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1 Introduction 

Nitric oxide (NO), synthesized by the endothelial nitric oxide synthase (eNOS), is a major 

endothelium-derived factor that regulates the vascular tone. Its multiple roles include the 

regulation of vasomotion (Palmer et al., 1987), cell adhesion to the endothelium (Kubes et al., 

1991; Lefer et al., 1999), platelet aggregation (Radomski et al., 1991; Wolf et al., 1997) and 

vascular smooth muscle cell proliferation (Rudic et al., 1998). At first glance, this list 

suggests that NO is a crucial factor in the prevention of cardiovascular damage such as that 

seen in atherosclerosis, ischemia/repurfusion injury, thrombosis and hypertension. Indeed, the 

loss of endothelium-derived NO that underlies “endothelial dysfunction” is now thought to be 

a major cause of such pathological conditions which emphasizes the need to understand the 

mechanisms that regulate eNOS expression and activity.  

1.1 Role of endothelium in maintaining the tone of vasculature. 

The endothelium is a monolayer of polygonal flat epithelial cells (0.2-0.3 µm thick) that 

extends continuously over the luminal surface of the entire vasculature and could be 

considered as the largest endocrine organ within the human body. In different regions, the 

structural features vary with specificity. In brain, endothelial cell junctions are mainly tight 

while an intracellular cleft is wide open in liver to facilitate protein transport. The endothelial 

cells of the glomerulus have small oval windows called fenestrae so that small molecules, 

such as glucose and urea, can be filtered readily (Ostendorf et al., 1999). 

The biological functions of endothelium are numerous and vary according to the size and 

distribution of the blood vessel that it lines. The endothelium serves and participates in highly 

active metabolic and regulatory function including control of primary hemostasis, platelet and 

leukocyte interactions with the vessel wall, clot deposition, clot lysis and selective phagocytic 

activity (Luscher, 2001). Also, it interacts with the lipoprotein metabolism and presentation of 

histocompatibility antigens. A plethora of bioactive molecules are produced by the 

endothelium (Garcia-Cardena et al., 2001) that can be mutually antagonistic. Many protein 

growth factors, matrix supporting proteins and vasoactive substances are produced by the 

endothelium, highlighting the fact that the functions of the vascular endothelium are dynamic 

rather than fixed. Immune complexes, lipids, angioplasty, germs, hypertension, shear stress, 

hypoxia, acidosis, smoking, aging, diabetes mellitus and surgery inflict injury to the 

endothelium causes its activation.  
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1.2 Endothelium-derived vasoactive factors 

In 1980 Furchgott and Zawadzki reported the existence of a non-prostanoid endothelium-

derived relaxing factor (EDRF) (Furchgott & Zawadzki, 1980). The term EDRF was coined 

to account for the finding that upon stimulation with acetylcholine the endothelium releases a 

relaxing factor. In 1987 pharmacological and chemical evidence indicated that EDRF is 

identical to, or closely related to, NO (Ignarro et al., 1987). At the same time it was found that 

the EDRF/NO released by endothelial cells is a potent inhibitor of platelet aggregation and 

adhesion to the vascular wall. The effect was found to be mediated by the stimulation of 

soluble guanylyl cyclase in the platelets (Busse et al., 1987; Palmer et al., 1987). While NO is 

the predominant vasodilator, acting through the stimulation of the soluble guanylate cyclase 

in the smooth muscle cells, other substances are also important. Prostacyclin, similar to NO, is 

a potent vasodilator (Moncada & Vane, 1980; Moncada & Vane, 1981). The endothelium-

derived hyperpolarizing factor (EDHF), another diffusible factor, was found to cause 

endothelium-dependent relaxation via a mechanism related to the hyperpolarization of smooth 

muscle cells (Busse et al., 1987). On the other hand, several endothelium-derived prostanoids, 

such as thromboxane A2, cause vasoconstriction and promote platelet aggregation. 

Endothelin-1 is a peptide produced by endothelial cells with powerful vasoconstriction 

property. The endothelium-derived free radical superoxide (O2
-) promotes vasoconstriction by 

scavenging NO (Fig. 1). 

1.3 Importance of NO as a normal regulator of blood pressure  

Substances of non-endothelial origin such as angiotensin and norepinephrine, were previously 

considered to be the major determinants of vascular tone. However, physiological studies 

using inhibitors of NO synthase (NOS) have indicated a primary role for endothelium-derived 

NO in regulating vascular tone. Intravenous administration of NOS inhibitors, such as mono-

methyl arginine, to animals (Aisaka et al., 1989; Rees et al., 1989; Whittle et al., 1989) or 

humans (Vallance et al., 1989a; Vallance et al., 1989b) provokes a rapid and marked increase 

in vascular resistance. In fact, NOS inhibitors cause a more notable increase in blood pressure 

than do drugs that influence the action of norepinephrine or angiotensin.  

1.4 Endothelial dysfunction in cardiovascular disease 

The endothelium contributes to cardiovascular homeostasis in health and disease (Luscher & 

Noll, 1995; Rubanyi, 1991). Due to its location at the interface between vessel wall and 

circulating blood, this cell layer is the primary target for mechanical forces and cardiovascular 

risk factors. Impairment of endothelial function occurs before structural changes such as 
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intimal hyperplasia or lipid deposition. Therefore, endothelial dysfunction is an upstream 

event in the pathophysiology of cardiovascular disease. Endothelial dysfunction is 

characterized by attenuated endothelium-dependent vascular responses, and decreased 

expression or activity of eNOS. Also there is an enhanced expression of a number of pro-

inflammatory proteins. There are several different mechanisms contributing to endothelial 

dysfunction, including NO scavenging by O2
- and eNOS uncoupling; a state of eNOS where 

the transfer of electrons is no longer coupled to NO formation. O2
- is generated within 

atheromatous plaques by vascular smooth muscle cells, endothelial cells, neutrophils or 

macrophages. The potential source of O2
- includes NADPH oxidase, xanthine oxidase and 

interestingly enough, eNOS that has been uncoupled. Uncoupling of eNOS occurs under 

conditions of substrate (L-arginine) depletion (Xia et al., 1996) and limitation of the essential 

co-factor tetrahydrobiopterin (H4B) (Xia et al., 1998).  

 

Figure 1. Products of the endothelium and their effect. Vasoactive products from the endothelium act 
both in the lumen of the blood vessel and the vascular smooth muscle cells. In the lumen they are 
responsible for hemostasis by releasing pro- or anti-thrombotic factors and inflammation. In the 
vascular wall they stimulate vascular growth, influence vascular permeability and maintain vascular 
tone.  
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Alterations in the production and/or availability of NO are accepted as a major factor in the 

development of cardiovascular disease (Warnholtz et al., 2004), such as atherosclerosis 

(Kawashima, 2004), hypercholesterolemia (Stehbens, 2001), ischemia/repurfusion injury 

(Szocs, 2004), thrombosis (Voetsch et al., 2004) and hypertension (Lassegue & Griendling, 

2004). The understanding of the molecular, biochemical and cellular mechanisms that 

regulate eNOS activity and the chemistry behind NO and its adducts is therefore essential for 

identifying and developing new approaches for the treatment of endothelial dysfunction. 

1.5 Nitric oxide 

Nitric oxide is a small diatomic gaseous molecule with an unpaired electron, which makes it a 

free radical with a fairly short half-life. The hydrophobic nature of NO together with a small 

molecule size enables it to diffuse rapidly across cell membranes and depending upon the 

conditions, it is able to diffuse distances of more that several hundred microns. These 

properties make NO uniquely suitable as both an intra- and intercellular messenger. The 

unpaired electron of NO
 
makes the molecule a potent reducing substance which reacts readily 

with biological targets such as heme groups, sulfhydryl groups, iron and zinc clusters, which 

in turn mediate its biological effects. Such a diverse range of potential targets for NO explains 

its importance as a regulatory molecule. 

Effectors of NO 

Once NO is produced by the endothelium, it can regulate several aspects of the vascular 

function. Its primary “receptor” is the soluble guanylyl cyclase (sGC), but it can also initiate 

nitrosation reactions with iron-sulphur-centred proteins or proteins with reactive thiols (S-

nitrosylation). Nitrosylation of caspase-3 and caspase-8 inactivates the proteins, leading to 

inhibition of apoptosis (Stamler et al., 2001). 

In the vascular system, NO- dependent relaxation of vascular smooth muscle is predominantly 

sGC- and protein kinase G- (PKG) dependent, whereas the anti-proliferative actions and ion 

channel modulation of NO can occur via PKG or via nitrosation reactions (Feil et al., 2003; 

Matalon et al., 2003; Miranda et al., 2003). 

NO has the capacity to interact with a variety of enzymes, thereby altering their function and 

influencing inflammatory (and other) reactions. For example, NO can inhibit many iron-

containing enzyme functions, including mitochondrial electron transfer (Beckman & 

Koppenol, 1996), which may contribute to the tumoricidal activity of macrophages. In 

micromolar concentrations, NO can reversibly inhibit cytochrome P-450 (Palacios-Callender 

et al., 2004). NO has also been shown to interact with cycclooxygenase, another heme-
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containing enzyme, resulting in an increase in its activity (Salvemini et al., 1993). NO has 

been shown to inhibit inducible NOS (iNOS) expression (Cirino et al., 1996), as NOS is also 

a heme-containing enzyme, it is possible that NO may interact with the enzyme(s) that 

generate it. S-nitrosylation of the eNOS is associated with enzyme monomerisation and 

decreased enzyme activity (Ravi et al., 2004).  

At micromolar concentrations, NO can inhibit ribonucleotide reductase, an enzyme critical for 

the synthesis of DNA precursors (Beckman & Koppenol, 1996; Moncada & Higgs, 1995). It 

can also inhibit transcriptional events by inhibiting the transcription factor NF-kB 

(Katsuyama et al., 1998). This has been suggested to be an important mechanism underlying 

the anti-inflammatory actions of some NO-releasing drugs (Fiorucci et al., 2002). 

Because of these powerful functions, the production of this pivotal mediator is tightly 

regulated and there is ample literature to show that too little or too much NO production 

contributes to numerous human diseases and disorders. Decreased NO generation in the penis, 

for example, results in impotence. On the other hand, many other diseases and conditions 

such as intradialytic hypotension, hemorrhagic shock, tissue rejection, rheumatoid arthritis, 

and diabetes are associated with the overproduction of NO by activated immunocompetent 

cells. 

