TY - JOUR A1 - Brasier, Madeleine J. A1 - Barnes, David A1 - Bax, Narissa A1 - Brandt, Angelika A1 - Christianson, Anne B. A1 - Constable, Andrew J. A1 - Downey, Rachel A1 - Figuerola, Blanca A1 - Griffiths, Huw A1 - Gutt, Julian A1 - Lockhart, Susanne A1 - Morley, Simon A. A1 - Post, Alexandra L. A1 - Putte, Anton Van de A1 - Saeedi, Hanieh A1 - Stark, Jonathan S. A1 - Sumner, Michael A1 - Waller, Catherine L. T1 - Responses of southern ocean seafloor habitats and communities to global and local drivers of change T2 - Frontiers in Marine Science N2 - Knowledge of life on the Southern Ocean seafloor has substantially grown since the beginning of this century with increasing ship-based surveys and regular monitoring sites, new technologies and greatly enhanced data sharing. However, seafloor habitats and their communities exhibit high spatial variability and heterogeneity that challenges the way in which we assess the state of the Southern Ocean benthos on larger scales. The Antarctic shelf is rich in diversity compared with deeper water areas, important for storing carbon (“blue carbon”) and provides habitat for commercial fish species. In this paper, we focus on the seafloor habitats of the Antarctic shelf, which are vulnerable to drivers of change including increasing ocean temperatures, iceberg scour, sea ice melt, ocean acidification, fishing pressures, pollution and non-indigenous species. Some of the most vulnerable areas include the West Antarctic Peninsula, which is experiencing rapid regional warming and increased iceberg-scouring, subantarctic islands and tourist destinations where human activities and environmental conditions increase the potential for the establishment of non-indigenous species and active fishing areas around South Georgia, Heard and MacDonald Islands. Vulnerable species include those in areas of regional warming with low thermal tolerance, calcifying species susceptible to increasing ocean acidity as well as slow-growing habitat-forming species that can be damaged by fishing gears e.g., sponges, bryozoan, and coral species. Management regimes can protect seafloor habitats and key species from fishing activities; some areas will need more protection than others, accounting for specific traits that make species vulnerable, slow growing and long-lived species, restricted locations with optimum physiological conditions and available food, and restricted distributions of rare species. Ecosystem-based management practices and long-term, highly protected areas may be the most effective tools in the preservation of vulnerable seafloor habitats. Here, we focus on outlining seafloor responses to drivers of change observed to date and projections for the future. We discuss the need for action to preserve seafloor habitats under climate change, fishing pressures and other anthropogenic impacts. KW - benthos KW - Antarctica KW - Southern Ocean KW - marine protected areas KW - vulnerable marine ecosystems KW - fishing Y1 - 2021 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/62466 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-624667 SN - 2296-7745 N1 - MB was supported by the Antarctic Climate & Ecosystems Cooperative Research Centre and PEW Charitable Trusts. RD was funded by an Australian Government Research Training Program (AGRTP). SM and HG were funded through NERC core funding to the British Antarctic Survey Biodiversity, Evolution and Adaptation Team. BF was supported by a postdoctoral contract Juan de la Cierva-Incorporación (IJCI-2017-31478) of Ministerio de Ciencia, Innovación y Universidades. AV was funded by the Belgian Science Policy Office (BELSPO, contract n° FR/36/AN1/AntaBIS) in the Framework of EU-Lifewatch. VL - 8 IS - art. 622721 SP - 1 EP - 30 PB - Frontiers Media CY - Lausanne ER -