TY - THES A1 - Zezina, Ekaterina T1 - Mitochondrial dynamics in response to fatty acids in human macrophages N2 - Obesity is considered as a type of chronic inflammation. It enhances the risk of developing cardiovascular disease, diabetes, and some cancers. The key players in the induction of inflammation in adipose tissue are macrophages. However the mechanism of macrophage activation in obese fat tissue is still not fully understood. Elevated level of saturated fatty acids in adipose tissue promotes inflammation and insulin resistance. Exposure of macrophages to saturated fatty acids stimulates pro-inflammatory c-Jun N-terminal kinase (JNK), nuclear factor kappa B (NF-kB) signaling, and production of pro-inflammatory cytokines, such as IL-6, IL-8, IL-1β, and TNFα. Palmitate is a major saturated free fatty acid released by adipocytes. It activates inflammatory pathways through Toll-like receptors (TLR) 2 and 4, provokes endoplasmic reticulum (ER) stress and increases levels of diacylglycerols (DAGs) and ceramides. Saturated fatty acids also affect cellular oxidative metabolism. Thus, mitochondrial fatty acid oxidation reduces ER-stress and expression of inflammatory cytokines in palmitate-treated macrophages. On the other hand mitochondrial reactive oxygen species (ROS) promote palmitate-mediated pro-inflammatory cytokine production. Recently, mitochondrial functions were linked to their morphology. Mitochondrial fission has been reported in β-cells and myocytes in response to high levels of glucose and free fatty acids, and was associated with disruption of mitochondrial functions, increased ROS level, and cell death. The aim of this study was to investigate the role of mitochondrial fragmentation in palmitate-induced inflammation in human macrophages. In our settings fatty acids, independently of their saturation, affected mitochondrial morphology. Mixtures of long chain saturated and unsaturated fatty acids as well as triglyceride-rich lipoprotein lipolysis products promoted mitochondrial fission. Mitochondrial fragmentation in palmitate-treated macrophages revealed a time- and concentration-dependent character, and was reversible upon palmitate removal. This observation, together with unaltered levels of mitochondrial protein and DNA content, and intact mitochondrial respiration, suggested that mitochondria were not damaged and were functionally active. Mechanistically, palmitate-induced mitochondrial fragmentation was not regulated by ER stress or loss of mitochondrial membrane potential. However, inhibition of palmitate incorporation into mitochondrial membrane phospholipids decreased mitochondrial fragmentation. Other approach to prevent mitochondrial fission was the inhibition of dynamin-related protein 1 (DRP1) activity, which drives mitochondrial fission by forming ring- like structures around mitochondria and constricting mitochondrial membranes. Palmitate altered mitochondrial membrane lipid composition and promoted DRP1-oligomerization. The inhibition of palmitate-induced mitochondrial fragmentation enhanced mitochondrial ROS production, c-Jun phosphorylation, and upregulated expression of pro-inflammatory cytokines. Taken together, these results suggest that mitochondrial fragmentation is a protective mechanism attenuating palmitate-induced inflammatory responses. Future experiments will be required to investigate the role of mitochondrial fragmentation in obesity-associated diseases in vivo. Y1 - 2019 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/50935 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-509358 CY - Frankfurt am Main ER -