TY - JOUR A1 - Kinzler, Maximilian N. A1 - Zielke, Svenja A1 - Kardo, Simon A1 - Meyer, Nina Michelle A1 - Kögel, Donat A1 - Wijk, Sjoerd van A1 - Fulda, Simone T1 - STF-62247 and pimozide induce autophagy and autophagic cell death in mouse embryonic fibroblasts T2 - Scientific reports N2 - Induction of autophagy can have beneficial effects in several human diseases, e.g. cancer and neurodegenerative diseases (ND). Here, we therefore evaluated the potential of two novel autophagy-inducing compounds, i.e. STF-62247 and pimozide, to stimulate autophagy as well as autophagic cell death (ACD) using mouse embryonic fibroblasts (MEFs) as a cellular model. Importantly, both STF-62247 and pimozide triggered several hallmarks of autophagy in MEFs, i.e. enhanced levels of LC3B-II protein, its accumulation at distinct cytosolic sites and increase of the autophagic flux. Intriguingly, autophagy induction by STF-62247 and pimozide resulted in cell death that was significantly reduced in ATG5- or ATG7-deficient MEFs. Consistent with ACD induction, pharmacological inhibitors of apoptosis, necroptosis or ferroptosis failed to protect MEFs from STF-62247- or pimozide-triggered cell death. Interestingly, at subtoxic concentrations, pimozide stimulated fragmentation of the mitochondrial network, degradation of mitochondrial proteins (i.e. mitofusin-2 and cytochrome c oxidase IV (COXIV)) as well as a decrease of the mitochondrial mass, indicative of autophagic degradation of mitochondria by pimozide. In conclusion, this study provides novel insights into the induction of selective autophagy as well as ACD by STF-62247 and pimozide in MEFs. KW - Macroautophagy Y1 - 2020 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/52977 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-529779 SN - 2045-2322 N1 - Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. VL - 10 IS - 1, Art. 687 SP - 1 EP - 15 PB - Macmillan Publishers Limited, part of Springer Nature CY - [London] ER -