TY - THES A1 - Beberweil, Christoph T1 - Investigation of electron beam assisted density boosting in plasma traps using the example of a Gabor plasma lens N2 - The aim of this thesis is finding a geometric configuration that allows electron insertion into a Gabor plasma lens in order to increase the density of the confined electrons and provide ignition conditions at parameters where ignition is not possible. First, simulations using CST and bender were conducted to investigate several geometric configurations in terms of their performance of inserting electrons manually. One particular design has been chosen as a basis for an experiment. In order to prepare the experiment, further simulations using the code bender have been conducted to investigate the density distribution that is formed inside the Gabor lens when inserting electrons transversally in compliance with the chosen design. Additionally, bender was used to investigate the impact of the initial electron energy on the distribution inside the lens. Simulations with and without space charge effects have shown a significant impact of the space charge effects on the resulting density dstribution. Therefore, space charge effects have proven to be the major electron redistribution process. A given electron source was characterised in order to find the performance under the conditions inside a Gabor lens. In particular, a transversal magnetic field that will be present in the experiment has to be compensated by shielding the inner regions of the source by a μ-metal layer. Using a μ-metal shield, transversal magnetic fields are sufficiently tolerable to perform measurements in a Gabor lens. Additionally, operating close to 100 eV electron energy yields a maximum in the emitted current. Adding a Wehnelt cylinder to the electron source furthermore improves the extracted current to roughly 1 mA. A test stand consisting of a newly designed anode for the Gabor lens, as well as a terminal for the electron source, was constructed. The electron source was thoroughly characterised in the environment of the Gabor lens and the ignition properties of the new system were evaluated. In further experiments, electron beam assisted ignition by increasing the residual gas pressure was observed and the impact of the position of the electron source on the ignition properties was investigated. In addition, ignition of a sub-critical state, that is a state consisting of potential, magnetic field and pressure that did not yet perform ignition by itself, was performed by increasing the extracted current from the electron source. Finally, the electron source was used to influence a pre-ignited plasma. The density was measured, which was increased by the use of the electron source in most cases. This project is part of the EDEN collaboration (Electron DENsity boosting) of the NNP Group at IAP Frankfurt with INFN institutes in Bologna and Catania. KW - Gabor lens KW - electron KW - density KW - confinement Y1 - 2017 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/44277 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-442771 CY - [Frankfurt am Main] ER -