## Working Paper

### Refine

#### Year of publication

#### Document Type

- Working Paper (69) (remove)

#### Keywords

- Lambda-Kalkül (17)
- Formale Semantik (7)
- Programmiersprache (7)
- Nebenläufigkeit (5)
- Operationale Semantik (4)
- Verifikation (4)
- lambda calculus (4)
- Logik (3)
- Operationale Semantik (3)
- functional programming languages (3)

- Contextual equivalence for the pi-calculus that can stop (2014)
- The pi-calculus is a well-analyzed model for mobile processes and mobile computations. While a lot of other process and lambda calculi that are core languages of higher-order concurrent and/or functional programming languages use a contextual semantics observing the termination behavior of programs in all program contexts, traditional program equivalences in the pi-calculus are bisimulations and barbed testing equivalences, which observe the communication capabilities of processes under reduction and in contexts. There is a distance between these two approaches to program equivalence which makes it hard to compare the pi-calculus with other languages. In this paper we contribute to bridging this gap by investigating a contextual semantics of the synchronous pi-calculus with replication and without sums. To transfer contextual equivalence to the pi-calculus we add a process Stop as constant which indicates success and is used as the base to define and analyze the contextual equivalence which observes may- and should-convergence of processes. We show as a main result that contextual equivalence in the pi-calculus with Stop conservatively extends barbed testing equivalence in the (Stop-free) pi-calculus. This implies that results on contextual equivalence can be directly transferred to the (Stop-free) pi-calculus with barbed testing equivalence. We analyze the contextual ordering, prove some nontrivial process equivalences, and provide proof tools for showing contextual equivalences. Among them are a context lemma, and new notions of sound applicative similarities for may- and should-convergence.

- Program transformation for functional circuit descriptions (2007)
- We model sequential synchronous circuits on the logical level by signal-processing programs in an extended lambda calculus Lpor with letrec, constructors, case and parallel or (por) employing contextual equivalence. The model describes gates as (parallel) boolean operators, memory using a delay, which in turn is modeled as a shift of the list of signals, and permits also constructive cycles due to the parallel or. It opens the possibility of a large set of program transformations that correctly transform the expressions and thus the represented circuits and provides basic tools for equivalence testing and optimizing circuits. A further application is the correct manipulation by transformations of software components combined with circuits. The main part of our work are proof methods for correct transformations of expressions in the lambda calculus Lpor, and to propose the appropriate program transformations.

- Applicative may- and should-simulation in the call-by-value lambda calculus with amb (2014)
- Motivated by the question whether sound and expressive applicative similarities for program calculi with should-convergence exist, this paper investigates expressive applicative similarities for the untyped call-by-value lambda-calculus extended with McCarthy's ambiguous choice operator amb. Soundness of the applicative similarities w.r.t. contextual equivalence based on may-and should-convergence is proved by adapting Howe's method to should-convergence. As usual for nondeterministic calculi, similarity is not complete w.r.t. contextual equivalence which requires a rather complex counter example as a witness. Also the call-by-value lambda-calculus with the weaker nondeterministic construct erratic choice is analyzed and sound applicative similarities are provided. This justifies the expectation that also for more expressive and call-by-need higher-order calculi there are sound and powerful similarities for should-convergence.

- Simulation in the call-by-need lambda-calculus with letrec (2010)
- This paper shows the equivalence of applicative similarity and contextual approximation, and hence also of bisimilarity and contextual equivalence, in the deterministic call-by-need lambda calculus with letrec. Bisimilarity simplifies equivalence proofs in the calculus and opens a way for more convenient correctness proofs for program transformations. Although this property may be a natural one to expect, to the best of our knowledge, this paper is the first one providing a proof. The proof technique is to transfer the contextual approximation into Abramsky's lazy lambda calculus by a fully abstract and surjective translation. This also shows that the natural embedding of Abramsky's lazy lambda calculus into the call-by-need lambda calculus with letrec is an isomorphism between the respective term-models.We show that the equivalence property proven in this paper transfers to a call-by-need letrec calculus developed by Ariola and Felleisen.

- Fast equality test for straight-line compressed strings (2011)
- The paper describes a simple and fast randomized test for equality of grammar-compressed strings. The thorough running time analysis is done by applying a logarithmic cost measure. Keywords: randomized algorithms, straight line programs, grammar-based compression

- Computing overlappings by unification in the deterministic lambda calculus LR with letrec, case, constructors, seq and variable chains (2011)
- Correctness of program transformations in extended lambda calculi with a contextual semantics is usually based on reasoning about the operational semantics which is a rewrite semantics. A successful approach to proving correctness is the combination of a context lemma with the computation of overlaps between program transformations and the reduction rules.The method is similar to the computation of critical pairs for the completion of term rewriting systems. We describe an effective unification algorithm to determine all overlaps of transformations with reduction rules for the lambda calculus LR which comprises a recursive let-expressions, constructor applications, case expressions and a seq construct for strict evaluation. The unification algorithm employs many-sorted terms, the equational theory of left-commutativity modeling multi-sets, context variables of different kinds and a mechanism for compactly representing binding chains in recursive let-expressions. As a result the algorithm computes a finite set of overlappings for the reduction rules of the calculus LR that serve as a starting point to the automatization of the analysis of program transformations.

- Contextual equivalence in lambda-calculi extended with letrec and with a parametric polymorphic type system (2009)
- This paper describes a method to treat contextual equivalence in polymorphically typed lambda-calculi, and also how to transfer equivalences from the untyped versions of lambda-calculi to their typed variant, where our specific calculus has letrec, recursive types and is nondeterministic. An addition of a type label to every subexpression is all that is needed, together with some natural constraints for the consistency of the type labels and well-scopedness of expressions. One result is that an elementary but typed notion of program transformation is obtained and that untyped contextual equivalences also hold in the typed calculus as long as the expressions are well-typed. In order to have a nice interaction between reduction and typing, some reduction rules have to be accompanied with a type modification by generalizing or instantiating types.

- Program equivalence for a concurrent lambda calculus with futures (2006)
- Reasoning about the correctness of program transformations requires a notion of program equivalence. We present an observational semantics for the concurrent lambda calculus with futures Lambda(fut), which formalizes the operational semantics of the programming language Alice ML. We show that natural program optimizations, as well as partial evaluation with respect to deterministic rules, are correct for Lambda(fut). This relies on a number of fundamental properties that we establish for our observational semantics.

- Observational program calculi and the correctness of translations (2013)
- Motivated by our experience in analyzing properties of translations between programming languages with observational semantics, this paper clarifies the notions, the relevant questions, and the methods, constructs a general framework, and provides several tools for proving various correctness properties of translations like adequacy and full abstractness. The presented framework can directly be applied to the observational equivalences derived from the operational semantics of programming calculi, and also to other situations, and thus has a wide range of applications.

- Extending Abramsky's lazy lambda calculus: (non)-conservativity of embeddings (2013)
- Our motivation is the question whether the lazy lambda calculus, a pure lambda calculus with the leftmost outermost rewriting strategy, considered under observational semantics, or extensions thereof, are an adequate model for semantic equivalences in real-world purely functional programming languages, in particular for a pure core language of Haskell. We explore several extensions of the lazy lambda calculus: addition of a seq-operator, addition of data constructors and case-expressions, and their combination, focusing on conservativity of these extensions. In addition to untyped calculi, we study their monomorphically and polymorphically typed versions. For most of the extensions we obtain non-conservativity which we prove by providing counterexamples. However, we prove conservativity of the extension by data constructors and case in the monomorphically typed scenario.