TY - THES
A1 - Pinke, Christopher
T1 - Lattice QCD at finite temperature with Wilson fermions
N2 - The subatomic world is governed by the strong interactions of quarks and gluons, described by Quantum Chromodynamics (QCD). Quarks experience confinement into colour-less objects, i.e. they can not be observed as free particles. Under extreme conditions such as high temperature or high density, this constraint softens and a transition to a phase where quarks and gluons are quasi-free particles (Quark-Gluon-Plasma) can occur. This environment resembles the conditions prevailing during the early stages of the universe shortly after the Big Bang.
The phase diagram of QCD is under investigation in current and future collider experiments, for example at the Large Hadron Collider (LHC) or at the Facility for Antiproton and Ion Research (FAIR). Due to the strength of the strong interactions in the energy regime of interest, analytic methods can not be applied rigorously. The only tool to study QCD from first principles is given by simulations of its discretised version, Lattice QCD (LQCD).
These simulations are in the high-performance computing area, hence, the numerical aspects of LQCD are a vital part in this field of research. In recent years, Graphic Processing Units (GPUs) have been incorporated in these simulations as they are a standard tool for general purpose calculations today.
In the course of this thesis, the LQCD application cl2qcd has been developed, which allows for simulations on GPUs as well as on traditional CPUs, as it is based on OpenCL. cl2qcd constitutes the first application for Wilson type fermions in OpenCL.
It provides excellent performance and has been applied in physics studies presented in this thesis. The investigation of the QCD phase diagram is hampered by the notorious sign-problem, which restricts current simulation algorithms to small values of the chemical potential.
Theoretically, studying unphysical parameter ranges allows for constraints on the phase diagram. Of utmost importance is the clarification of the order of the finite temperature transition in the Nf=2 chiral limit at zero chemical potential. It is not known if it is of first or second order. To this end, simulations utilising Twisted Mass Wilson fermions aiming at the chiral limit are presented in this thesis.
Another possibility is the investigation of QCD at purely imaginary chemical potential. In this region, QCD is known to posses a rich phase structure, which can be used to constrain the phase diagram of QCD at real chemical potential and to clarify the nature of the Nf=2 chiral limit. This phase structure is studied within this thesis, in particular the nature of the Roberge-Weiss endpoint is mapped out using Wilson fermions.
KW - lattice
KW - particle physics
KW - quantum chromodynamics
KW - quark gluon plasma
KW - thermal transition
KW - sign problem
Y1 - 2014
UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/35074
UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-350745
SP - XI
EP - 137
PB - Univ.-Bibliothek
CY - Frankfurt am Main
ER -