1.6 Nitric oxide synthases 

Nitric oxide is produced by a family of homodimeric NO synthases (NOS), which catalyse the 

conversion of L-arginine to NO and L-citrulline. To date, three genetically distinct NOS 

isoforms have been identified, neuronal NOS (nNOS, NOS-I) originally isolated from 

cerebellum (Bredt & Snyder, 1990), inducible NOS (iNOS, NOS-II) from macrophages (Xie 

et al., 1992), and endothelial NOS (eNOS, NOS-III) from endothelial cells (Pollock et al., 

1991). All of the NOS isoforms share an overall 50% amino acid sequence homology and 

have similar co-factor requirements. Each NOS monomer contains an N-terminal oxygenase 

domain with a binding site for the substrate L-arginine, H4B, Ca2+/calmodulin (CaM), and 

Zn2+, as well as a C-terminal reductase domain with one binding site each for flavin adenine 

dinucleotide (FAD), flavin mononucleotide (FMN), and reduced form of nicotinamide 

adenine dinucleotide phosphate (NADPH) as electron donor. The reductase domain 

terminates in a C-terminal tail, which contains an autoinhibitory sequence. Both the reductase 

and oxygenase domain are linked by a short CaM-binding domain. In order to synthesize NO 

the electrons flow from the reductase domain of one monomer to the oxygenase domain of the 
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other (Fig. 2), a phenomenon called “domain swapping” (Panda et al., 2001; Siddhanta et al., 

1998; Siddhanta et al., 1996). 

Figure 2. Domain structure of the human eNOS, nNOS and iNOS isoforms. The PDZ, oxygenase 
and reductase domains are denoted by solid structures and the amino acid residue number at the 
start/end of each domain is shown. The myristoylation (Myr) G2 and palmitoylation (Palm) C15 and 
C26 sites on eNOS are shown, as is the location of the zinc-ligating cysteines (Zn). The autoinhibitory 
loops (red) within the FMN regions and the carboxyl end of nNOS and eNOS are also shown and the 
dimer interface in the oxygenase domain is indicated by grey bars. Abbreviations: PDZ, Post Synaptic 
Density protein -95 discs large/ZO-1 homology domain; Arg, arginine; H4B, tetrahydrobiopterin; 
CaM, calmodulin; FMN, flavin mononucleotide; FAD, flavine- adenine dinucleotide; NADPH, 
nicotinamide adenine dinucleotide phosphate; Zn, zinc. 

 

Only nNOS and eNOS are constitutively expressed predominantly in neurons and skeletal 

muscle or endothelial cells, respectively. Both the isforms are activated by agonist-induced 

elevation of the intracellular free Ca2+ concentration with subsequent binding of Ca2+/CaM to 

NOS (Venema et al., 1996a), and hence are also referred to as calcium- dependent NOS 

enzymes. The constitutive isoforms also differ form iNOS in having an auto-inhibitory insert 

in FMN binding site in the reductase domain. In contrast, iNOS is regulated predominantly at 

the transcriptional level by endotoxins and cytokines in macrophages, hepatocytes, and 

vascular smooth muscle cells (Nathan, 1997), and binds CaM with high affinity rendering it 

active at the Ca2+ level of a resting cell (Ruan et al., 1996) (Fig. 3A).  

Additional regulatory mechanisms which have been proposed to regulate NOS include, 

protein-protein interactions, subcellular localisation of the enzymes, acylation, changes in L-

arginine availability which is determined by arginase activity, phosphorylation (Fleming & 
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Busse, 2003; Michel & Feron, 1997), and enzyme monomerisation (Bommel et al., 1998; Reif 

et al., 1999).  

 

Figure 3. Activation of NOS and biosynthesis pathway of nitric oxide (NO) from L-arginine. (A) 
Conversion of L-arginine to L-citrulline by the NOS isoforms eNOS, nNOS and iNOS. eNOS and 
nNOS are constitutively expressed, are Ca2+ dependent and activation is receptor-mediated, while 
iNOS is cytokine-inducible and is Ca2+ independent. (B) eNOS catalyzes a 5 electron oxidation of 
guanidino nitrogen of  L-arginine to L-citrulline and NO·. Nω-Hydroxy-L-arginine is formed as an 
intermediate that is tightly bound to the enzyme. The reaction consumes 2 mol of O2 and 1.5 mol of 
reduced nicotinamine adenine dinucleotide phosphate (NADPH) per mole of NO· formed and 
requiring calcium (Ca), calmodulin (CaM) and tetrahydrobiopterin (H4B) as co-factors. 
Abbreviations: VEGF, vascular endothelial growth factor; S1P, spingosine-1-phosphate; IL-1, 
interleukin-1; gIFN, interferon-gamma; TNF, tumour necrosis factor; and LPS, lipopolysaccharide. 

 

1.6.1 Mechanism of NO biosynthesis 

NOS hydroxylates a guanidino nitrogen of L-arginine and then oxidizes the Nω-hydroxy-L-

arginine intermediate (NOHA) to NO and L-citrulline (Fig. 3B). The NOS reductase 

(flavoprotein) domain first provides an electron (derived from NADPH) to the ferric heme in 

the oxygenase domain (Fig. 4). This is the slowest step of the biosynthetic reaction, and 

enables formation of a ferric heme-superoxy species (S I) in the L-arginine or NOHA 

reactions (Wei et al., 2003c). Species I (S I) is not reactive toward L-arginine but may (Huang 

et al., 2001) or may not (Wei et al., 2003c) be reactive toward NOHA. Species I can receive 

an electron from H4B (Wei et al., 2003b) or from the flavoprotein domain when H4B is absent 
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(Rusche et al., 1998). The electron transfer from H4B is the second, slowest step in the 

biosynthetic reaction and its kinetics are influenced by surrounding protein residues and by 

the pterin structure itself (Wang et al., 2002; Wei et al., 2003b). Timely electron transfer from 

H4B prevents O2
- release (Fig. 4). The heme-peroxo species (S II) has only been observed in 

NOS at cryogenic temperatures (Davydov et al., 2002) and may become protonated and lose 

water to form a heme iron-oxo species (S III) (Fig. 4) that either hydroxylates L-arginine or 

may react directly with NOHA (Fig. 3). Importantly, the first product observed of NOS 

catalysis is a ferric heme-NO complex and not free NO (Negrerie et al., 1999; Scheele et al., 

1999; Wei et al., 2003c) (Fig. 4) as practically all NO binds to NOS ferric heme before 

exiting the enzyme. The reductase domain then reduces the ferric heme-NO complex to 

ferrous heme-NO species resulting in a slow release of NO. 

 

Figure 4. Mechanism for NO biosynthesis. Mechanism of oxygen activation by the NOS heme and 
NO synthesis. The ferric heme first receives an electron from the FMN hydroquinone (FMNH2) that is 
located in the NOS flavoprotein domain. This enables dioxygen to bind, forming the ferric-superoxy 
species (S I). This species then receives an electron from tetrahydrobiopterin (H4B) to generate heme 
peroxo (S II) and perferryl (S III) species that are thought to react with L-arginine (1 reaction) or 
NOHA (2nd reaction) to generate NO. Modified from Stuehr et al J Biol Chem 2004; 279:36167-
36170. 
 

After NO biosynthesis two different cycles compete: NO dissociation from the ferric heme 

(dissociation constant; kd) is required for a “productive cycle” that releases NO and is 

essential for NOS bioactivity. Conversely, reduction of the ferric heme-NO complex 

(reduction constant; kr’) channels the enzyme into a “futile cycle” that ultimately generates 

nitrate in place of NO. NOS futile cycling is also influenced by the rate at which O2 reacts 

with the ferrous heme-NO species (kox in Fig. 5). Together, the productive and futile cycles 

S I S II S IIIS I S II S III
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create a global kinetic mechanism for NOS catalysis. A NOS must also control partitioning 

between both cycles by balancing heme reduction (kr, kr’) and NO dissociation (kd) if it is to 

release the NO that it makes. For example, the specific activities of the three mammalian 

NOSs are of rank order iNOS > nNOS > eNOS, with nNOS activity being four times that of 

eNOS. But if one considers their actual rates of NO biosynthesis (the speed at which each 

NOS makes one NO) it is clear that nNOS is at least twice as fast as iNOS and about 30 times 

faster than eNOS (Stuehr et al., 2004). This discrepancy is explained by the global kinetic 

model and the different enzyme distribution pattern of each of NOS in the steady state 

(Santolini et al., 2001). 

 

Figure.5. Global kinetic model for NOS. Ferric enzyme reduction (kr) is rate-limiting for the 
biosynthetic reactions (central linear portion). kcat1 and kcat2 are the conversion rates of the FeIIO2 
species to products in the L-arginine and NOHA reactions, respectively. The ferric heme-NO product 
complex (FeIIINO) can either release NO (kd) or become reduced (kr’) to a ferrous heme-NO complex 
(FeIINO) which reacts with O2 (kox) to regenerate ferric enzyme. Modified from Stuehr et al J Biol 
Chem 2004;279:36167-36170. 

 

1.6.2 Substrate and cofactor requirement 

All NOS enzymes require NADPH, FAD, FMN and H4B as cofactors and L-arginine as 

substrate. Deficiency of L-arginine and H4B has be reported for conditions of 

hypercholesterolemia, atherosclerosis and diabetes (Busse & Fleming, 1996; Stroes et al., 

1997). 

 

FeIII FeII
kr
e-

O2

kcat1
Arg

NOHAk
cat2

FeIIO2 FeIIINO

FeIINO

kr ´e-

NO

extremely
slow

O2

NO3
-

Futile cycle

NO

kdProductive cycle

kox

FeIII FeII
kr
e-

O2

kcat1
Arg

NOHAk
cat2

FeIIO2 FeIIINO

FeIINO

kr ´e-

NO

extremely
slow

O2

NO3
-

Futile cycle

NO

kdProductive cycle

FeIII FeII
kr
e-

O2

kcat1
Arg

NOHAk
cat2

FeIIO2 FeIIINO

FeIINO

kr ´e-

NO

extremely
slow

O2

NO3
-

FeIII FeII
kr
e-

O2

kcat1
Arg

NOHAk
cat2

FeIIO2 FeIIINO

FeIINO

kr ´e-

NO

extremely
slow

O2

NO3
-

Futile cycleFutile cycle

NO

kdProductive cycle

NO

kdProductive cycle

kox



Introduction 

 10

H4B 

Tetrahydrobiopterin is a critical co-factor of NOS. It acts as a redox factor and also helps in 

the dimerisation of eNOS. H4B deficiency leads to eNOS uncoupling, and H4B 

supplementation restores endothelial function. During NO biosynthesis the delivery of the 

second electron to the heme has to be rapid enough for the enzyme to generate the heme-oxy 

species that will react with Arg or NOHA before auto-oxidation of ferric-superoxy species I 

occurs. NOS solves this dilemma by utilizing H4B as a source of the second electron. H4B 

delivers the second electron about 3 to 30 times faster than can the NOS reductase domain, 

and this difference is sufficient to minimise O2
- release from the heme and so enable coupled 

oxygen activation (Wang et al., 2002; Wei et al., 2003a). H4B exhibits a range of allosteric 

and structural effects, presumably resulting from binding of the pterin in the dimer interface 

in close proximity to the heme and substrate binding site (Crane et al., 1998; Raman et al., 

1998). 

