## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

### Refine

#### Year of publication

#### Keywords

- Lambda-Kalkül (17)
- Formale Semantik (7)
- Programmiersprache (7)
- Nebenläufigkeit (5)
- Operationale Semantik (4)
- Verifikation (4)
- lambda calculus (4)
- Logik (3)
- Operationale Semantik (3)
- functional programming languages (3)

- 1
- Unification of stratified second-order terms (1994)
- We consider the problem of unifying a set of equations between second-order terms. Terms are constructed from function symbols, constant symbols and variables, and furthermore using monadic second-order variables that may stand for a term with one hole, and parametric terms. We consider stratified systems, where for every first-order and second-order variable, the string of second-order variables on the path from the root of a term to every occurrence of this variable is always the same. It is shown that unification of stratified second-order terms is decidable by describing a nondeterministic decision algorithm that eventually uses Makanin's algorithm for deciding the unifiability of word equations. As a generalization, we show that the method can be used as a unification procedure for non-stratified second-order systems, and describe conditions for termination in the general case.

- 2
- An algorithm for distributive unification (1994)
- We consider unification of terms under the equational theory of two-sided distributivity D with the axioms x*(y+z) = x*y + x*z and (x+y)*z = x*z + y*z. The main result of this paper is that Dunification is decidable by giving a non-deterministic transformation algorithm. The generated unification are: an AC1-problem with linear constant restrictions and a second-order unification problem that can be transformed into a word-unification problem that can be decided using Makanin's algorithm. This solves an open problem in the field of unification. Furthermore it is shown that the word-problem can be decided in polynomial time, hence D-matching is NP-complete.

- 7
- A partial rehabilitation of side-effecting I/O : non-determinism in non-strict functional languages (1996)
- We investigate the extension of non-strict functional languages like Haskell or Clean by a non-deterministic interaction with the external world. Using call-by-need and a natural semantics which describes the reduction of graphs, this can be done such that the Church-Rosser Theorems 1 and 2 hold. Our operational semantics is a base to recognise which particular equivalencies are preserved by program transformations. The amount of sequentialisation may be smaller than that enforced by other approaches and the programming style is closer to the common one of side-effecting programming. However, not all program transformations used by an optimising compiler for Haskell remain correct in all contexts. Our result can be interpreted as a possibility to extend current I/O-mechanism by non-deterministic deterministic memoryless function calls. For example, this permits a call to a random number generator. Adding memoryless function calls to monadic I/O is possible and has a potential to extend the Haskell I/O-system.

- 8
- Automatic extraction of context information from programs using abstract reduction (1997)
- This paper describes context analysis, an extension to strictness analysis for lazy functional languages. In particular it extends Wadler's four point domain and permits in nitely many abstract values. A calculus is presented based on abstract reduction which given the abstract values for the result automatically finds the abstract values for the arguments. The results of the analysis are useful for veri fication purposes and can also be used in compilers which require strictness information.

- 9
- Efficient strictness analysis of Haskell in Haskell using abstract reduction (1997)
- The extraction of strictness information marks an indispensable element of an efficient compilation of lazy functional languages like Haskell. Based on the method of abstract reduction we have developed an e cient strictness analyser for a core language of Haskell. It is completely written in Haskell and compares favourably with known implementations. The implementation is based on the G#-machine, which is an extension of the G-machine that has been adapted to the needs of abstract reduction.

- 11
- Decidability of bounded second order unification (1997)
- It is well known that first order uni cation is decidable, whereas second order and higher order unification is undecidable. Bounded second order unification (BSOU) is second order unification under the restriction that only a bounded number of holes in the instantiating terms for second order variables is permitted, however, the size of the instantiation is not restricted. In this paper, a decision algorithm for bounded second order unification is described. This is the fist non-trivial decidability result for second order unification, where the (finite) signature is not restricted and there are no restrictions on the occurrences of variables. We show that the monadic second order unification (MSOU), a specialization of BSOU is in sum p s. Since MSOU is related to word unification, this is compares favourably to the best known upper bound NEXPTIME (and also to the announced upper bound PSPACE) for word unification. This supports the claim that bounded second order unification is easier than context unification, whose decidability is currently an open question.

- 12
- A decision algorithm for stratified context unification (1999)
- Context unification is a variant of second-order unification and also a generalization of string unification. Currently it is not known whether context uni cation is decidable. An expressive fragment of context unification is stratified context unification. Recently, it turned out that stratified context unification and one-step rewrite constraints are equivalent. This paper contains a description of a decision algorithm SCU for stratified context unification together with a proof of its correctness, which shows decidability of stratified context unification as well as of satisfiability of one-step rewrite constraints.

- 13
- An optimised decision algorithm for stratified context unification (2000)
- Context unification is a variant of second order unification. It can also be seen as a generalization of string unification to tree unification. Currently it is not known whether context unification is decidable. A specialization of context unification is stratified context unification, which is decidable. However, the previous algorithm has a very bad worst case complexity. Recently it turned out that stratified context unification is equivalent to satisfiability of one-step rewrite constraints. This paper contains an optimized algorithm for strati ed context unification exploiting sharing and power expressions. We prove that the complexity is determined mainly by the maximal depth of SO-cycles. Two observations are used: i. For every ambiguous SO-cycle, there is a context variable that can be instantiated with a ground context of main depth O(c*d), where c is the number of context variables and d is the depth of the SO-cycle. ii. the exponent of periodicity is O(2 pi ), which means it has an O(n)sized representation. From a practical point of view, these observations allow us to conclude that the unification algorithm is well-behaved, if the maximal depth of SO-cycles does not grow too large.