TY - JOUR A1 - Pardali, Evangelia A1 - Dimmeler, Stefanie A1 - Zeiher, Andreas M. A1 - Rieger, Michael A. T1 - Clonal hematopoiesis, aging, and cardiovascular diseases T2 - Experimental hematology N2 - Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Many studies have provided evidence that both genetic and environmental factors induce atherosclerosis, leading thus to cardiovascular complications. Atherosclerosis is an inflammatory disease, and aging is strongly associated with the development of atherosclerosis. Recent experimental evidence suggests that clonal hematopoiesis (CH) is an emerging cardiovascular risk factor that contributes to the development of atherosclerosis and cardiac dysfunction and exacerbates cardiovascular diseases. CH is caused by somatic mutations in recurrent genes in hematopoietic stem cells, leading to the clonal expansion of mutated blood cell clones. Many of the mutated genes are known in the context of myeloid neoplasms. However, only some individuals carrying CH mutations develop hematologic abnormalities. CH is clearly age dependent and is not rare: at least 10%–20% of people >70 years old carry CH. The newly discovered association between myeloid leukemia-driver mutations and the progression of CVDs has raised medical interest. In this review, we summarize the current view on the contribution of CH in different cardiovascular diseases, CVD risk assessment, patient stratification, and the development of novel therapeutic strategies. Despite advances in the medical and interventional clinical management of patients, cardiovascular diseases (CVDs) remain the leading cause of death worldwide. It is well appreciated that atherosclerosis represents the underlying cause of most CVDs [1]. Atherosclerosis is a chronic inflammatory disease that leads to the formation of atheromatous lesions in the vessel associated with increased recruitment, adhesion, and proliferation of different leukocyte subsets to the endothelium [1]. Several cardiovascular risk factors (CRFs) have been found to enhance the risk of CVD (Figure 1), including hypercholesterolemia (HC), diabetes mellitus (DM), hypertension, metabolic syndrome, obesity, and smoking [2]. Inflammation plays a crucial role in the development of CVDs and several studies have reported that CRFs enhance production of myeloid cells and multipotent hematopoietic progenitors in the bone marrow and in this way may promote atherosclerosis and disease development [3]. Y1 - 2019 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/77673 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-776735 SN - 0301-472X VL - 83.2020 SP - 95 EP - 104 PB - Elsevier CY - Amsterdam ER -