TY - THES A1 - Krieg, Jan T1 - Functional renormalization group approach to classical and quantum spin systems N2 - The present thesis is primarily concerned with the application of the functional renormalization group (FRG) to spin systems. In the first part, we study the critical regime close to the Berezinskii-Kosterlitz-Thouless (BKT) transition in several systems. Our starting point is the dual-vortex representation of the two-dimensional XY model, which is obtained by applying a dual transformation to the Villain model. In order to deal with the integer-valued field corresponding to the dual vortices, we apply the lattice FRG formalism developed by Machado and Dupuis [Phys. Rev. E 82, 041128 (2010)]. Using a Litim regulator in momentum space with the initial condition of isolated lattice sites, we then recover the Kosterlitz-Thouless renormalization group equations for the rescaled vortex fugacity and the dimensionless temperature. In addition to our previously published approach based on the vertex expansion [Phys. Rev. E 96, 042107 (2017)], we also present an alternative derivation within the derivative expansion. We then generalize our approach to the O(2) model and to the strongly anisotropic XXZ model, which enables us to show that weak amplitude fluctuations as well as weak out-of-plane fluctuations do not change the universal properties of the BKT transition. In the second part of this thesis, we develop a new FRG approach to quantum spin systems. In contrast to previous works, our spin functional renormalization group (SFRG) does not rely on a mapping to bosonic or fermionic fields, but instead deals directly with the spin operators. Most importantly, we show that the generating functional of the irreducible vertices obeys an exact renormalization group equation, which resembles the Wetterich equation of a bosonic system. As a consequence, the non-trivial structure of the su(2) algebra is fully taken into account by the initial condition of the renormalization group flow. Our method is motivated by the spin-diagrammatic approach to quantum spin system that was developed more than half a century ago in a seminal work by Vaks, Larkin, and Pikin (VLP) [Sov. Phys. JETP 26, 188 (1968)]. By embedding their ideas in the language of the modern renormalization group, we avoid the complicated diagrammatic rules while at the same time allowing for novel approximation schemes. As a demonstration, we explicitly show how VLP's results for the leading corrections to the free energy and to the longitudinal polarization function of a ferromagnetic Heisenberg model can be recovered within the SFRG. Furthermore, we apply our method to the spin-S Ising model as well as to the spin-S quantum Heisenberg model, which allows us to calculate the critical temperature for both a ferromagnetic and an antiferromagnetic exchange interaction. Finally, we present a new hybrid formulation of the SFRG, which combines features of both the pure and the Hubbard-Stratonovich SFRG that were published recently [Phys. Rev. B 99, 060403(R) (2019)]. Y1 - 2019 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/52628 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-526287 CY - Frankfurt am Main ER -