TY - THES A1 - Cardoso Generoso, Wesley T1 - Exploring the limitations of isobutanol production by engineered industrial Saccharomyces cerevisiae strains N2 - Saccharomyces cerevisiae is a natural producer of isobutanol, which has more advantages as biofuel than ethanol, i.e. superior combustion energy, weaker corrosive action and reduced aqueous miscibility. Isobutanol is produced by the combination of the valine biosynthesis and the Ehrlich pathway. In this work, an industrial strain was employed for isobutanol production, in which the valine pathway was relocated into the cytosol. The valine pathway in yeast has a cofactor imbalance, since the glycolysis produces NADH, while Ilv5 employs NADPH for the reaction. Therefore, the cofactor specificity of the pathway was rebalanced with exchange of Ilv5 by an NADH-consuming mutant, IlvC6E6. Furthermore, Ilv6, which regulates the feed-back inhibition of the valine biosynthesis, was tested to boost isobutanol production; however, none of these Ilv6 alternatives could greatly enhance isobutanol production. Therefore, due to a still low production yield, the bottlenecks of the isobutanol pathway were deeper studied. The major observed bottleneck concerned the conversion of DIV into KIV, since high concentrations of acetoin, 2,3-butandiol and, specially, DIV were observed in the fermentation supernatant, while neither KIV nor isobutyraldehyde were detected. This step is performed by the dihydroxy-acid dehydratase, Ilv3, which needs iron-sulfur clusters for its activity. Therefore, the first approach to circumvent this limitation was to increase the FeS assembly and its transference into the cytoplasm; however, Ilv3Δ19 activity was not improvement. Afterwards, Ilv3 alternatives were screened for substitution of Ilv3Δ19. Heterologous ILV3 orthologous with possible advantages were investigated, but Ilv3Δ19 was still the most promising alternative. Furthermore, sugar-acid enolases were tested as Ilv3Δ19 substitutes. These enolases also catalyze the dehydration of the substrate in the same way as Ilv3, but uses Mg2+ as cofactor. One of the employed enolases could complement valine auxotrophy; however, it allowed just a very slow growth of the Δilv3 strain and its activity could not be enhanced by mutagenesis studies. Interestingly, we observed that once DIV is secreted out of the cell, it cannot be re-uptaken from the medium and this possibly further aggravates the pathway flux and Ilv3Δ19 activity. In order to suppress DIV waste, two strategies were formulated: the deletion of the possible DIV transporter, and the substrate channeling of DIV from IlvC6E6 to Ilv3Δ19. In order to find possible DIV export proteins, a transcriptome analysis of a strain producing high amounts of DIV against a strain producing no detected DIV were compared. Several transporters were found upregulated in the DIV producing strain, but, alone, none of these were responsible for the DIV efflux. For the substrate channeling, an artificial enzymatic net was constructed by the fusion of IlvC6E6 and Ilv319 with synthetic zippers, which have high affinity to each other, and as both enzymes are alone organized as oligomers. The use of this enzymatic net enhanced not only the isobutanol production in about 17%, but also 3-methyl-butanol production yield was 25% increased. Nevertheless, together with bottlenecks arising from Ilv3 activity, the isobutanol production is limited by the ethanol production, which is the main product of S. cerevisiae. Therefore, in order to abolish ethanol production, PDC1 and PDC5 were deleted. Moreover, BDH1 and BDH2 were also deleted to create an NADH-driving force towards isobutanol production. However, the isobutanol yield of this mutant was even lower than that of the strain without the mentioned deletions. As a high production of isobutyric acid was observed, and it could be produced directly from KIV, different KIV decarboxylases and isobutanol dehydrogenases were investigated; but without improvement. Then, alternative pathways were abolished in other to favor isobutanol production, e.g. valine, leucine, isoleucine and panthotenate biosyntheses. Nevertheless, isobutanol yields were still low and the main byproducts were glycerol, acetoin, DIV and isobutyric acid. Despite the outcomes were not enough to enhance isobutanol production up to commercially required yields, these results help in the comprehension of the bottlenecks surrounding the isobutanol production pathway and serve as basis for further studies within the branched-chain amino acids biosynthesis and Ehrlich pathway. Y1 - 2017 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/43144 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-431448 ER -