TY - JOUR A1 - Thévenod, Frank A1 - Friedmann, Jenny May A1 - Katsen, Alice D. A1 - Hauser, Ingeborg A. T1 - Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis T2 - Journal of biological chemistry N2 - Cadmium-mediated toxicity of cultured proximal tubule (PT) cells is associated with increased production of reactive oxygen species (ROS) and apoptosis. We found that cadmium-dependent apoptosis (Hoechst 33342 and annexin V assays) decreased with prolonged CdCl(2) (10 microM) application (controls: 2.4 +/- 1.6%; 5 h: +5.1 +/- 2.3%, 20 h: +5.7 +/- 2.5%, 48 h: +3.3 +/- 1.0% and 72 h: +2.1 +/- 0.4% above controls), while cell proliferation was not affected. Reduction of apoptosis correlated with a time-dependent up-regulation of the drug efflux pump multidrug resistance P-glycoprotein (mdr1) in cadmium-treated cells ( approximately 4-fold after 72 h), as determined by immunoblotting with the monoclonal antibody C219 and measurement of intracellular accumulation of the fluorescent probe calcein +/- the mdr1 inhibitor PSC833 (0.5 microM). When mdr1 inhibitors (PSC833, cyclosporine A, verapamil) were transiently added to cells with mdr1 up-regulation by pretreatment for 72 h with cadmium, cadmium-induced apoptosis increased significantly and to a percentage similar to that obtained in cells with no mdr1 up-regulation (72-h cadmium: 5.2 +/- 0.9% versus 72-h cadmium + 1-h PSC833: 7.2 +/- 1.4%; p < or = 0.001). Cadmium-induced apoptosis and mdr1 up-regulation depended on ROS, since co-incubation with the ROS scavengers N-acetylcysteine (15 mM) or pyrrolidine dithiocarbamate (0.1 mM) abolished both responses. Moreover, cadmium- and ROS-associated mdr1 up-regulation was linked to activation of the transcription factor NF-kappaB; N-acetylcysteine, pyrrolidine dithiocarbamate, and the IkappaB-alpha kinase inhibitor Bay 11-7082 (20 microM) prevented both, mdr1 overexpression and degradation of the inhibitory NF-kappaB subunit, IkappaB-alpha, induced by cadmium. The data show that 1) cadmium-mediated apoptosis in PT cells is associated with ROS production, 2) ROS increase mdr1 expression by a process involving NF-kappaB activation, and 3) mdr1 overexpression protects PT cells against cadmium-mediated apoptosis. These data suggest that mdr1 up-regulation, at least in part, provides anti-apoptotic protection for PT cells against cadmium-mediated stress. Y1 - 2021 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/75853 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-758533 SN - 0021-9258 VL - 275.2000 IS - 3 SP - 1887 EP - 1896 PB - American Society for Biochemistry and Molecular Biology Publications CY - Bethesda, Md ER -