1.7 Regulation of eNOS 

Since eNOS is constitutively expressed its activity is regulated by complex post-translational 

modifications, protein-protein interactions, subcellular localisation, changes in substrate 

availability which is determined by arginase activity, phosphorylation (Fleming & Busse, 

2003; Michel & Feron, 1997), and enzyme monomerisation (Bommel et al., 1998; Reif et al., 

1999). 

1.7.1 Intracellular localisation  

Myristoylation and palmitoylation 

Of the three NOS isoforms, only eNOS is both myristoylated and palmitoylated. eNOS is co-

translationally and irreversibly myristoylated at the N-terminal glycine residue Gly2, when the 

methionine corresponding to the translational initiation codon is removed by a specific 

aminopeptidase, exposing glycine at the N-terminus. The mutation of Gly2 to Ala converts 

eNOS from a membrane- associated to a cytosolic enzyme (Pollock et al., 1992; Sessa et al., 

1993), without affecting the activity of the enzyme. Myristoylation may not be the only 

mechanism responsible for the membrane attachment of eNOS. Indeed, many myristoylated 

proteins are cytosolic (Towler et al., 1988). Purified wild-type eNOS binds to pure anionic 

phospholipid vesicles but not to neutral phospholipid vesicles, demonstrating that eNOS 

attachment to lipid bilayers requires electrostatic as well as hydrophobic interactions. 

Palmitoylation occurs post-translationally and reversibly at cysteine residues Cys15 and Cys26 

(Prabhakar et al., 2000). Dual acylation of eNOS is required for efficient localisation to the 
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plasmalemmal caveolae of endothelial cells (Garcia-Cardena et al., 1996b). It has been 

suggested that palmitoylation is dynamically regulated by agonists such as bradykinin (Feron 

et al., 1998). This is highly controversial as mutational studies to disrupt palmitoylation on 

eNOS did not significantly alter its membrane association. Additionally, [3H] palmitic acid 

was not incorporated into nonmyristoylated mutant eNOS, suggesting that myristoylation is 

necessary for subsequent palmitoylation of the enzyme (Liu et al., 1995). The available 

literature imply that palmitoylation does not play a major role in membrane association of 

eNOS.  

The localisation of eNOS is well studied and described but controversy on the importance of 

changes of intracellular localisation still exists. eNOS is localised by virtue of its 

myristoylation and palmitoylation in the plasma membranes (Hecker et al., 1994), caveolae 

(Garcia-Cardena et al., 1996b; Liu et al., 1996a), the perinuclear Golgi apparatus (Liu et al., 

1997; O'Brien et al., 1995; Sessa et al., 1995), and there are even some reports of eNOS in the 

nucleus (Feng et al., 1999; Giordano et al., 2002; McNaughton et al., 2002). The 

immunostaining of native endothelial cells reveals predominant association with the plasma 

membrane and the Golgi apparatus (Fulton et al., 2002). eNOS is also reported to shuttle 

between these two pools and although this was initially attributed to a rapid depalmitoylation 

of the enzyme (Robinson et al., 1995), the exact mechanism(s) involved still remain to be 

clarified (Liu et al., 1995). A fast translocation of eNOS from the vicinity of caveolin to other 

cell compartments in response to acute agonist stimulation has however been reported by 

several groups (Prabhakar et al., 1998; Reiner et al., 2001; Robinson et al., 1995) and may be 

mediated by a dynamin-dependent process (Chatterjee et al., 2003). Certainly, movement 

away from plasma membrane-bound signalling molecules may regulate NO output and the 

“mislocalisation” of eNOS has been suggested to contribute to the vascular complications 

associated with angiotensin II-induced hypertension (Gerzanich et al., 2003). In which 

fraction eNOS is active in unstimulated cells and can account for the basal production of NO 

is also controversial, since the eNOS in caveolae is thought to be mostly inactive and 

disruption of the Golgi apparatus in rabbit carotid arteries failed to affect NO-mediated 

relaxation (Bauersachs et al., 1997). Attenuating the association of eNOS with the plasma 

membrane by the disruption of caveolae using β-cyclodextrin, ox-LDL (Blair et al., 1999; 

Feron et al., 1999) or cyclosporin A (Lungu et al., 2004) are all reported to affect the 

intracellular localisation of eNOS. However, these changes are generally associated with a 

decrease rather than an increase in NO production. It follows that any change in intracellular 

localisation of eNOS will be associated with changes in the eNOS signalling complex and 
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while caveolin-1 can associate with eNOS in caveolae, the two proteins are localised to 

distinct perinuclear compartments (Govers et al., 2002b). Endothelial cells treated with 

nocodazole, a microtubule-depolymerising drug scattered the Golgi complex and caveolin-1 

was found in vesicles at the periphery of the cell, while eNOS is localised at large structures 

near the nucleus suggesting that eNOS activity is not regulated by caveolin-1 in the Golgi 

complex (Govers et al., 2002b). Recent studies to determine the intracellular site, which 

contains an active and agonist-stimulatable pool of eNOS, targeted eNOS to specific 

intracellular compartments. eNOS constructs that targeted to the plasma membrane were 

found to be constitutively active, phosphorylated and to respond to changes in Ca2+ but were 

largely unresponsive to activation by the kinase Akt, while eNOS in the Golgi complex was 

less sensitive to Ca2+ but sensitive to Akt-dependent phosphorylation (Fulton et al., 2004). 

These and other observations suggest that the intracellular localisation of eNOS determines its 

sensitivity to changes in intracellular Ca2+ levels as well as its susceptibility to 

phosphorylation by different kinases (Gonzalez et al., 2002). 

1.7.2 Regulation by eNOS-associated proteins 

It has been clear for quite a few years that eNOS is part of a protein complex with caveolin-1, 

CaM and heat shock protein 90 (Hsp90) and that the composition of the “eNOS signalosome” 

has profound effects on the intracellular localisation and activity of eNOS. Several of the 

eNOS associated proteins are kinases or phosphatases, which reflects the importance of 

phosphorylation in the regulation of eNOS activity.  

Negative regulatory associated proteins  

Caveolin 

Caveolae are flask-shaped invaginations of the plasma membrane occupying up to 30% of 

cell surface in capillaries (Garcia-Cardena et al., 1996b), but considerably less in cultured 

endothelial cells. They harbour a variety of signalling molecules such as the bradykinin 2 (B2) 

receptor, epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) receptors, 

mitogen-activated protein (MAP) kinases, Src family non-receptor tyrosine kinases, G 

proteins, PKC, cationic arginine transporter-1; class B, type I scavenger receptor for high-

density lipoprotein, H-Ras, Ca2+ ATPases and inositol 1,4,5 triphosphate-dependent Ca2+ 

channels, among others (Lisanti et al., 1994; Liu et al., 1996b; Parton, 1996). The chief 

structural components of caveolae are cholesterol and structural proteins, such as the 

caveolins (caveolin-1, -2 and -3). Caveolin-1 is abundant in endothelial cells and its hairpin 

structure can be attributed to the inclusion of a 33-residue membrane-spanning region 
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between the N- and C-terminal cytosolic domains. The scaffolding domain, a component of 

the C-terminal membrane proximal segment, (amino acids 61-101) is responsible for the 

presence of a number of signal proteins in caveolae. The incubation of eNOS with peptides 

derived from the scaffolding domains of caveolin-1 and -3 inhibits its enzymatic activity, an 

effect not observed following site-directed mutagenesis of the predicted caveolin binding 

motif (Garcia-Cardena et al., 1997). A similar modulation of eNOS activity by this peptide 

has also been demonstrated in vivo and a chimeric peptide with a cellular internalisation 

sequence fused to the caveolin-1 scaffolding domain has been shown to selectively inhibit 

acetylcholine-induced, NO-mediated relaxation (Bucci et al., 2000). That the association of 

eNOS with caveolins (Garcia-Cardena et al., 1997) inhibits its activity can also account for 

the reports that the basal activity of eNOS is enhanced in mice deficient in either caveolin-1 

or caveolin-3 (Drab et al., 2001; Razani et al., 2001). 

G protein-coupled receptors  

Multiple G protein-coupled receptors resident in caveolae have been reported to contribute to 

the eNOS-membrane complex and regulate eNOS activity. The intracellular domain (ID) of 

G-protein coupled receptors, such as ID4 of the bradykinin 2 (B2), the angiotensin II R1 and 

the endothelin-1 ETB receptors can negatively regulate eNOS activity (Golser et al., 2000; Ju 

et al., 1998; Marrero et al., 1999). Co-immunoprecipitation and in vitro binding assays have 

indicated that the bradykinin B2 receptor, via its COOH-terminal ID4 (amino acids 310–329), 

interacts with eNOS in a ligand- and Ca2+-dependent manner. On the basis of this evidence it 

was suggested that in the resting state, the receptor docks with eNOS in the caveolar 

membrane and participates in its inactivation. Stimulation of endothelial cells with bradykinin 

or Ca2+ ionophore would then trigger dissociation of the eNOS-B2 receptor complex and 

activate eNOS (Ju et al., 1998). The sites of binding to eNOS and the mechanisms by which 

the bradykinin B2 receptor and caveolin-1 inhibit eNOS are suggested to be distinct (Ju et al., 

1998). Phosphorylation of serine or tyrosine residues in the eNOS-interacting region of the 

bradykinin B2 receptor decreases the binding affinity of the receptor domain for the eNOS 

enzyme and relieves eNOS inhibition (Marrero et al., 1999; Venema et al., 1996b). 

Furthermore, bradykinin-induced tyrosine phosphorylation of the bradykinin B2 receptor in 

cultured endothelial cells appears to promote a transient dissociation of eNOS from the 

receptor, accompanied by a transient increase in NO production. Mechanistically, the ID4 

peptide has been shown to affect NOS catalysis by interference with the electron transfer from 

the flavins in the reductase domain to the heme in the oxygenase domain (Golser et al., 2000; 

Marrero et al., 1999). Indeed, G protein-coupled receptors have been suggested to participate 
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in the complex regulation of eNOS activity in endothelial cells and that these interactions are 

regulated by receptor phosphorylation (Marrero et al., 1999). 

Despite the claims of an interaction between eNOS and G protein-coupled receptors, perhaps 

the data need to be reassessed in more in vivo oriented models. Certainly, the bradykinin B2 

receptor, which has been the focus of much of this work, is not normally found in caveolae. 

