TY - THES A1 - Wrzesniewska, Blanka T1 - Crystallization and structural characterization of protein complexes involved in the energy metabolism of Yarrowia lipolytica N2 - 1. Fab co-complexes of proton pumping NADH:ubiquinone oxidoreductase (complex I) Fab fragments suitable for co-crystallization with complex I were generated using an immobilized papainbased protocol. The binding of the antibody fragments to complex I was verified using Surface Plasmon Resonance and size exclusion chromatography. The binding constants of the antibodies and their respective Fab fragments were found to be in the nanomolar range. This work presents the first report on successful crystallization of complex I (proton pumping NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica with proteolytic Fab fragments. The quality of the crystals was significantly improved when compared to the initial experiments and the best crystals diffracted X-rays to a resolution of ~7 Å. The activity of complex I remained uninfluenced by antibody fragment binding. The initial diffraction data suggest that the complex I/Fab co-complex crystals represent a space group different to the one observed for the native protein. Ongoing experiments are aimed at further enhancements of the diffraction quality of the crystals. Providing a different space group the CI/Fab co-complexes may become a very useful approach for structure determination of the enzyme. Moreover, the bound Fab offers an additional possibility to generate phase information. The antibody-mediated crystallization represents a valuable tool in structural characterization of the NADH:oxidoreductase subcomplexes or even single subunits. 2. UDP-glucose pyrophosphorylase UDP-glucose pyrophosphorylase from Yarrowia lipolytica displays affinity towards Ni2+ NTA and was first detected in a contaminated sample of complex I. Following, separation from complex I, Ugp1p was purified using anion exchange chromatography. Sequence similarity studies revealed high identity to other known pyrophosphorylases. As indicated by laser-based mass spectrometry method (LILBID) Ugp1p from Y. lipolytica builds octamers similarly to the enzyme from Saccharomyces cerevisiae. The initial crystals grew as thin needles favorably in sitting drop setups. The size of the crystals was increased by employment of a micro batch technique. The improved crystals diffracted X-rays to a resolution of 3.2 Å at the synchrotron beamline. Structural characterization is under way using a molecular replacement approach based on the published structure of baker’s yeast UGPase. KW - Yarrowia lipolytica KW - Multiproteinkomplex Y1 - 2009 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/20775 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-90110 ER -