TY - INPR
A1 - Girondo, Ernesto
A1 - Wolfart, Jürgen
T1 - Conjugators of Fuchsian groups and quasiplatonic surfaces
N2 - Let G be a Fuchsian group containing two torsion free subgroups defining isomorphic Riemann surfaces. Then these surface subgroups K and alpha-Kalpha exp(-1) are conjugate in PSl(2,R), but in general the conjugating element alpha cannot be taken in G or a finite index Fuchsian extension of G. We will show that in the case of a normal inclusion in a triangle group G these alpha can be chosen in some triangle group extending G. It turns out that the method leading to this result allows also to answer the question how many different regular dessins of the same type can exist on a given quasiplatonic Riemann surface.
Y1 - 2004
UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/4303
UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-11877
UR - http://www.math.uni-frankfurt.de/~wolfart/wolfart.html
N1 - Preprint, Frankfurt a. M. und Madrid, 2004, erscheint in Quart. J. Math.
ER -