## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

### Refine

#### Year of publication

#### Keywords

- Lambda-Kalkül (8)
- lambda calculus (4)
- Formale Semantik (3)
- Operationale Semantik (3)
- semantics (3)
- Formale Semantik (2)
- Kontextuelle Gleichheit (2)
- Nebenläufigkeit (2)
- Programmiersprache (2)
- contextual equivalence (2)

- 01
- Unification of stratified second-order terms (1994)
- We consider the problem of unifying a set of equations between second-order terms. Terms are constructed from function symbols, constant symbols and variables, and furthermore using monadic second-order variables that may stand for a term with one hole, and parametric terms. We consider stratified systems, where for every first-order and second-order variable, the string of second-order variables on the path from the root of a term to every occurrence of this variable is always the same. It is shown that unification of stratified second-order terms is decidable by describing a nondeterministic decision algorithm that eventually uses Makanin's algorithm for deciding the unifiability of word equations. As a generalization, we show that the method can be used as a unification procedure for non-stratified second-order systems, and describe conditions for termination in the general case.

- 41
- Towards correctness of program transformations through unification and critical pair computation (2010)
- Correctness of program transformations in extended lambda-calculi with a contextual semantics is usually based on reasoning about the operational semantics which is a rewrite semantics. A successful approach is the combination of a context lemma with the computation of overlaps between program transformations and the reduction rules, which results in so-called complete sets of diagrams. The method is similar to the computation of critical pairs for the completion of term rewriting systems. We explore cases where the computation of these overlaps can be done in a first order way by variants of critical pair computation that use unification algorithms. As a case study of an application we describe a finitary and decidable unification algorithm for the combination of the equational theory of left-commutativity modelling multi-sets, context variables and many-sorted unification. Sets of equations are restricted to be almost linear, i.e. every variable and context variable occurs at most once, where we allow one exception: variables of a sort without ground terms may occur several times. Every context variable must have an argument-sort in the free part of the signature. We also extend the unification algorithm by the treatment of binding-chains in let- and letrec-environments and by context-classes. This results in a unification algorithm that can be applied to all overlaps of normal-order reductions and transformations in an extended lambda calculus with letrec that we use as a case study.

- 49
- Simulation in the call-by-need lambda-calculus with letrec, case, constructors, and seq (2012)
- This paper shows equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seqoperator. LR models an untyped version of the core language of Haskell. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer of the contextual approximation into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of similarity and contextual approximation can be shown by Howe's method. Using an equivalent but inductive definition of behavioral preorder we then transfer similarity back to the calculus LR. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite tress, which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, and also with a call-by-need letrec calculus with a less complex definition of reduction than LR.

- 40
- Simulation in the call-by-need lambda-calculus with letrec (2010)
- This paper shows the equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in the deterministic call-by-need lambda calculus with letrec. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. Although this property may be a natural one to expect, to the best of our knowledge, this paper is the first one providing a proof. The proof technique is to transfer the contextual approximation into Abramsky's lazy lambda calculus by a fully abstract and surjective translation. This also shows that the natural embedding of Abramsky's lazy lambda calculus into the call-by-need lambda calculus with letrec is an isomorphism between the respective term-models.We show that the equivalence property proven in this paper transfers to a call-by-need letrec calculus developed by Ariola and Felleisen.

- 39
- Reconstruction a logic for inductive proofs of properties of functional programs (2010)
- A logical framework consisting of a polymorphic call-by-value functional language and a first-order logic on the values is presented, which is a reconstruction of the logic of the verification system VeriFun. The reconstruction uses contextual semantics to define the logical value of equations. It equates undefinedness and non-termination, which is a standard semantical approach. The main results of this paper are: Meta-theorems about the globality of several classes of theorems in the logic, and proofs of global correctness of transformations and deduction rules. The deduction rules of VeriFun are globally correct if rules depending on termination are appropriately formulated. The reconstruction also gives hints on generalizations of the VeriFun framework: reasoning on nonterminating expressions and functions, mutual recursive functions and abstractions in the data values, and formulas with arbitrary quantifier prefix could be allowed.

- 30
- Program transformation for functional circuit descriptions (2007)
- We model sequential synchronous circuits on the logical level by signal-processing programs in an extended lambda calculus Lpor with letrec, constructors, case and parallel or (por) employing contextual equivalence. The model describes gates as (parallel) boolean operators, memory using a delay, which in turn is modeled as a shift of the list of signals, and permits also constructive cycles due to the parallel or. It opens the possibility of a large set of program transformations that correctly transform the expressions and thus the represented circuits and provides basic tools for equivalence testing and optimizing circuits. A further application is the correct manipulation by transformations of software components combined with circuits. The main part of our work are proof methods for correct transformations of expressions in the lambda calculus Lpor, and to propose the appropriate program transformations.

- 26
- Program Equivalence for a Concurrent Lambda Calculus with Futures (2006)
- Reasoning about the correctness of program transformations requires a notion of program equivalence. We present an observational semantics for the concurrent lambda calculus with futures Lambda(fut), which formalizes the operational semantics of the programming language Alice ML. We show that natural program optimizations, as well as partial evaluation with respect to deterministic rules, are correct for Lambda(fut). This relies on a number of fundamental properties that we establish for our observational semantics.

- 21
- Polynomial Equality Testing for Terms with Shared Substructures (2005)
- Sharing of substructures like subterms and subcontexts in terms is a common method for space-efficient representation of terms, which allows for example to represent exponentially large terms in polynomial space, or to represent terms with iterated substructures in a compact form. We present singleton tree grammars as a general formalism for the treatment of sharing in terms. Singleton tree grammars (STG) are recursion-free context-free tree grammars without alternatives for non-terminals and at most unary second-order nonterminals. STGs generalize Plandowski's singleton context free grammars to terms (trees). We show that the test, whether two different nonterminals in an STG generate the same term can be done in polynomial time, which implies that the equality test of terms with shared terms and contexts, where composition of contexts is permitted, can be done in polynomial time in the size of the representation. This will allow polynomial-time algorithms for terms exploiting sharing. We hope that this technique will lead to improved upper complexity bounds for variants of second order unification algorithms, in particular for variants of context unification and bounded second order unification.

- 43
- Pattern matching of compressed terms and contexts and polynomial rewriting (2011)
- A generalization of the compressed string pattern match that applies to terms with variables is investigated: Given terms s and t compressed by singleton tree grammars, the task is to find an instance of s that occurs as a subterm in t. We show that this problem is in NP and that the task can be performed in time O(ncjVar(s)j), including the construction of the compressed substitution, and a representation of all occurrences. We show that the special case where s is uncompressed can be performed in polynomial time. As a nice application we show that for an equational deduction of t to t0 by an equality axiom l = r (a rewrite) a single step can be performed in polynomial time in the size of compression of t and l; r if the number of variables is fixed in l. We also show that n rewriting steps can be performed in polynomial time, if the equational axioms are compressed and assumed to be constant for the rewriting sequence. Another potential application are querying mechanisms on compressed XML-data bases.