TY - THES A1 - Stevanovic, Mara T1 - The putative siderophore-dependent iron transport network in Anabaena sp. PCC 7120 N2 - Cyanobacteria belong to the most widely distributed microorganisms in the biosphere and contribute significantly to global primary production. Their metabolism is based on oxygenic photosynthesis and some cyanobacteria can fix elemental nitrogen. Obligate photosynthetic diazotrophs have a particularly high iron demand in comparison to heterotrophic bacteria. Nevertheless the understanding of iron acquisition in cyanobacteria is just beginning to emerge. Iron acquisition in bacteria comprises highly specific transport of siderophore-iron complexes over the outer membrane by TonB-dependent transporter (TBDT). The transport itself is active and energized by a multi-complex localized to the inner membrane termed the TonB-system (TonB-ExbB-ExbD). The siderophore-iron complexes are further transported into the cytosol by a binding protein dependent ABC-transporter. Cyanobacterial iron acquisition response has most extensively been studied in unicellular, non-siderophore synthesizing cyanobacteria in the genus Synechococcus and Synechocystis. Anabaena sp. PCC 7120, however, is a different model organism as it is a freshwater living, siderophore synthesizing and, truly multicellular microorganism. It can be assumed that siderophore synthesis and siderophore-dependent iron uptake are tightly coordinated processes, therefore Anabaena represents a different model organism as compared to non-siderophore producing cyanobacteria. Moreover the surprisingly abundant protein family of 22 putative TBDTs in Anabaena indicates a high complexity of TonB-dependent uptake systems. Sequence similarity analysis revealed 4 putative tonB encoding genes (alr0248, all3585, all5036, alr5329), 2 putative exbB-exbD encoding gene cluster (alr0643-alr0644, all5047-all5046), one single standing putative exbB encoding gene (alr4587) and several hypothetical binding-protein-dependent ATP binding cassette (ABC)-type transporter encoding genes (fhu-, fec- and fut-type transporter). In this study the respond of the predeicted systems to iron-limiting conditions was analysed by qRT-PCR. The expression analysis revealed on the one hand an enhanced transcription of all5036 (tonB3), all5047-all5046 (exbB3-exbD3) and the fhu-like encoding genes (all0387-all0389) under iron-limitation and at the same time down-regulation of expression under enhanced iron concentrations. Summerizing the transcription profile of the tonB3- and the fhu-system showed an expression regulated by iron-availability. To further characterize the role of TonB3-, ExbB3- and the Fhu-system, mutants thereof were generated. None of the generated mutants, except for the exbB3 mutant, could be fully segregated, suggesting an essential character of the genes. Characterization of the mutants revealed enhanced expression of iron-starvatrion indicator genes (isiA, fhuA) and altered growth of the tonB3 mutant under iron-limiting conditions. The iron starvation phenotype was further strengthened by enhanced siderophore secretion in the tonB3, exbB3 and fhuC mutants. Taken as a whole the results strongly indicate involvement of the tonB3- and the fhu-system in siderophore-dependnet iron uptake in Anabaena. Investigation of the tonB2 (all3585) mutant under iron and citric acid limitation resultated in altered growth of the mutant. However, growth could be restored by addition of iron chlorid. Therefore a connection of the TonB2 protein to iron uptake is implied and further supported by ressitance to toxic iron concentrations. Lastly, mutation of tonB1 (alr0248) reuslted in insensibility to toxic manganese and copper concentrations and macrolid antibiotics. The altered permeability of the outer membrane may be a result of decreased expression of seven putative porin encoding genes in the mutant. A possible role in transcriptional regulation of porin expression is discussed. KW - siderophore-dependent iron uptake Y1 - 2015 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/38376 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-383766 PB - Univ.-Bibliothek CY - Frankfurt am Main ER -