## Technical report Frank / Johann-Wolfgang-Goethe-Universität, Fachbereich Informatik und Mathematik, Institut für Informatik

### Refine

#### Year of publication

- 2006 (4) (remove)

#### Keywords

- Lambda-Kalkül (2)
- Alice ML (1)
- Contextual Equivalence (1)
- Futures (1)
- Kontextuelle Gleicheit (1)
- Lambda Calculus (1)
- ML <Programmiersprache> (1)
- Nebenläufigkeit (1)
- Operational Semantics (1)
- Operationale Semantik (1)

- 26
- Program Equivalence for a Concurrent Lambda Calculus with Futures (2006)
- Reasoning about the correctness of program transformations requires a notion of program equivalence. We present an observational semantics for the concurrent lambda calculus with futures Lambda(fut), which formalizes the operational semantics of the programming language Alice ML. We show that natural program optimizations, as well as partial evaluation with respect to deterministic rules, are correct for Lambda(fut). This relies on a number of fundamental properties that we establish for our observational semantics.

- 25
- Equivalence of Call-By-Name and Call-By-Need for Lambda-Calculi with Letrec (2006)
- We develop a proof method to show that in a (deterministic) lambda calculus with letrec and equipped with contextual equivalence the call-by-name and the call-by-need evaluation are equivalent, and also that the unrestricted copy-operation is correct. Given a let-binding x = t, the copy-operation replaces an occurrence of the variable x by the expression t, regardless of the form of t. This gives an answer to unresolved problems in several papers, it adds a strong method to the tool set for reasoning about contextual equivalence in higher-order calculi with letrec, and it enables a class of transformations that can be used as optimizations. The method can be used in different kind of lambda calculi with cyclic sharing. Probably it can also be used in non-deterministic lambda calculi if the variable x is "deterministic", i.e., has no interference with non-deterministic executions. The main technical idea is to use a restricted variant of the infinitary lambda-calculus, whose objects are the expressions that are unrolled w.r.t. let, to define the infinite developments as a reduction calculus on the infinite trees and showing a standardization theorem.

- 24
- A call-by-need lambda-calculus with locally bottom-avoiding choice : context lemma and correctness of transformations (2006)
- We present a higher-order call-by-need lambda calculus enriched with constructors, case-expressions, recursive letrec-expressions, a seq-operator for sequential evaluation and a non-deterministic operator amb, which is locally bottom-avoiding. We use a small-step operational semantics in form of a normal order reduction. As equational theory we use contextual equivalence, i.e. terms are equal if plugged into an arbitrary program context their termination behaviour is the same. We use a combination of may- as well as must-convergence, which is appropriate for non-deterministic computations. We evolve different proof tools for proving correctness of program transformations. We provide a context lemma for may- as well as must- convergence which restricts the number of contexts that need to be examined for proving contextual equivalence. In combination with so-called complete sets of commuting and forking diagrams we show that all the deterministic reduction rules and also some additional transformations keep contextual equivalence. In contrast to other approaches our syntax as well as semantics does not make use of a heap for sharing expressions. Instead we represent these expressions explicitely via letrec-bindings.

- 22
- How to prove similarity a precongruence in non-deterministic call-by-need lambda calculi (2006)
- Extending the method of Howe, we establish a large class of untyped higher-order calculi, in particular such with call-by-need evaluation, where similarity, also called applicative simulation, can be used as a proof tool for showing contextual preorder. The paper also demonstrates that Mann’s approach using an intermediate “approximation” calculus scales up well from a basic call-by-need non-deterministic lambdacalculus to more expressive lambda calculi. I.e., it is demonstrated, that after transferring the contextual preorder of a non-deterministic call-byneed lambda calculus to its corresponding approximation calculus, it is possible to apply Howe’s method to show that similarity is a precongruence. The transfer is not treated in this paper. The paper also proposes an optimization of the similarity-test by cutting off redundant computations. Our results also applies to deterministic or non-deterministic call-by-value lambda-calculi, and improves upon previous work insofar as it is proved that only closed values are required as arguments for similaritytesting instead of all closed expressions.