However, the bradykinin B2 receptor is sequestered into the caveolae in response to cell 

stimulation and leads to receptor desensitisation (Benzing et al., 1999; Lamb et al., 2001). 

Moreover, there are vast differences in the characteristics of caveolae in native and primary 

cultures of endothelial cells. Since much of the work on the eNOS signalosome and caveolae 

has been obtained using multiple-passaged cells and overexpressing systems, it seems clear 

that some of the “physical interactions” reported in the literature actually reflect artefacts 

associated with in vitro models. 

Positive regulatory associating proteins  

Calmodulin  

Calmodulin (CaM) is an ubiquitous, Ca2+-binding protein and was the first protein shown to 

be involved in eNOS regulation (Busse & Mülsch, 1990; Forstermann et al., 1991). 

Mechanistically, CaM binding to a 32 residue CaM binding motif can displace an adjacent 

autoinhibitory loop (Salerno et al., 1997) located in the FMN domain on eNOS leading to 

conformational changes (Daff et al., 2001; Siddhanta et al., 1996), thus facilitating NADPH-

dependent electron flux from the reductase domain of the protein through to the terminal 

electron acceptor heme in the oxygenase domain (Abu-Soud et al., 1994). The association of 

CaM with the CaM-binding domain within eNOS is determined by multiple molecular 

interactions (Knudsen et al., 2003; Salerno et al., 1997) as well as by the 

phosphorylation/dephosphorylation of Thr495 (Aoyagi et al., 2003; Fleming et al., 2001). 

However, other modifications such as the binding of Hsp90 and the phosphorylation of Ser1177 

have also been reported to affect the association of the two proteins (Gratton et al., 2000). 

More recently the phosphorylation of CaM by the kinase CK2 was found to attenuate its 

ability to activate eNOS (Greif et al., 2004). Deletion of CaM binding domain converts eNOS 

from a membrane-bound to a cytosolic protein when the enzyme is expressed in Sf9 cells 

(Venema et al., 1995). 
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Heat shock protein 90 (Hsp90)  

Hsp90 is a highly abundant cytosolic protein known to serve as a molecular chaperone and is 

responsible for the folding of proteins such as steroid receptors and cell cycle-dependent 

kinases (Caplan, 1999). Hsp90 is involved in the folding of nNOS and is reported to 

determine the insertion of heme into the immature protein (Billecke et al., 2002). In addition 

to this function, Hsp90 can also act as an integral part of numerous signal transduction 

cascades by virtue of its function as a scaffolding molecule.  

Hsp90 can associate with eNOS in resting endothelial cells and endothelial cell stimulation 

with vascular endothelial growth factor (VEGF), histamine, fluid shear stress, and estrogen all 

enhance the interaction between Hsp90 and eNOS at the same time as increasing NO 

production (Garcia-Cardena et al., 1998; Russell et al., 2000). The association of Hsp90 with 

eNOS appears to be determined by the agonist-stimulated tyrosine phosphorylation of Hsp90 

(Harris et al., 2000), but it is not clear whether this modification is also required for the 

recruitment of other proteins to the signalosome. Most of the kinases shown to phosphorylate 

eNOS on serine or threonine residues physically associate with the enzyme, either directly or 

via binding to Hsp90 (Fontana et al., 2002). Hsp90 also interacts with other chaperones and 

the Hsp90 co-factor; carboxyl terminus of Hsp70-interacting protein (CHIP), is reported to be 

part of the eNOS complex and to play a role in determining its intracellular localisation (Jiang 

et al., 2003). An enhanced association of eNOS and Hsp90 is thought to underlie adiponectin-

induced protection against angiotensin II- (Lin et al., 2004) and glucose-induced apoptosis 

(Lin et al., 2005) while an impaired association of eNOS with Hsp90 has been associated with 

various forms of hypertension (Murata et al., 2002; Shah et al., 1999). 

Soluble guanylyl cyclase (sGC) 

 The soluble guanylyl cyclase is the primary intracellular receptor for NO and was, until 

relatively recently, assumed to be a cytosolic enzyme. It now appears that a small proportion 

of the “soluble” guanylyl cyclase can become membrane-associated in a stimulus-dependent 

manner (Zabel et al., 1999). This translocation would bring eNOS and the sGC closer 

together, thereby increasing the effectiveness of NO signaling and reducing the possibility of 

inactivation of NO by intracellular O2
-. Not all the groups that have addressed this aspect of 

NO signaling have found any evidence suggesting a direct association between the eNOS and 

the sGC, however, the β subunit of sGC has been reported to associate with Hsp90 after 

agonist stimulation and therefore form part of the eNOS signalosome (Venema et al., 2003) 

(Fig. 6).  
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The list of eNOS-associated proteins is continually increasing, with recent additions being 

polymerised actin (Su et al., 2003), platelet endothelial cell adhesion molecule 1 (PECAM-1) 

(Govers et al., 2002a) and the voltage-dependent anion channel 1, VDAC1 or porin (Sun & 

Liao, 2002). 

 

Figure 6. Protein interaction of eNOS at caveolae. Myristoylation and palmitoylation of eNOS target 
it to the plasma membrane of caveolae. Interaction with caveolin inhibits eNOS activity where as 
stimulation promotes recruitment of Hsp90, Akt, dynamin, porin and Ca2+/CaM to eNOS increasing 
its activity. The interaction with CHIP, NOSTRIN and NOSIP seems to decrease the enzyme activity, 
while association of sGC has been reported to increase the effectiveness of NO signalling. 
Abbreviation: Hsp90, heat shock protein 90; Akt, protein kinase B; Dyn, dynamin; CaM, calmodulin; 
CHIP, carboxyl terminus of Hsp70-interacting protein; NOSTRIN, eNOS traffic inducer; NOSIP, 
eNOS interacting protein and sGC, soluble guanylyl cyclase.  
 

Interactions between caveolin, CaM, and Hsp90.  

CaM has been proposed to be exclusively responsible for the dissociation of eNOS from 

caveolin. Immunoprecipitation studies demonstrated the presence of eNOS, caveolin-1, and 

Hsp90 in the same complex (Gratton et al., 2000). Moreover, the addition of exogenous CaM 

weakly displaced caveolin from CaM. Interestingly, the binding of caveolin-1 to eNOS was 

displaced by the caveolin-1 scaffolding domain peptide, but not by Ca2+-activated CaM, 

demonstrating that CaM cannot physically disrupt the eNOS-caveolin-1 complex in vitro. 

Reconstitution of the heterotrimeric complex in vitro showed eNOS interaction with both 

Hsp90 and caveolin-1, but the latter proteins did not interact with each other, demonstrating 
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that eNOS was the bridge holding the complex together. However, Hsp90, per se, did not 

influence the eNOS/caveolin-1 interaction but facilitated the ability of CaM to displace 

caveolin-1 from eNOS. It has been proposed that perhaps the “recruitment or activation” of 

Hsp90 and CaM to eNOS results in weak physical displacement of eNOS from caveolin-1, 

but the complex remains in caveolae; or Hsp90 and Ca2+-activated CaM coexist with eNOS 

bound to caveolin-1, and a slight change in eNOS conformation in the absence of bulk 

translocation away from caveolin-1, allows for efficient stimulus-response coupling (Fulton et 

al., 2001). 

NOS trafficking 

Proper cellular localisation of eNOS is critical for optimal coupling of extracellular 

stimulation with NO production (Sakoda et al., 1995; Sessa et al., 1995). It has been 

suggested that redistribution of eNOS is one of the events flowing its activation. However, 

demonstrations that NO production is a more rapid process than enzyme relocation suggest 

that intracellular eNOS traffic plays a role in termination rather than initiating NO release. To 

ensure that eNOS is at the right place at the right time, there have to be protein-protein 

interactions that could help in the relocation of eNOS. Some of the proteins which have come 

to light and which can alter the intracellular compartmentalisation of eNOS are dynamin-2, 

NOSIP, NOSTRIN, and CHIP. 

Dynamin-2 

Dynamin-2 belongs to the family of large GTPases and is believed to be involved in vesicle 

formation, receptor-mediated endocytosis, and the internalisation of caveolae and vesicle 

trafficking in and out of the Golgi. Dynamin-2 has been shown by confocal microscopy to 

colocalise with eNOS in the plasma membrane and Golgi membranes of endothelial cells and 

to bind eNOS directly, both in vivo and in vitro (Cao et al., 2001). Specifically dynamin-2 

associates with the reductase domain of eNOS resulting in an increased flow of electrons from 

FAD to FMN, thereby increasing the enzyme activity (Cao et al., 2003; Cao et al., 2001). 

Interfering with the activity of dynamin-2 appears to deplete eNOS from caveolae (Chatterjee 

et al., 2003) in response to stimuli such as braykinin. In its function as a motor protein 

dynamin-2 has been hypothesised to shuttle eNOS between caveolae and the Golgi. However, 

it remains to be determined whether the dynamin-2-associated changes in the subcellular 

localisation or its direct binding to the eNOS protein exert the most pronounced effects on 

enzyme activity. 
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NOSIP 

NOSIP (eNOS interacting protein) is a 34-kDa protein, and is one of the more recent 

additions to the eNOS signalosome. Cotransfection of NOSIP in cells expressing eNOS has 

two major consequences, i.e., the displacement of eNOS from the plasma membrane and its 

relocation to intracellular compartments, and a decrease in eNOS activity (Dedio et al., 2001). 

The interaction between NOSIP and eNOS has been shown both in vitro and in vivo, and 

through deletion analysis, NOSIP was shown to bind eNOS between amino acids 366 and 

486. Stimulation of cells with calcium ionophore does not change the association of NOSIP 

and eNOS; however, a peptide derived from the scaffolding domain of caveolin (82–101) is 

able to displace eNOS from NOSIP. NOSIP does not affect eNOS activity assays in vitro but, 

when coexpressed in CHO cells, is reported to reduce ionomycin-stimulated NO release 

(Nedvetsky et al., 2002). NOSIP and eNOS are reported to be coexpressed in distinct cell 

types of the lung and the trachea, suggesting a functional role for NOSIP in regulating NO 

synthesis and delivery in the airway system (Konig et al., 2005). However physiological 

evidence for the interaction between eNOS and NOSIP is lacking. 

NOSTRIN 

NOSTRIN (eNOS traffic inducer), overexpressed in CHO cells, binds to eNOS (also 

overexpressed) and results in the relocation of eNOS from the plasma membrane and Golgi 

membranes to vesicle-like structures distributed throughout the cytosol (Zimmermann et al., 

2002). The translocation of eNOS, thereby strongly attenuates eNOS-dependent NO 

production. Inhibition of NO production in NOSTRIN- overexpressing cells may be the 

consequence of this redistribution of eNOS. Together with NOSIP, NOSTRIN seems to be a 

promising candidate for regulating the intracellular trafficking of eNOS and perhaps other 

proteins in the plasma membrane.  

