TY - JOUR A1 - Fan, Naixin A1 - Koirala, Sujan A1 - Reichstein, Markus A1 - Thurner, Martin A1 - Avitabile, Valerio A1 - Santoro, Maurizio A1 - Ahrens, Bernhard A1 - Weber, Ulrich A1 - Carvalhais, Nuno T1 - Apparent ecosystem carbon turnover time: uncertainties and robust features T2 - Earth system science data discussions N2 - The turnover time of terrestrial carbon (τ) controls the global carbon cycle – climate feedback and, yet, is poorly simulated by the current Earth System Models (ESMs). In this study, by assessing apparent carbon turnover time as the ratio between carbon stocks and fluxes, we provide a new, updated ensemble of diagnostic terrestrial carbon turnover times and associated uncertainties on a global scale using multiple, state-of-the-art, observation-based datasets of soil organic carbon stock (Csoil), vegetation biomass (Cveg) and gross primary productivity (GPP). Using this new ensemble, we estimated the global average τ to be 42$% &' years when the full soil depth is considered, longer than the previous estimates of 23$) &* years. Only considering the top 1 m (assuming maximum active layer depth is up to 1 meter) of soil carbon in circumpolar regions yields a global τ of 35$) &' years. Csoil in circumpolar regions account for two thirds of the total uncertainty in global τ estimates, whereas Csoil in non-circumpolar contributes merely 9.38%. GPP (2.25%) and Cveg (0.05%) contribute even less to the total uncertainty. Therefore, the high uncertainty in Csoil is the main factor behind the uncertainty in global τ, as reflected in the larger range of full-depth Csoil (3152-4372 PgC). The uncertainty is especially high in circumpolar regions with a behaviour of ESMs which could contribute to uncertainty reductions in future projections of the carbon cycle - climate feedback. The dataset of the terrestrial turnover time ensemble (DOI: 10.17871/bgitau.201911) is openly available from the data portal: https://doi.org/10.17871/bgitau.201911 (Fan et al., 2019) uncertainty of 50% and the spatial correlations among different datasets are also low compared to other regions. Overall, we argue that current global datasets do not support robust estimates of τ globally, for which we need clarification on variations of Csoil with soil depth and stronger estimates of Csoil in circumpolar regions. Despite the large variation in both magnitude and spatial patterns of τ, we identified robust features in the spatial patterns of τ that emerge regardless of soil depth and differences in data sources of Csoil, Cveg and GPP. Our findings show that the latitudinal gradients of τ are consistent across different datasets and soil depth. Furthermore, there is a strong consensus on the negative correlation between τ and temperature along latitude that is stronger in temperate zones (30ºN-60ºN) than in subtropical and tropical zones (30ºS30ºN). The identified robust patterns can be used to infer the response of τ to climate and for constraining contemporaneous behaviour of ESMs which could contribute to uncertainty reductions in future projections of the carbon cycle - climate feedback. The dataset of the terrestrial turnover time ensemble (DOI:10.17871/bgitau.201911) is openly available from the data portal: https://doi.org/10.17871/bgitau.201911 (Fan et al., 2019). Y1 - 2020 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/56553 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-565530 SN - 1866-3591 VL - 2020 IS - 235 PB - Copernics Publication CY - Katlenburg-Lindau ER -