TY - JOUR A1 - Durai, Dilip A. A1 - Schulz, Marcel Holger T1 - Improving in-silico normalization using read weights T2 - Scientific reports N2 - Specialized de novo assemblers for diverse datatypes have been developed and are in widespread use for the analyses of single-cell genomics, metagenomics and RNA-seq data. However, assembly of large sequencing datasets produced by modern technologies is challenging and computationally intensive. In-silico read normalization has been suggested as a computational strategy to reduce redundancy in read datasets, which leads to significant speedups and memory savings of assembly pipelines. Previously, we presented a set multi-cover optimization based approach, ORNA, where reads are reduced without losing important k-mer connectivity information, as used in assembly graphs. Here we propose extensions to ORNA, named ORNA-Q and ORNA-K, which consider a weighted set multi-cover optimization formulation for the in-silico read normalization problem. These novel formulations make use of the base quality scores obtained from sequencers (ORNA-Q) or k-mer abundances of reads (ORNA-K) to improve normalization further. We devise efficient heuristic algorithms for solving both formulations. In applications to human RNA-seq data, ORNA-Q and ORNA-K are shown to assemble more or equally many full length transcripts compared to other normalization methods at similar or higher read reduction values. The algorithm is implemented under the latest version of ORNA (v2.0, https://github.com/SchulzLab/ORNA). KW - Data mining KW - Data processing Y1 - 2019 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/50367 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-503675 SN - 2045-2322 N1 - Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. VL - 9 IS - 1, Art. 5133 SP - 1 EP - 10 PB - Macmillan Publishers Limited, part of Springer Nature CY - [London] ER -