CHIP 

CHIP (carboxyl terminus of Hsp70-interacting protein), a molecular chaperone remodels the 

Hsp90 heterocomplex (Connell et al., 2001) and causes protein degradation of some Hsp90 

substrates through the ubiquitin-protein isopeptide ligase activity of CHIP. In contrast, in 

transiently transfected COS cells, CHIP was found to incorporate into the eNOS·Hsp90 

complex and specifically decrease soluble eNOS levels. CHIP elicited the partitioning of 

eNOS to the detergent- insoluble cell compartment and impaired trafficking through the Golgi 

apparatus, which is otherwise required for trafficking of eNOS to the plasmalemma and 
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subsequent activation (Jiang et al., 2003). Taken together, it seems that CHIP may be a 

negative regulator of eNOS activity.  

1.7.3 Regulation by phosphorylation 

Phosphorylation is one of the post-translational mechanisms employed by the cellular 

machinery to regulate the activity of its enzymes. As eNOS is constitutively expressed, 

phosphorylation plays an important role in regulating the activity of the enzyme. eNOS can be 

phosphorylated on serine, threonine and tyrosine residues (Boo & Jo, 2003; Fleming et al., 

1998; Fleming & Busse, 2003) (Fig. 7A), leading to eNOS activation or inactivation. There 

are numerous putative phosphorylation sites, but the most extensively studied eNOS residues; 

the phospho-status of which determines enzyme activity are a serine residue (human eNOS 

sequence: Ser1177; bovine sequence Ser1179) in the reductase domain, which positively 

regulates NO production, and a threonine residue (human eNOS sequence: Thr495; bovine 

sequence Thr497) within the CaM-binding domain (Fig. 8). The various kinases reported to be 

involved in the phosphorylation of eNOS following cell activation by different stimuli are 

shown in figure 9.  
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Figure 7. Effect of fluid shear stress on serine, threonine and tyrosine phosphorylation of eNOS. 
(A) eNOS was immunoprecipated from ³²P-labelled porcine aortic endothelial cells either maintained 
under static condition or exposed to shear stress (12 dynes cm-², for 2 and 5 min), and subjected to 
two dimensional phospho amino acid analysis. (B) Densitometric analysis of phosphoserine, P-S; 
phosphothreonine, P-T; and phosphotyrosine P-Y with respect to control. Pi, inorganic phosphate 
(from Fisslthaler et al, Acta Physiol Scand.2000; 168: 81– 88).  
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Figure 8. Scheme showing eNOS (human sequence) ligand binding domain and potentially 
phosphorylable amino acids. Phosphorylation of the serine residues, Ser1177 and Ser633 in the 
reductase domain positively regulate enzymatic activity, while phosphorylation at threonine Thr495, in 
the Ca/CaM binding domain and Ser114 near the Zn2+ binding domain lead to a decrease in NO 
production.  
 

Ser1177  

The C-terminal reductase domain of eNOS terminates in a α-helix which contains a terminal 

Ser1177. In unstimulated, cultured endothelial cells, Ser1177 is not phosphorylated but is rapidly 

phosphorylated upon agonist stimulation with compounds such as bradykinin (Fleming et al., 

2001), estrogen (Haynes et al., 2000), VEGF (Fulton et al., 1999; Michell et al., 2001) or 

insulin (Kim et al., 2001) and mechanical stimuli such as fluid shear stress (Boo & Jo, 2003; 

Dimmeler et al., 1999; Fissithaler et al., 2000; Gallis et al., 1999). The phosphorylation of 

eNOS Ser1177 enhances the activity of the enzyme and alters its Ca2+ sensitivity to increase 

NO production 2- to 3-fold above basal levels, an effect that can be attributed to an increase in 

the flux of electrons through the reductase domain (McCabe et al., 2000). Mutation of this 

residue to a phosphomimetic aspartate (Dimmeler et al., 1999) or deletion of 27 amino acids 

containing Ser1177 at the C-terminal tail (Lane & Gross, 2002) renders the mutant eNOS active 

at resting levels of intracellular Ca2+.  
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 Figure 9. Kinases involved in the phosphorylation of known amino acid residues influencing eNOS 
activity. Physiological stimuli such as VEGF, S1P, estrogen, bradykinin and fluid shear stress can 
activate various signalling pathways leading to the activation of eNOS. Ser1177 is known to be 
phosphorylated by Akt, PKA, CaMKII, ERK1/2, PKG and AMPK, Ser615 by Akt and Ser633 by PKA. 
Phosphorylation on Thr495 and Ser114 is mediated by PKC. Abbreviations: VEGF, vascular endothelial 
growth factor; S1P, sphingosine 1-phosphate; PKA, protein kinase A; Akt, protein kinase B; CaMKII, 
CaM kinaseII; PKC, protein kinase C; AMPK, AMP activated protein kinase; PKG, cGMP-dependent 
protein kinase; ERK1/2; extracellular signal-regulated kinase 1/2. 

 

Based on the stimuli applied, various kinases are involved in the phosphorylation of Ser1177. 

For example, while shear stress elicits the phosphorylation of Ser1177 by activating Akt and 

PKA, insulin, estrogen and VEGF mainly phosphorylate eNOS in endothelial cells via Akt. 

The bradykinin-, Ca2+ ionophore- and thapsigargin-induced phosphorylation of Ser1177, on the 

other hand, is mediated by CaMKII (Fleming et al., 2001; Schneider et al., 2003). Recent 

biochemical and crystallography data on the structure of the reductase domain of NOS has 

explained the mechanism involved in the inhibitory effect of Ser1177. At the end of the C-

terminal-helix, the phosphorylatable Ser1177 is directed toward negatively charged FMN-

binding domain residues Gln685 (Gln in eNOS) and Asp587. This structure thus suggests a 

mechanism for phosphorylation-induced NOS activation by electrostatically- induced 

conformational changes (Garcin et al., 2004). 

Ser615  

This phosphorylation site is located within the autoinhibitory loop in the FMN binding 

domain. It was identified by phosphopeptide mapping and is reported to be phosphorylated by 

both PKA and Akt. Mimicking phosphorylation at Ser615 significantly increases the Ca2+-
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calmodulin sensitivity of eNOS but is not reported to alter maximal enzyme activity (Michell 

et al., 2002). However, Ser615 may be important in regulating phosphorylation at other sites as 

well as protein-protein interactions and the assembly of the eNOS signalosome (Bauer et al., 

2003). 

Ser633  

Ser633 is located within the auto-inhibitory loop in the FMN binding domain. This loop is 

thought to interact with the CaM binding domain and to interrupt the binding of CaM, thus 

throttling enzyme activity. Although Ser633 can be phosphorylated in vitro by PKA and PKG 

(Butt et al., 2000), the functional relevance of this observation was unclear and the limited 

experimental studies which initially compared the potential of phosphorylation on Ser1177 

versus Ser633 in regulating eNOS activity, concluded that Ser1177 played a major role in the 

regulation of NO production while either no Ser633 phosphorylation could be detected or no 

consequence of phosphorylation was evident (Dimmeler et al., 1999; Fulton et al., 1999). 

More recently it has been shown that Ser633 is most probably phosphorylated in vivo by PKA 

following cell stimulation by fluid shear stress, VEGF, bradykinin and 8-bromo-cAMP albeit 

with a slower time course of phosphorylation than that detected on Ser1177 and Thr495 (Boo et 

al., 2002; Michell et al., 2002). 

Ser114  

This residue is located in the oxygenase domain in close vicinity to Zn (Raman et al., 1998) 

and H4B (Li et al., 1999) binding sites. Although, bradykinin, lysophosphatidic acid (Kou et 

al., 2001) and fluid shear stress (Gallis et al., 1999) were initially reported to enhance Ser114 

phosphorylation but the consequences of Ser114 phosphorylation on endothelial NO 

production remains to be elucidated.  

Thr495  

The Thr495 was the first residue to be identified, which negatively regulates eNOS. Under 

basal conditions in all of the endothelial cells investigated to-date, Thr495 is constitutively 

phosphorylated resulting in a decrease in NO production (Fleming et al., 2001; Harris et al., 

2001; Michell et al., 2001). The link between phosphorylation and NO production can be 

explained by interference with the binding of CaM to the CaM-binding domain. Stimulation 

of endothelial cells with agonists, such as bradykinin, histamine or a Ca2+ ionophore, results 

in a transient dephosphorylation of Thr495 which facilitates the binding of CaM to eNOS 

(Fleming et al., 2001). Crystallographic analysis of CaM bound eNOS indicates that the 

phosphorylation of eNOS Thr495 not only causes electrostatic repulsion of nearby glutamate 
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residues (Glu7 and Glu127) within CaM but may also affect Glu498 within eNOS and thus 

induce a conformational change within the enzyme itself (Aoyagi et al., 2003). There is a 

good correlation between Thr495 dephosphorylation, Ser1177 phosphorylation and NO 

production when bradykinin is used as an agonist for NO production, suggesting that Thr495 

dephosphorylation is sufficient for eNOS activation(Harris et al., 2001; Michell et al., 2001; 

Michell et al., 2002) (Fig. 10). Recently the dephosphorylation of Thr495 has been linked to 

the production of O2
- by eNOS (Lin et al., 2003), however it remains to be determined 

whether this occurs in vivo and whether or not the actual cause of the uncoupling is a decrease 

in H4B and/or L-arginine availability as a consequence of prolonged activation of the enzyme.  

The constitutively active kinase which phosphorylates eNOS Thr495 is most probably PKC 

(Fleming et al., 2001; Matsubara et al., 1996; Michell et al., 2001), a finding which could 

account for the fact that protein kinase inhibitors and the down-regulation of PKC markedly 

increase endothelial NO production (Davda et al., 1994; Hirata et al., 1995). On the other 

hand amlodipine, which inhibits PKC activity in endothelial cells, is able to enhance NO 

production by attenuating eNOS Thr495 phosphorylation (Lenasi et al., 2003). It is not entirely 

clear which PKC isoform phosphorylates eNOS in native endothelial cells. Clearly the PKC 

in question should form part of the eNOS signalosome in unstimulated cells and be 

constitutively active as the PKC phosphorylation site is phosphorylated in unstimulated 

endothelial cells. To-date, PKC-α (Fleming et al., 2005), PKC-β and PKC-ε (Zhang et al., 

2005) have all been implicated in this process.  

