TY - THES A1 - Kim, Hye-A T1 - The nucleus reuniens drives hippocampal goal‑directed trajectory sequences for route planning N2 - Goal-directed spatial navigation requires accurate estimates of one’s position and destination, as well as careful planning of a route between them to avoid known obstacles in the environment. Despite its general importance across species, the neural circuitry supporting the ability for route planning remains largely unclear. Previous studies described that place cells in the hippocampal CA1 encode the animal's next movement direction (Wood et al., 2000; Ito et al., 2015) and upcoming navigational routes (Pfeiffer & Foster, 2013). However, it has been shown that part of the CA1 activity representing the animal’s future behaviors is not necessarily generated in the hippocampus, but is derived from the medial prefrontal cortex (PFC) via the nucleus reuniens of the thalamus (RE) (Ito et al., 2015). Notably, the importance of the PFC in navigation has been demonstrated in several studies, including the recent finding of a goal map in the orbitofrontal cortex (Basu et al., 2021). Therefore, I hypothesized that information flow from the PFC to CA1 via the RE plays a key role in route planning. To assess the animals' route planning ability, I designed a new navigation task in which a rat has to navigate to a fixed target location from various starting positions in an arena. Furthermore, by adding an L-shaped wall in the maze and removing all light sources in the experimental room, this task forced the animals to plan a wall-avoiding route without relying on direct sensory perceptions. I confirmed that rats could learn this task successfully, memorizing the wall location and taking a smooth wall-avoidance route. To test the role of the RE, I inactivated RE neurons by expressing the inhibitory opsin SwiChR++, which resulted in a significant deficit in the animal’s route planning ability, taking a longer non-smooth path to the destination. By contrast, this manipulation did not affect navigation performance when a straight goal-directed route was available, suggesting a specific role of the RE in route planning. I further found that DREADDs-mediated inactivation of neurons in the bilateral hippocampi resulted in a similar deficit in route planning ability, implying cooperation between the RE and the hippocampus. I finally examined the activity of hippocampal CA1 neurons with and without RE inactivation. While neurons in the hippocampus exhibited brief trajectory sequences corresponding to the animal’s subsequent goal-directed journey, I found that this goal-directed bias of trajectory events was significantly reduced by RE inactivation, likely associated with route-planning deficits in these animals. Altogether, this dissertation demonstrates the role of the RE from both behavioral and neural coding perspectives, identifying a pivotal circuit element supporting the animal’s route-planning ability. KW - Spatial navigation KW - Nucleus reuniens Y1 - 2024 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/85519 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-855190 CY - Frankfurt am Main ER -