TY - THES A1 - Reuß, Kathrin T1 - Studien zur Ausdehnung des Eingangsfensters des CBM-TRDs N2 - Erwärmt man Eis, so brechen die Molekülbindungen auf und bei einer kritischen Temperatur von 0°C entsteht durch einen Phasenübergang flüssiges Wasser. Dies ist wohl bekannt und das Phasendiagramm, sowie die Anomalie von Wasser ein bekanntes Hilfsmittel in Physik und Chemie. Doch was passiert, wenn man Kernmaterie erhitzt? Kann diese auch verschiedene Aggregatzustände annehmen? Physiker erwarten, dass ab einer definierten kritischen Temperatur auch die Bindungen zwischen den kleinsten Teilchen unserer Materie, den Quarks, aufbrechen und das bis dahin bestehende Hadronengas in ein Quark-Gluon-Plasma übergeht. In Experimenten auf der ganzen Welt sollen die Eigenschaften des Quark-Gluon- Plasmas und der Phasenübergang der Materie untersucht werden. Daraus möchte man ein Phasendiagramm für die hadronische Materie entwickeln (Abb. 1). In verschiedenen Experimenten werden die unterschiedlichen Stationen des Phasendiagramms abgelaufen. Die laufenden Projekte an den großen Teilchenbeschleuniger Anlagen am LHC (Large Hadron Collider) am CERN (Conseil Européen pour la Abbildung 1: Das Phasendiagramm stark wechselwirkender Materie. Aufgetragen ist die Temperatur gegen die Baryonendichte. Der braune Bereich stellt den Übergangsbereich zwischen Hadronengas und Quark-Gluon-Plasma dar [ZAM]. Recherche Nucléaire) und am RHIC (Relativistic Heavy Ion Collider) in Brookhaven untersuchen das Phasendiagramm bei hohen Temperaturen und geringen Dichten. An der neuen, noch im Aufbau befindlichen Beschleunigeranlage FAIR (Facility for Antiproton and Ion Research) soll nun, im Rahmen des CBM-Experiment (Compressed Baryonic Matter), das Phasendiagramm bei hohen baryonischen Dichten und geringeren Temperaturen untersucht werden. Dafür werden spezielle Detektorkomplexe entwickelt. Diese werden benötigt, um herauszufinden, wann ein Quark-Gluon-Plasma vorliegt. Hierbei ist die Identifizierung von Elektronen von großer Bedeutung. Beim CBM-Experiment wird zur Unterscheidung zwischen Pionen und Elektronen unter anderem ein Transition Radiation Detektor (TRD) verwendet. (Kapitel 4) Dessen Eingangsfenster besteht aus einer dünnen Mylar®-Folie, welche empfindlich auf Druckschwankungen reagiert. Dies führt zu einer Veränderung des Kammervolumens, was zu einer Variation der Gasverstärkung und des daraus gewonnenen Signals führt. Die Auswirkungen von Druckschwankungen auf das Eingangsfenster des CBM-TRDs sollen in der folgenden Arbeit anhand von Simulationen (Kapitel 5) sowie anhand von Messungen (Kapitel 6) untersucht und verglichen werden. Zunächst wird jedoch ein Überblick der Grundlagen gegeben. Y1 - 2013 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/33451 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-334515 UR - http://www2.uni-frankfurt.de/48069980/BachelorArbeit-Katrin_Reuss.pdf N1 - Diese Arbeit dürfen wir leider (aus urheberrechtlichen Gründen) nicht außerhalb der UB anbieten, benutzen Sie ersatzweise die o.g. URL. ER -