PKC-β has received a lot of attention as the inhibition of this isoform is reported to prevent 

the hyperglycemia-induced attenuation of NO production (Chu & Bohlen, 2004), and to 

reverse endothelial function in animal models of diabetes (Hink et al., 2001) as well as in 

human subjects with type 2 diabetes (Beckman et al., 2002; Guzik et al., 2002). However, it 

remains to be determined whether the beneficial effects of PKC-β inhibition can be attributed 

to a direct effect on eNOS, to the generation of oxygen-derived free radicals or even to the 

generation of a vasoconstrictor compound (Cosentino et al., 2003; Lagaud et al., 2001). 
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Figure 10. Hypothesis for the activation of eNOS in response to the Ca2+- elevating agonist 
bradykinin. (A)  eNOS dimer showing electron flux between the two monomers and the phenomenon 
of domain swapping. (B) Under basal (unstimulated) conditions eNOS produces low amounts of NO· 
(see inset) but the binding of CaM to the enzyme is prevented by phosphorylation of Thr495 in the CaM 
binding domain (CBD). (C) In response to cell stimulation with bradykinin (Bk) there is an increase in 
[Ca²+]i and PP1 is activated to dephosphorylate Thr495. (D) CaM can now bind to the CBD and NO· 
production is increased markedly over basal levels. (E) At the same time, CaMKII is activated and 
phosphorylates Ser1177, which further enhances electron flux through the reductase domain and 
enzyme activity reaches a peak (F). (G) Dephoshorylation of Thr495 is transient and this residue is 
rapidly rephosphorylated after a decrease in [Ca2+]i, most probably by PKC. CaM dissociates and 
enzyme activity decreases. PP2A dephosphorylates Ser1177 and NO· output returns to basal levels (H). 
AL, auto-inhibitory loop, (from Fleming and Busse, Am.J.Physiol.Regul.Integr.Comp.Physiol.2003; 
284: R1–R12). 

 

Elucidating the consequences of eNOS phosphorylation on the sites identified to-date is 

complicated by the fact that “cooperation between multiple phosphorylation events” has been 

described and the mutation of the serine phosphorylation sites 114, 615, and 1177 to alanine 

affects the phosphorylation state of at least one other site (Bauer et al., 2003). 

 

Tyrosine  

Treatment of endothelial cells with inhibitors of tyrosine kinases as well as tyrosine 

phosphatases modulates the tyrosine phosphorylation of eNOS and endothelial NO production 

(Fleming et al., 1996a; Fleming et al., 1998; Takenouchi et al., 2004). There is almost nothing 

is known about the residues which are phosphorylated or the kinases which are involved. 

Elaborating the functional consequences of eNOS tyrosine phosphorylation is complicated by 

the fact that this modification is only evident in primary cultured cells (Garcia-Cardena et al., 

1996a) or in cells that overexpress tyrosine kinases such as Src (Takenouchi et al., 2004) but 

not with passaged endothelial cells (Corson et al., 1996; Michel et al., 1993; Venema et al., 

1996b). The consequences of the tyrosine phosphorylation of eNOS are unknown but are 

perhaps more likely to be related to the docking of associated scaffolding and regulatory 

proteins than to a direct effect on eNOS activity. The use of tyrosine kinase inhibitors 

provides only limited information on the role played by tyrosine phosphorylation in the 

regulation of endothelial NO production as many of these compounds directly affect Ca2+-

signalling processes (Fleming et al., 1996b; Fleming & Busse, 1997) and/or the activity of 

Akt and the binding of Hsp90 (Papapetropoulos et al., 2004).  
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1.7.4 NOS reductase domain regulatory elements 

Recent structural and molecular modeling studies of the NOS reductase domain structure have 

provided novel insight into the molecular mechanisms that control both the intra-module 

electron transfer from NADPH to the flavins and the inter-module electron transfer from 

FMN to heme. 

FMN domain auto-inhibitory insert 

One of the main structural differences between the constitutive and inducible isoforms is an 

auto-inhibitory insert of 40-50 amino acids in the FMN-binding domain of the eNOS and 

nNOS which interfere with CaM binding (Daff, 2003; Salerno et al., 1997). Deletion of the 

inserts results in mutant enzymes which bind CaM at lower Ca2+ concentrations and which 

retain activity in the absence of CaM (Daff et al., 2001). Two additional roles for the auto-

inhibitory insert in NOS regulation have been hypothesised: (i) that auto-inhibitory insert 

binds CaM and acts as a “mop” that inhibits CaM binding to the CaM- binding linker, (ii) that 

interaction of the auto-inhibitory insert with the FMN and the NADPH binding domains 

contributes to the locked electron-accepting position of the FMN domain (Garcin et al., 

2004). However, at elevated concentration of Ca2+, CaM would bind to both the auto-

inhibitory insert and CaM-binding regions and release the FMN domain for the inter-module 

electron transfer. 

Regulatory C-terminal tail 

The NOS reductase domain ends in a C-terminal tail. It has a conserved Arg1165 residue 

(eNOS), and a terminal phosphorylatable Ser1177 (eNOS) residue. The Ser1177 at the end of the 

C-terminal α-helix is directed towards negatively charged FMN-binding domain residues 

Gln685 and Asp687 and locks the FMN binding domain in an electron accepting position (Fig. 

11) and prohibits intermodule electron transfer (Craig et al., 2002; Garcin et al., 2004). In the 

absence of CaM, ionic interaction between NADPH and Arg1165 residue (eNOS) orient the C-

terminal tail in a negatively charged groove at the eNOS reductase domain, further stabilising 

the FMN lock (Daff, 2003). Thus, Ser1177 phosphorylation, or mutation to Asp to mimic 

phosphoserine would induce a negative charge and repel negatively charged residues thereby 

destabilise and displace the regulatory C-terminal tail to relieve repression of NO synthesis.  
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1.8 NOS uncoupling 

All of the NOS isoforms generate O2
- and hydrogen peroxide (H2O2) under specific 

conditions i.e., lower than optimal concentrations of the essential co-factor H4B (Xia et al., 

1998) or the substrate L-arginine (Xia et al., 1996). It is not clear yet whether H2O2 is a 

genuine product of uncoupling NOS catalysis or if H2O2 derives exclusively from the 

dismutation of O2
- (Vasquez-Vivar et al., 1999; Wei et al., 2001). 

The lack of H4B results in the uncoupling of eNOS, which basically means that the transport 

of electrons to ferrous-heme-O2 species generated during the stepwise activation of O2 by 

NOS, does not occur fast enough to prevent their oxidative decay; the result being the 

generation of reactive oxygen species (ROS) (Stuehr et al., 2001; Stuehr et al., 2004). The 

enhanced generation of O2
- is likely to result in the formation of peroxynitrite (ONOO-), 

which may further enhance O2
- production by oxidation of the zinc thiolate (ZnS4) cluster 

within eNOS and dissociation of the functional dimer (Zou et al., 2002). Although eNOS 

uncoupling has been successfully reversed by enhancing cellular levels of H4B, either by 

using sepiapterin (Tiefenbacher et al., 1996), by preventing the oxidation of H4B (d'Uscio et 

al., 2003), or by endothelial cell-specific overexpression of the GTP-cyclohydrolase I (Alp et 

al., 2003; Alp et al., 2004) circumstantial evidence indicates that the association of Hsp90 

with eNOS,(Pritchard, Jr. et al., 2001) as well as eNOS phosphorylation, in particular on 

eNOS Thr495 (Lin et al., 2003), can also affect the degree of coupling and the balance of 

NO/O2
- production.  

 

Figure 11. Regulatory action of eNOS 
C-terminal tail. Structure showing the 
interaction of the C-terminal tail of 
eNOS reductase domain with other 
residues leading to the locking of the 
FMN in the electron accepting position 
(see text for details). Modified from 
Garcin et.al, J Biol Chem 
2004;279:37918-37927.  
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1.9 Free radicals in the cardiovascular system 

Reactive oxygen species (ROS), such as O2
-, H2O2, ONOO-, or lipid peroxides are produced 

by all living cells (Darley-Usmar & Halliwell, 1996). Circulating blood cells, such as 

neutrophils or macrophages, turn into significant sources of free radicals when activated 

(Beckman & Crow, 1993). The generation of free radicals is low under normal conditions and 

compensated by the action of antioxidative enzymes (superoxide dismutase, catalase) and 

biomolecules (ascorbate, glutathione). However, it has been shown that the endothelium can 

generate substantial amount of O2
- (Britigan et al., 1992; Rosen & Freeman, 1984), in 

particular following stimulation with cytokines (Bautista et al., 1991; Matsubara & Ziff, 

1986a), the activation of protein kinase C (PKC) (Fleming et al., 2005; Matsubara & Ziff, 

1986b) or an increase in [Ca2+]i (Gryglewski et al., 2001; Holland et al., 1990). Both 

excessive production and diminished inactivation of O2
-, in combination with secondary 

reactions, are responsible for the development of oxidative stress in vivo and in vitro. The 

uncompensated generation of ROS/reactive nitrogen species causes modifications at various 

levels, including alterations in proteins, lipids, or DNA leading to cells damage and death. 

Thus high levels of free radicals have been connected with a series of degenerative processes, 

while low levels, found under physiological conditions, play key role in a variety of signalling 

cascades. 

1.9.1 Superoxide anion radical (O2
-) 

Superoxide is produced by the one-electron reduction of molecular oxygen. It is formed by 

enzymatic reactions during normal metabolism (as an intermediate of the respiratory chain), 

as a by-product of enzyme activity (xanthine oxidase, cyclooxygenase), or as part of the 

cellular defence mechanism (NADPH oxidase). Lately, eNOS has been identified as a 

potential source of O2
- as a result of the uncoupling of the flow of electrons to form NO under 

conditions of L-arginine (Xia et al., 1996) and/or H4B defiency (Xia et al., 1998). Like NO, 

O2
- is a free radical with a relatively low overall reactivity (compared to .OH) however, the 

negative charge of O2
- reduces its diffusion in comparison to NO. As shown for erythrocytes, 

the penetration of O2
- through biological membranes requires the presence of a transport 

mechanism, such as anion channels. 

1.9.2 Peroxynitrite 

Peroxynitrite (ONOO-) is the product of the reaction between NO and O2
-. It is cell-

permeable, as well as being a potent and versatile oxidant that can attack a wide range of 
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biological molecules. The peroxynitrite anion is relatively stable under basic conditions but is 

protonated at physiological pH.  

Biological effects of ONOO- 

NO reacts readily with O2
-, at close to diffusion- limited rate to produce ONOO-. It acts as a 

powerful oxidant, but is sufficiently stable to diffuse through a cell to react with a target. 

Human tissues are continually exposed to a number of damaging ROS. As a strong oxidant 

and nitrating agent ONOO- is more reactive and harmful than O2
- or H2O2. 

