TY - INPR A1 - Hering, Max A1 - Ferrari, Francesco A1 - Razpopov, Aleksandar A1 - Mazin, Igor I. A1 - Valentí, Roser A1 - Jeschke, Harald O. A1 - Reuther, Johannes T1 - Distorted kagome antiferromagnet: Phase diagram and application to Y-kapellasite T2 - arXiv N2 - We investigate the magnetism of a previously unexplored distorted spin-1/2 kagome model consisting of three symmetry-inequivalent nearest-neighbor antiferromagnetic Heisenberg couplings and uncover a rich ground state phase diagram even at the classical level. Using analytical arguments and numerical techniques we identify a collinear Q⃗ =0 magnetic phase, two unusual non-collinear coplanar Q⃗ =(1/3,1/3) phases and a classical spin liquid phase with a degenerate manifold of non-coplanar ground states, resembling the jammed spin liquid phase found in the context of a bond-disordered kagome antiferromagnet. We further show with density functional theory calculations that the recently synthesized Y-kapellasite Y3Cu9(OH)19Cl8 is a realization of this model and predict its ground state to lie in the region of Q⃗ =(1/3,1/3) order, which remains stable even after inclusion of quantum fluctuation effects within variational Monte Carlo and pseudofermion functional renormalization group. Interestingly, the excitation spectrum of Y-kapellasite lies between that of an underlying triangular lattice of hexagons and a kagome lattice of trimers. The presented model opens a new direction in the study of kagome antiferromagnets. Y1 - 2021 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/82365 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-823657 UR - https://arxiv.org/abs/2107.13570v1 IS - 2107.13570 Version 1 PB - arXiv ER -