TY - JOUR A1 - Drobinski, Philippe A1 - Silva, Nicolas Da A1 - Panthou, Gérémy A1 - Bastin, Sophie A1 - Muller, Caroline A1 - Ahrens, Bodo A1 - Borga, Marco A1 - Conte, Dario A1 - Fosser, Giorgia A1 - Giorgi, Filippo A1 - Güttler, Ivan A1 - Kotroni, Vassiliki A1 - Li, Laurent A1 - Morin, Efrat A1 - Önol, Bariş A1 - Quintana‑Segui, Pere A1 - Romera, Raquel A1 - Torma, Csaba Zsolt T1 - Scaling precipitation extremes with temperature in the Mediterranean : past climate assessment and projection in anthropogenic scenarios T2 - Climate dynamics N2 - In this study we investigate the scaling of precipitation extremes with temperature in the Mediterranean region by assessing against observations the present day and future regional climate simulations performed in the frame of the HyMeX and MED-CORDEX programs. Over the 1979–2008 period, despite differences in quantitative precipitation simulation across the various models, the change in precipitation extremes with respect to temperature is robust and consistent. The spatial variability of the temperature–precipitation extremes relationship displays a hook shape across the Mediterranean, with negative slope at high temperatures and a slope following Clausius–Clapeyron (CC)-scaling at low temperatures. The temperature at which the slope of the temperature–precipitation extreme relation sharply changes (or temperature break), ranges from about 20 °C in the western Mediterranean to <10 °C in Greece. In addition, this slope is always negative in the arid regions of the Mediterranean. The scaling of the simulated precipitation extremes is insensitive to ocean–atmosphere coupling, while it depends very weakly on the resolution at high temperatures for short precipitation accumulation times. In future climate scenario simulations covering the 2070–2100 period, the temperature break shifts to higher temperatures by a value which is on average the mean regional temperature change due to global warming. The slope of the simulated future temperature–precipitation extremes relationship is close to CC-scaling at temperatures below the temperature break, while at high temperatures, the negative slope is close, but somewhat flatter or steeper, than in the current climate depending on the model. Overall, models predict more intense precipitation extremes in the future. Adjusting the temperature–precipitation extremes relationship in the present climate using the CC law and the temperature shift in the future allows the recovery of the temperature–precipitation extremes relationship in the future climate. This implies negligible regional changes of relative humidity in the future despite the large warming and drying over the Mediterranean. This suggests that the Mediterranean Sea is the primary source of moisture which counteracts the drying and warming impacts on relative humidity in parts of the Mediterranean region. KW - Precipitation extremes KW - Clausius–Clapeyron scaling KW - Regional climate KW - Europe KW - Mediterranean KW - HyMeX KW - MED-CORDEX Y1 - 2016 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/42282 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-422827 SN - 0930-7575 SN - 1432-0894 N1 - © The Author(s) 2016. This article is published with open access at Springerlink.com. Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. VL - 2016 SP - 1 EP - 21 PB - Springer CY - Berlin ; Heidelberg ER -