TY - JOUR A1 - Breisch, Jennifer Maria A1 - Huber, Lisa Sophie A1 - Kraiczy, Peter A1 - Hubloher, Josephine Joy A1 - Averhoff, Beate T1 - The ß-ketoadipate pathway of Acinetobacter baumannii is involved in complement resistance and affects resistance against aromatic antibiotics T2 - Environmental microbiology reports N2 - Acinetobacter baumannii can thrive on a broad range of substrates such as sugars, alcohols, lipids, amino acids and aromatic compounds. The latter three are abundant in the human host and are potential candidates as carbon sources for the metabolic adaptation of A. baumannii to the human host. In this study we determined the biodegradative activities of A. baumannii AYE with monocyclic aromatic compounds. Deletion of genes encoding the key enzymes of the ß-ketoadipate pathway, the protocatechuate-3,4-dioxygenase (ΔpcaHG) and the catechol-1,2-dioxygenase (ΔcatA), led to a complete loss of growth on benzoate and p-hydroxybenzoate, suggesting that these substrates are metabolized via the two distinct branches (pca and cat) of this pathway. Furthermore, we investigated the potential role of these gene products in host adaptation by analyzing the capability of the mutants to resist complement-mediated killing. These studies revealed that the mutants exhibit a decreased complement resistance, but a dramatic increase in survival in normal human serum in the presence of p-hydroxybenzoate or protocatechuate. These results indicate that the ß-ketoadipate pathway plays a role in adaptation of A. baumannii to the human host. Moreover, the single and double mutants exhibited increased antibiotic resistances indicating a link between the two dioxygenases and antibiotic resistance. Y1 - 2022 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/75325 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-753251 SN - 1758-2229 N1 - This study was supported by a grant from the Deutsche Forschungsgemeinschaft through DFG Research Unit FOR2251 (DFG7-2). VL - 14 IS - 1 SP - 170 EP - 178 PB - John Wiley & Sons CY - Hoboken, NJ ER -