TY - THES A1 - Murgana, Fabrizio T1 - Functional renormalization group study of effective models for quantum chromodynamics N2 - The main focus of this thesis is the application of the nonperturbative Functional Renormalization Group (FRG) to the study of low-energies effective models for Quantum Chromodynamics (QCD). The study of effective field theories and models is crucial for our understanding of physics, especially when we deal with fundamental interaction theories like QCD. In particular, the ultimate goal is the understanding of the critical properties of these models in such a way that we can have an insight on the actual critical phenomena of QCD, with a special focus on its chiral phase transition. The choice of the FRG method derives from the fact that it belongs to the class of functional non-perturbative methods and has also the advantage of linking physics at different energy scales. These features make FRG perfectly compatible with the task of studying non-perturbative phenomena and in particular phase transitions, like the ones expected for strongly interacting matter. However, the functional nature of the FRG approach and of the Wetterich equation has a consequence that its exact resolution is hardly possible, and an ansatz for the effective action is generally needed. In this work we choose to adopt the local-potential approximation (LPA), which prescribes to stop at zeroth order in the expansion in derivative operators of the quantum effective action, including only the quantum effective potential. In this work we exploited the key observation that the FRG flow equation can be cast, for specific models and truncation schemes, in the form of an advection-diffusion, possibly with a source term. This type of equation belongs to the class of problems faced in the context of viscous hydrodynamics. Therefore, an innovative approach to the solution of the FRG flow equation consists in the choice of a method developed specifically for the resolution of this class of hydrodynamic equations. In particular, the Kurganov-Tadmor finite-volume scheme is adopted. Throughout this work we apply this scheme to the study of different physical systems, showing the reliability and the flexibility of this approach. In the first part of the thesis, we discuss the well-known O(N) model, using the hydrodynamic formulation to solve the FRG flow equation in the LPA truncation. We focus on the study of the critical behaviour of the system and calculate the corresponding critical exponents. Particular attention is given to the error estimation in the extraction of critical exponents, which is a needed and not widely explored aspect. The results are well compatible with others in the literature, obtained with different perturbative and nonperturbative methods, which validates the procedure. In the second part of the thesis, we introduce the quark-meson model as a low-energy effective model for QCD, with a specific focus on its chiral symmetry-breaking pattern and the subsequent dynamical quark-mass generation. The LPA flow equation is of the advection-diffusion type, with an extra source contribution which is due to the inclusion of fermionic degrees of freedom. We thus adopt the developed numerical techniques to derive the phase diagram of the model, which is in agreement with the one obtained with other techniques in the literature. We also follow another possible way for the study of the critical properties of the quark-meson model: the so-called thermodynamic geometry. This approach is based on the interpretation of the parameter space of the system as a differential manifold. One can then obtain relevant information about the phase transitions from the Ricci scalar. We studied the chiral crossover investigating the behavior of the Ricci scalar up to the critical point, featuring a peaking behavior in the presence of the crossover. We then repeated this analysis in the chiral limit, where the phase transition is expected to be of second order. Via this geometric technique it is possible to have a different view on the chiral phase transition of QCD. This is the case since this approach is based on the calculation of quantities which are influenced by higher-order momenta of the thermodynamic potential, thus allowing for a more comprehensive analysis of the phase transition. Finally, we exploit the numerical advancement to face the issue of the regulator choice in the FRG calculations. This is one of the most delicate issues which arise when using approximations to solve the FRG flow equation and deserves extensive investigation. In particular, we performed a vacuum parameter study and used the RG consistency requirement to determine the impact of the choice of the regulator on the physical observables and on the phase diagram of the model. Via this study we develop a systematic method to comparison the results obtained via different regulators. We show the importance of the choice of an appropriate UV cutoff in the determination of UV-independent IR observables and, consequently, the impact on the latter that the truncation of the effective average action and the choice of the regulator have. Y1 - 2024 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/86373 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-863732 N1 - weitere Grad verleihende Institution: Università degli Studi di Catania CY - Catania ER -