## Preprint

### Refine

#### Year of publication

- 2001 (28) (remove)

#### Document Type

- Preprint (28) (remove)

#### Keywords

- kalte dunkle Materie (2)
- (QGP) (1)
- Antike (1)
- BBGKY hierarchy (1)
- Bernd (1)
- CDM (1)
- Christian (1)
- Deutsch (1)
- Drung (1)
- Dutschke (1)

- BBGKY hierarchy in scalar QFT (2001)
- This work is dedicated to obtaining of analog of Bogoliubov's chain for the case of complex scalar field in QFT and renormalization problem of obtained equations is discussed.

- Statistical coalescence model with exact charm conservation (2001)
- The statistical coalescence model for the production of open and hidden charm is considered within the canonical ensemble formulation. The data for the J/psi multiplicity in Pb+Pb collisions at 158 A·GeV are used for the model prediction of the open charm yield which has not yet been measured in these reactions.

- Strange quark stars within the Nambu-Jona-Lasinio model (2001)
- We investigate the properties of charge neutral equilibrium cold quark matter within the Nambu Jona-Lasinio model. The calculations are carried out for di erent ratios of coupling constants characterizing the vector and scalar 4 fermion interaction, xi = GV /GS. It is shown that for xi < 0.4 matter is self bound and for xi < 0.65 it has a first order phase transition of the liquid gas type. The Gibbs conditions in the mixed phase are applied for the case of two chemical potentials associated with the baryon number and electric charge. The characteristics of the quark stars are calculated for xi = 0, 0.5 and 1. It is found that the phase transition leads to a strong density variation at the surface of these stars. For xi = 1 the properties of quark stars show behaviors typical for neutron stars. At >< 0.4 the stars near to the maximum mass have a large admixture of strange quarks in their interiors. PACS number: 14.65.-q, 26.60.+c, 97.10.-q

- Open and hidden charm production in heavy ion collisions at ultrarelativistic energies (2001)
- We consider the production of the open charm and J/psi mesons in heavy ion collisions at BNL RHIC. We discuss several recently developed pictures for J/psi production and argue that a measurement at RHIC energies is crucial for disentangling these di erent descriptions.

- J / psi suppression and enhancement in Au + Au collisions at the BNL RHIC (2001)
- We consider the production of the J/psi mesons in heavy ion collisions at RHIC energies in the statistical coalescence model with an exact (canonical ensemble) charm conservation. The cc quark pairs are assumed to be created in the primary hard parton collisions, but the formation of the open and hidden charm particles takes place at the hadronization stage and follows the prescription of statistical mechanics. The dependence of the J/psi production on both the number of nucleon participants and the collision energy is studied. The model predicts the J/psi suppression for low energies, whereas at the highest RHIC energy the model reveals the J/psi enhancement.

- Damping scales of neutralino cold dark matter (2001)
- The lightest supersymmetric particle, most likely the neutralino, might account for a large fraction of dark matter in the Universe. We show that the primordial spectrum of density fluctuations in neutralino cold dark matter (CDM) has a sharp cut-off due to two damping mechanisms: collisional damping during the kinetic decoupling of the neutralinos at about 30 MeV (for typical neutralino and sfermion masses) and free streaming after last scattering of neutralinos. The last scattering temperature is lower than the kinetic decoupling temperature by one order of magnitude. The cut-off in the primordial spectrum defines a minimal mass for CDM objects in hierarchical structure formation. For typical neutralino and sfermion masses the first gravitationally bound neutralino clouds have to have masses above 10 7M . PACS numbers: 14.80.Ly, 98.35.Ce, 98.80.-k, 98.80.Cq

- Properties of dense strange hadronic matter with quark degrees of freedom (2001)
- The properties of strange hadronic matter are studied in the context of the modified quark-meson coupling model using two substantially di erent sets of hyperon-hyperon (Y Y ) interactions. The first set is based on the Nijmegen hard core potential model D with slightly attractive Y Y interactions. The second potential set is based on the recent SU(3) extension of the Nijmegen soft-core potential NSC97 with strongly attractive Y Y interactions which may allow for deeply bound hypernuclear matter. The results show that, for the first potential set, the hyperon does not appear at all in the bulk at any baryon density and for all strangeness fractions. The binding energy curves of the resulting N system vary smoothly with density and the system is stable (or metastable if we include the weak force). However, the situation is drastically changed when using the second set where the hyperons appear in the system at large baryon densities above a critical strangeness fraction. We find strange hadronic matter undergoes a first order phase transition from a N system to a N for strangeness fractions fS > 1.2 and baryonic densities exceeding twice ordinary nuclear matter density. Furthermore, it is found that the system built of N is deeply bound. This phase transition a ects significantly the equation of state which becomes much softer and a substantial drop in energy density and pressure are detected as the phase transition takes place. PACS:21.65.+f, 24.85.+p, 12.39Ba

- Microscopic colored quark dynamics in the soft nonperturbative regime : description of hadron formation in relativistic S+Au collisions at CERN (2001)
- The quark-molecular-dynamics model is used to study microscopically the dynamics of the coloured quark phase and the subsequent hadron formation in relativistic S+Au collisions at the CERN-SPS. Particle spectra and hadron ratios are compared to both data and the results of hadronic transport calculations. The non-equilibrium dynamics of hadronization and the loss of correlation among quarks are studied.

- Nuclei, superheavy nuclei, and hypermatter in a chiral SU(3) model (2001)
- A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei.

- Quasi-stable black holes at LHC (2001)
- We address the production of black holes at LHC and their time evolution in space times with compactified space like extra dimensions. It is shown that black holes with life times of several hundred fm/c can be produced at LHC. The possibility of quasi-stable remnants is discussed.