ONOO- is particularly efficient at oxidizing iron-sulphur clusters, zinc-fingers, and protein 

thiols resulting in cellular energy depletion. ONOO- also reacts with SOD to form a 

nitronium-like intermediate, which catalyses the 3-nitration of tyrosine residues, particularly 

those in cytoskeletal proteins. Although 3-nitrotyrosine can also be generated by sources other 

than ONOO-, the accumulation of 3-nitrotyrosine-containing proteins, detected with antisera 

to 3-nitrotyrosine, is used as a marker to ONOO- formation (Beckman & Koppenol, 1996). 

S-Nitrosylation 

In a cellular environment ONOO- will react preferentially with free thiols because of the fast 

rate of this reaction and the high intracellular thiol concentration. Glutathione, one of the most 

important antioxidants is the predominant source of intracellular thiol, and protect cells 

against ONOO--induced cytotoxicity. S-glutathiolation by ONOO- activates the 

sarco/endoplasminc reticulum calcium ATPase to decrease intracellular Ca2+ concentration 

and relax cardiac, skeletal and vascular smooth muscle (Adachi et al., 2004). NO- mediated 

S-nitrosylation of cysteine residues is reportedly linked to eNOS monomerisation and a 

decrease in enzyme activity (Ravi et al., 2004). 

Tyrosine nitration 

One of the effects of ONOO- on proteins is nitration of tyrosine residues. Tyrosine 

phosphorylation of enzymes is a common mechanism mediating cellular signalling. In 

endothelial cells tyrosine nitration inhibits tyrosine phosphorylation and causes for example 

accelerated endothelial cell apoptosis via tyrosine nitration of the phosphatidylinositol 3-

kinase (PI 3-kinase), inhibiting activity of Akt-1 kinase and increasing the activity of p38 

MAP kinase (el Remessy et al., 2005). ONOO- derived nitrated tyrosine has also been found 

in inflammatory cells in the atherosclerotic human artery, macrophages-derived foam cells, 

and human platelets.  
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Oxidation of low density lipoprotein 

An increase in oxidized low- density lipoproteins (ox-LDL) is associated with coronary artery 

disease. Circulating ox-LDL originates from mild oxidation of LDL in the arterial wall. 

Oxidized LDL induces atherosclerosis by stimulating monocyte infiltration leading to their 

differentiation into macrophages and by stimulating smooth muscle cell migration and 

proliferation. It contributes to atherothrombosis by inducing endothelial cell apoptosis, and 

thus plaque erosion, by impairing the anticoagulant balance in endothelium, stimulating tissue 

factor production by smooth muscle cells and inducing apoptosis in macrophages (Mertens & 

Holvoet, 2001). 

Peroxynitrite- mediated formation of ox-LDL was demonstrated by treating LDL with SIN-1 

(which simultaneously produces NO and O2
- resulting in ONOO- formation) which resulted in 

accelerated ox-LDL formation (Darley-Usmar et al., 1992; Patel et al., 2000). Treatment of 

LDL with authentic ONOO- results in the depletion of antioxidants and the formation of both 

lipid hydroperoxidase- and thiobarbituric acid- reactive substances, indicative of lipid 

peroxidation (Darley-Usmar et al., 1992).  

1.10 Measurement of NO 

The study of NO in biological systems is complicated by the low biologically active 

concentrations of NO (in the nanomolar range) and its short half-life due to the fast 

interaction with ROS or proteins and thiols. While a number of methods have been used to 

assess NO concentrations, most of them are based on the detection of NO metabolites or 

coproducts (Archer, 1993). The consequences are both the loss of specificity and the inability 

to resolve temporal changes in the release of authentic NO. The most commonly used assay is 

the measurement of nitrite and nitrate by Griess reaction (Bender et al., 1999; Ignarro et al., 

1987). Although measurement of nitrite and nitrate offers a simple way to indirectly reflect 

NO formation, the specificity of this assay has been a major concern because nitrite and 

nitrate may arise from a number of sources in biological systems (Archer, 1993). The 

detection of the NO coproduct, L-citrulline, is indeed specific, but it does not afford a direct 

visualization of NO generation by NOS enzymes. 

Spin trapping of free radicals in combination with electron spin resonance (ESR) 

spectroscopy is a well-documented approach to characterize free radicals, including NO and 

O2
-. The spin trapping of NO with a Fe(DETC)2 complex, which has been reported to 

specifically trap NO (Kleschyov et al., 2000; Mülsch et al., 1995) results in the formation of a 
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paramagnetic NO-Fe2+ mononitrosyl iron complex (MNIC) which is detected by ESR 

spectroscopy. So far, ESR remains the most unambiguous technique in free radical detection.  
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2 Aim 

 

The objective of this thesis was to identify eNOS residues whose phospho-status would 

regulate the activity of eNOS with emphasis being placed on identifying the phospo-switch 

that would convert eNOS from a NO generating enzyme to a O2
- generating enzyme. 

Identification of the role of eNOS tyrosine phosphorylation and the residue(s) involved on the 

regulation of eNOS activity.  

Work began by assessing serine and threonine phosphorylation and has culminated with a 

reassessment of the role of tyrosine phosphorylation in the regulation of eNOS. 
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3 Materials and methods: 

 

3.1 Bacterial transformation  

3.1.1 Preparation of competent cells by KCM method. 

From a single colony, preculture of the desired E. coli strain(DH5α, JM109, XL-1Blue) in a 5 

mL Luria-Bertani (LB) medium (10 g/L Bactotrypton, 5 g/L Yeast extract, 10g/L NaCl 

pH7.0) without antibiotic was obtained. 1 mL of the overnight culture was added into 100 mL 

of LB medium and incubated in a shaker (250 rpm) at 37°C till a OD600 of 0.5-0.6 was 

obtained. The culture was chilled on ice for 5 min and cell pellet obtained by centrifugation at 

2500g for 15 minutes at 4°C. The bacteria were resuspended in 7.5 mL of TSB (5% v/v 

DMSO, 10 mmol/L MgCl2, 10 mmoL/L MgSO4, 10% w/v PEG 6000 in LB medium) and 

incubated on ice for 1 hour. 100 µL aliquots of competent cells were distributed into pre-

cooled tubes and immediately frozen in liquid nitrogen and stored at –80°C.  

3.1.2 Transformation 

An aliquot of 100 µL was thawed on ice. Transformation mix was prepared with 20 µL 5X 

KCM (500 mmol/L KCl, 150 mmoL/L CaCl2, 250 mmoL/L MgCl2), 80 µL sterile water and 

DNA. The transformation mix was added to the competent cells and incubated on ice for 20 

min, followed by 10 minutes at room temperature. 1 mL of pre warmed LB medium was 

added and incubated at 37°C for 1 hour. The bacteria were collected by centrifugation (2000 

g, 5 minutes at room temperature). The supernatant was partially removed and the pellet was 

resuspended in the residual LB medium and spread on a LB agar plate with appropriate 

antibiotic and incubated overnight at 37°C. 

 

3.2 Isolation of nucleic acids 

3.2.1 Mini plasmid DNA preparation by alkaline lysis method 

Recombinant E. coli were grown in a 3 mL Luria-Bertani (LB) medium (10 g/L bactotrypton, 

5 g/L yeast extract, 10g/L NaCl pH 7.0) containing an appropriate antibiotic overnight (at 

least 16 hrs). The cells were harvested by centrifugation at 10000g for 5 minutes at room 

temperature. The pellet was resuspended in 250 µL of resuspension buffer (50 mmol/L 

Tris/HCl pH 8.0, 10 mmol/L EDTA and 100 µg/mL RNase A) for 5 minutes at room 

temperature followed by lysis with 250 µL freshly prepared lysis buffer (0.2 mol/L NaOH, 
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1%SDS), the contents of the tube were mixed gently and incubated for 5-10 minutes. 300µL 

of neutralization buffer (3.0 mol/L potassium acetate, pH 5.5) was added, mixed gently 

without vortexing and incubated on ice for 15 minutes. The tubes were centrifuged at 10000 g 

for 15 minutes at 4°C. The supernatant containing the plasmid was transferred to a fresh tube 

and the plasmid DNA was precipitated by addition of 600 µL of isopropanol and incubated at 

–20°C for 30 minutes. Precipitated DNA was sedimented by centrifugation at 10000 g for 15 

minutes at 4°C. The DNA sediment was washed with 70% ethanol, air dried and dissolved in 

the 50 µL TE buffer (10 mmol/L Tris/HCl pH 8, 0.1 mmol/L EDTA). 

3.2.2 Maxi plasmid DNA preparation  

Cell culture experiments and sequencing reactions require DNA of high purity. To obtain 

large amount of highly purified plasmid DNA, commercially available kits from QIAGEN 

(Düsseldorf, Germany) were used. The DNA isolation was performed according to the 

manufacturer’s instructions using a 400 mL overnight bacterial culture. 

3.2.3 DNA extraction from agarose gels  

After restriction digestion, the DNA fragment of interest was isolated by agarose gel 

extraction and purification using gel extraction kit from QIAGEN (Düsseldorf, Germany). 

After fractionating the digested DNA on agarose gel, the DNA was stained using ethidium 

bromide solution (0.5 µg/mL) for 20 min. The DNA band was visualized using a UV (315 

nm) transilluminator and the fragment of interest was excised using a scalpel. The DNA was 

then extracted according to the manufacturer’s protocol. 

3.2.4 RNA isolation  

For the isolation of total RNA from cultured cells expressing eNOS, a mixture of guanidine 

thiocyanate and phenol in a mono-phase solution (TRI reagent, Sigma, Germany) was used. 

Cells were lysed with TRI reagent (350 µL per 3.5 cm culture plate). After incubation of the 

lysate for 5 minutes at room temperature, 70 µL of chloroform was added and the mixture 

was vortexed thoroughly and incubated for further 15 minutes at room temperature. For the 

separation of the phenol and aqueous phase the extracts were centrifuged (12000 g, 15 

minutes, 4°C). The upper aqueous phase containing RNA was recovered and was precipitated 

by the addition of 175 µL isopropanol. After vortexing and incubation for 10 minutes at room 

temperature the tubes were centrifuged (12000 g, 15 minutes, 4°C). The RNA sediment was 

washed with 600 µL of 70% ethanol air dried and dissolved in an appropriate volume of 

diethylpyrocarbonate (DEPC) treated water.  
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3.2.5 Purification of DNA by phenol chloroform isoamyl alcohol extraction and ethanol 

precipitation  

Purification of nucleic acid following restriction digestion was performed by phenol 

chloroform isoamyl alcohol extraction. An equal volume of TE-saturated phenol was added to 

the DNA diluted in water (400 µL). The mixture was vortexed thoroughly, and then 

centrifuged (5 minutes, 10000 g, room temperature) for phase separation. The upper, aqueous 

phase containing the plasmid DNA was transferred into a new microcentrifuge tube and was 

subjected to two rounds of chloroform/isoamyl alcohol (24:1) extraction to remove residual 

phenol. The upper aqueous phase was then collected in a separate tube, and precipitated by 

the addition of 1/10th volume of sodium acetate solution (3 mol/L pH5.2) and 2.5 volumes of 

100% ethanol. The suspension was mixed by vortexing and then incubated overnight at -20°C 

or at –80°C for 3 hours. Precipitated DNA was collected by centrifugation (15 minutes, 10000 

g, 4°C) and washed with 70% ethanol. The DNA sediment was air dried and dissolved in an 

appropriate volume (25 µL) of TE buffer.  

