TY - THES A1 - Holzhüter, Katharina Elisabeth Augusta T1 - Substrate translocation in SLC23 and SLC26 transporters N2 - Specialized transporter proteins facilitate controlled uptake and extrusion of molecules across biological membranes that would otherwise be impermeable to them. The superfamily of solute carriers (SLC) comprises the second largest group of membrane proteins in humans, acting on a variety of small polar and non-polar molecules and ions. Because of their central role in metabolism, malfunctioning of these proteins often is pathogenic. The interest in SLC transporters as drug targets – as well as for drug delivery – has therefore increased in the past years. For many SLC subfamilies, however, structural and functional information remains scarce to date. The here presented data provides important insights into different aspects of the transport mechanism of the SLC23 and SLC26 protein families. Importantly, we show that SLC23 nucleobase transporters, in contrast to what was been previously reported, work as uniporters rather than as proton-coupled symporters. In order to do so, we developed the first and only in vitro transport assay for the SLC23 family, which enables investigation of protein function in a defined environment. Moreover, we provide a hypothesis on the role of the extremely conserved negative charged substrate binding site residue found not only in the SLC23, but also SLC4 and SLC26 families. Based on a detailed analysis of binding and transport we conclude that this conserved negative charged has a relevance for protein stability rather than for substrate binding, which explains its conservation for all three protein families that otherwise differ in their substrate specificities and modes of transport. Lastly, we investigated the relevance of oligomerization for the SLC23 and SLC26 families, highlighting the importance of the STAS domain for forming active dimers in the SLC26 anion transporter family. Y1 - 2021 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/65827 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-658272 EP - 242 CY - Frankfurt am Main ER -