SAL is a reformulation of Nöcker's strictness analysis algorithm in a higher-order call-by-need lambda-calculus with case, constructors, letrec, and seq, extended by set constants like Top or Inf, denoting sets of expressions. It is also possible to define new set constants by recursive equations with a greatest fixpoint semantics. The operational semantics is a small-step semantics. Equality of expressions is defined by a contextual semantics that observes termination of expressions. Basically, SAL is a non-termination checker. The proof of its correctness and hence of Nöcker's strictness analysis is based mainly on an exact analysis of the lengths of normal order reduction sequences. The main measure being the number of 'essential' reductions in a normal order reduction sequence. Our tools and results provide new insights into call-by-need lambda-calculi, the role of sharing in functional programming languages, and into strictness analysis in general. The correctness result provides a foundation for Nöcker's strictness analysis in Clean, and also for its use in Haskell.

- 26
- Program equivalence for a concurrent lambda calculus with futures (2006)
- Reasoning about the correctness of program transformations requires a notion of program equivalence. We present an observational semantics for the concurrent lambda calculus with futures Lambda(fut), which formalizes the operational semantics of the programming language Alice ML. We show that natural program optimizations, as well as partial evaluation with respect to deterministic rules, are correct for Lambda(fut). This relies on a number of fundamental properties that we establish for our observational semantics.

- 24
- A call-by-need lambda-calculus with locally bottom-avoiding choice: context lemma and correctness of transformations (2006)
- We present a higher-order call-by-need lambda calculus enriched with constructors, case-expressions, recursive letrec-expressions, a seq-operator for sequential evaluation and a non-deterministic operator amb, which is locally bottom-avoiding. We use a small-step operational semantics in form of a normal order reduction. As equational theory we use contextual equivalence, i.e. terms are equal if plugged into an arbitrary program context their termination behaviour is the same. We use a combination of may- as well as must-convergence, which is appropriate for non-deterministic computations. We evolve different proof tools for proving correctness of program transformations. We provide a context lemma for may- as well as must- convergence which restricts the number of contexts that need to be examined for proving contextual equivalence. In combination with so-called complete sets of commuting and forking diagrams we show that all the deterministic reduction rules and also some additional transformations keep contextual equivalence. In contrast to other approaches our syntax as well as semantics does not make use of a heap for sharing expressions. Instead we represent these expressions explicitely via letrec-bindings.

- 24 [v.2]
- A call-by-need lambda-calculus with locally bottom-avoiding choice: context lemma and correctness of transformations (2006)
- We present a higher-order call-by-need lambda calculus enriched with constructors, case-expressions, recursive letrec-expressions, a seq-operator for sequential evaluation and a non-deterministic operator amb that is locally bottom-avoiding. We use a small-step operational semantics in form of a single-step rewriting system that defines a (nondeterministic) normal order reduction. This strategy can be made fair by adding resources for bookkeeping. As equational theory we use contextual equivalence, i.e. terms are equal if plugged into any program context their termination behaviour is the same, where we use a combination of may- as well as must-convergence, which is appropriate for non-deterministic computations. We show that we can drop the fairness condition for equational reasoning, since the valid equations w.r.t. normal order reduction are the same as for fair normal order reduction. We evolve different proof tools for proving correctness of program transformations, in particular, a context lemma for may- as well as mustconvergence is proved, which restricts the number of contexts that need to be examined for proving contextual equivalence. In combination with so-called complete sets of commuting and forking diagrams we show that all the deterministic reduction rules and also some additional transformations preserve contextual equivalence.We also prove a standardisation theorem for fair normal order reduction. The structure of the ordering <=c a is also analysed: Ω is not a least element, and <=c already implies contextual equivalence w.r.t. may-convergence.

- 30
- Program transformation for functional circuit descriptions (2007)
- We model sequential synchronous circuits on the logical level by signal-processing programs in an extended lambda calculus Lpor with letrec, constructors, case and parallel or (por) employing contextual equivalence. The model describes gates as (parallel) boolean operators, memory using a delay, which in turn is modeled as a shift of the list of signals, and permits also constructive cycles due to the parallel or. It opens the possibility of a large set of program transformations that correctly transform the expressions and thus the represented circuits and provides basic tools for equivalence testing and optimizing circuits. A further application is the correct manipulation by transformations of software components combined with circuits. The main part of our work are proof methods for correct transformations of expressions in the lambda calculus Lpor, and to propose the appropriate program transformations.

- 27
- On generic context lemmas for lambda calculi with sharing (2007)
- This paper proves several generic variants of context lemmas and thus contributes to improving the tools to develop observational semantics that is based on a reduction semantics for a language. The context lemmas are provided for may- as well as two variants of mustconvergence and a wide class of extended lambda calculi, which satisfy certain abstract conditions. The calculi must have a form of node sharing, e.g. plain beta reduction is not permitted. There are two variants, weakly sharing calculi, where the beta-reduction is only permitted for arguments that are variables, and strongly sharing calculi, which roughly correspond to call-by-need calculi, where beta-reduction is completely replaced by a sharing variant. The calculi must obey three abstract assumptions, which are in general easily recognizable given the syntax and the reduction rules. The generic context lemmas have as instances several context lemmas already proved in the literature for specific lambda calculi with sharing. The scope of the generic context lemmas comprises not only call-by-need calculi, but also call-by-value calculi with a form of built-in sharing. Investigations in other, new variants of extended lambda-calculi with sharing, where the language or the reduction rules and/or strategy varies, will be simplified by our result, since specific context lemmas are immediately derivable from the generic context lemma, provided our abstract conditions are met.

- 27 [v.2]
- On generic context lemmas for lambda calculi with sharing (2007)
- This paper proves several generic variants of context lemmas and thus contributes to improving the tools to develop observational semantics that is based on a reduction semantics for a language. The context lemmas are provided for may- as well as two variants of mustconvergence and a wide class of extended lambda calculi, which satisfy certain abstract conditions. The calculi must have a form of node sharing, e.g. plain beta reduction is not permitted. There are two variants, weakly sharing calculi, where the beta-reduction is only permitted for arguments that are variables, and strongly sharing calculi, which roughly correspond to call-by-need calculi, where beta-reduction is completely replaced by a sharing variant. The calculi must obey three abstract assumptions, which are in general easily recognizable given the syntax and the reduction rules. The generic context lemmas have as instances several context lemmas already proved in the literature for specific lambda calculi with sharing. The scope of the generic context lemmas comprises not only call-by-need calculi, but also call-by-value calculi with a form of built-in sharing. Investigations in other, new variants of extended lambda-calculi with sharing, where the language or the reduction rules and/or strategy varies, will be simplified by our result, since specific context lemmas are immediately derivable from the generic context lemma, provided our abstract conditions are met.