3.3 Manipulation of nucleic acids 

3.3.1 Restriction digestion 

The cleavage of double-stranded DNA molecules by restriction endonucleases was performed 

by incubating an appropriate amount of DNA with the restriction enzyme in the specific 

buffer and under the conditions recommended by the supplier. A typical digestion reaction 

included one unit of enzyme per µg of DNA and incubation for 1-3 hours (in case of cleavage 

of DNA from a mini-preparation) to overnight (in case of DNA from maxi plasmid 

preparation) at 37°C. 

3.3.2 Dephosphorylation of linearised double-stranded DNA 

To inhibit the self ligation of the vector during cloning, linearised vectors were treated with 

CIP (calf intestinal alkaline phosphatase; Amersham Pharmacia, Freiberg, Germany) to 

remove the 5' phosphate of the double stranded DNA molecules. Reaction mixtures contained 

1µg linearised DNA, in 50 mmol/L Tris/HCl, pH9.0, 10 mmol/L MgCl2, 0.1U/reaction 

diluted CIP in a suitable volume. The above mentioned reaction mixture was incubated at 

37°C for 1 hour, followed by heat inactivation of the alkaline phosphatase (85°C; 15 minutes) 

and phenol chloroform isoamyl alcohol extraction with subsequent ethanol precipitation. The 

DNA sediment was dissolved in sterile water. 
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A control ligation of the dephosphorylated and phosphorylated vectors was performed and 

following transformation checked for the efficiency of dephosphorylation. Few or no colonies 

are indicative of an efficient dephosphorylation reaction.  

3.3.3 Large fragment of the E.coli DNA polymerase I (Klenow fragment):  

The Klenow polymerase was used to modify 3' or 5' overhangs into blunt ends. The Klenow 

fragment possesses a 3' to 5' exonuclease as well as a 5' to 3' polymerase activity. A typical 

reaction mixture contained, 5 µg linearised DNA in 10 mmol/L Tris/HCl, 50 mmol/L NaCl, 

10 mmol/L MgCl2,1 mmol/L dithiothreitol pH 7.9, 0.4 mmol/L dNTPs and 3 U/reaction 

Klenow enzyme (New England Biolabs, Frankfurt am Main, Germany) in a final volume of 

100 µL. After incubation at 37°C for 30 min the reaction was stopped by phenol chloroform 

isoamyl alcohol extraction and the DNA was concentrated by ethanol precipitation. The DNA 

pellet was dissolved in an appropriate amount of sterile water.  

3.3.4 DNA ligation  

Ligation of vector and inserts was performed using T4 DNA ligase. For blunt end ligation, the 

amount of insert was at least five times in molar excess over the vector. A typical reaction 

mixture for blunt end ligation contained the vector and insert in 50 mmol/L Tris/HCl (pH 

7.6), 10 mmol/L MgCl2 , 0.5 mmol/L ATP, 0.5 mmol/L DTT, 5% (w/v) polyethylene glycol-

8000 and 3 units of T4 DNA ligase enzyme (Invitrogen, Karlsruhe, Germany), in a total 

volume of 15 µL. The reaction mixture was incubated at room temperature for 16 to 20 hours. 

5 µL of the ligation mix was used for transformation. 

3.3.5 Site directed mutagenesis 

The eNOS-Ser mutants were produced using polymerase chain reaction-based QuickChange 

XL site directed mutagenesis kit (Stratagene) and the human eNOS wild-type cDNA as 

template. A pair of primers; forward and reverse containing the mutation of Ser114 to D (GAT) 

or A (GCA) and Ser633/634 (TCC/AGT) to A (GCC/GCT) were used.  

Forward S114A: 5’ CTA CAG GGC CGG CCC GCA CCC GGC CCC 3’ 

Forward S114D: 5’CTA CAG GGC CGG CCC GAT CCC GGC CCC 3’ 

Reverse S114A: 5’GGG GCC GGG TGC GGG CCG GCC CTG TAG3’ 

Reverse S114D: 5’GGG GCC GGG ATC GGG CCG GCC CTG TAG3’ 

Forward S633/634A: 5’CGG AAG AGG AAG GAG GCC GCT AAC ACA GAC AGT 

GCA GGG 3’ 



Materials and methods 

 37

Reverse S633/634A: 5’CCC TGC ACT GTC TGT GTT AGC GGC CTC CTT CCT CTT 

CCG 3’ 

The oligonucleotides were synthesized by Biospring (Frankfurt, Germany) 

The PCR reaction mix contained 1X reaction buffer, dNTP mix (0.2 mmol/L), quick solution 

and 2.5 U Pfu turbo polymerase provided with the kit along with eNOS wild-type cDNA; 50 

ng, primers; forward and reverse-125 ng each in a final volume of 50µL. The PCR was set up 

in a Robo- Cycler (Strategene) with the following cycle conditions. 

Reaction Buffer: 

 1 X Reaction buffer: 10 mmol/L KCl, 10 mmol/L (NH4)2SO4, 20 mmol/L Tris-HCl- pH 8.8, 

2 mM MgSO4, 0.1% Trition X-100 and 10% nuclease-free bovine serum albumine (BSA) 

1 cycle  : 95°C for 1 minute 

18 cycles : 95°C for 1 minute, 54°C for 1 minute and 68°C 20 minutes 

1 cycle  : 68°C for 10 minutes 

After completion of the reaction, the PCR reaction mix was subjected to Dpn I (10 U) 

restriction digestion at 37°C for 60 minutes, to degrade the methylated of parental plasmid 

DNA. 10 µL of DpnI digested DNA was transformed in XL-10 competent cells and positive 

clones were identified by sequencing of DNA.  

3.3.6 Sequencing of DNA  

To sequence a recombinant vector, the plasmid DNA was column purified and 2 µg DNA in 

20 µl TE was sent to MWG Biotech (Ebersberg, Germany) for sequencing. 

 

3.4 Detection of nucleic acids 

3.4.1 Colony hybridisation using a 32P-radiolabelled probe 

Colony hybridisation with a 32P-labelled DNA fragment was used to identify positive 

recombinant clones. Following transformation bacterial colonies grown on an agar plate were 

transferred to a Nytran N nylon transfer membrane, (Schleicher and Schuell GmbH, 

Germany) by spot blotting (i.e. placing the membrane directly onto the plate). The membrane 

was labelled and its orientation on the plate was carefully marked with a needle through the 

filter into the agar. The colonies were lysed by placing the nylon membrane onto filter paper 

soaked with 2% SDS for 2 minutes, followed by denaturation of the DNA double strands, on 
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a filter paper soaked with 0.5 mol/L NaOH and 1.5 mol/L NaCl for 2 minutes, followed by 

neutralization in 0.5 mol/L Tris-HCl pH 8.0 and 1.5 mol/L NaCl for 5 to 10 minutes. The 

DNA was fixed on the membrane by baking for 2 hours at 80°C. The membrane was then 

transferred to hybridisation vials and treated with 15 mL of prehybridization solution 

containing formamide (50% v/v), 5X SSPE (750 mmol/L NaCl, 0.05 mol/L NaH2PO4, 0.05 

mol/L EDTA Ca2+free); 70 µg/mL denatured herring sperm DNA (which binds to the DNA 

non-specifically and inhibit non-specific signal on autoradiogram after hybridisation), 5X 

Denhardt’s solution (0.5% ficoll, 45 mmol/L polyvinylpyrrolidone, 0.5% BSA) and 0.2% 

SDS on a rotating wheel at 42°C for 2 hours. The prehybridization solution was replaced by 

the hybridisation solution containing heat denatured radiolabelled DNA probe and incubated 

for 16 hours at 42°C. The hybridisation solution was removed and the filters were washed 

twice for 15 minutes at room temperature in Buffer A (6X SSPE, 0.1% SDS) and twice in 

buffer B for 30 minutes at 55°C (1X SSPE, 0.1% SDS). Specifically bound radioactivity was 

detected by autoradiography (FUJIFILM medical X-ray film, Tokyo, Japan). 

3.4.2 Southern blot hybridisation  

Confirmation of the orientation of the gene of interest (insert) in the clones was performed by 

restriction digestion and subsequent Southern blot hydridisation with a specific radiolabelled 

DNA against the insert. The size fractionated double stranded DNA was denatured by soaking 

the gel in a denaturing solution (0.5 mol/L NaOH and 1.5 mol/L NaCl) for 15 to 30 minutes at 

room temperature followed by 15 minutes incubation in the neutralization solution (0.5 mol/L 

Tris/HCl, pH 8.0 and 1.5 mol/L NaCl). The DNA was then transferred onto a positively 

charged nylon membrane (Porablot, Düren, Germany) via upward capillary transfer. The gel 

was placed on a filter paper soaked with 10X SSC (1.5 mol/L NaCl, 0.4 mol/L sodium citrate 

pH 7.0 with 10N NaOH) and the ends of the filter paper were connected to a reservoir of 10X 

SSC. The membrane was placed on top of the gel with 2 sheets of filter paper and a stack of 

paper towels on top of it to facilitate the overnight (16 hours) transfer of DNA to the 

membrane by capillary flow. To immobilise the DNA on the membrane it was cross-linked 

using UV light (215 nm, 2 minutes) and incubated at 80°C for 2 hours. The membrane was 

then placed in the hybridisation vials and the hybridisation as well as the detection of the 

radioactivity was performed as described above. 

3.4.3 Northern blotting and hybridisation  

After isolation of total RNA, 5 µg of RNA was mixed with 5µL RNA pre mix buffer 

containing 20 mmol/L deionised formamide, 40 mmol/L 3-(N-morpholino) propanesulfonic 
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acid (pH 7.0 adjusted with acetic acid), 10 mmol/L sodium acetate and 1 mmol/L EDTA, and 

0.5 µg/mL ethidium bromide. This RNA mixture was heated to 65°C for 10 minutes and 

separated by electrophoresis on denaturing formaldehyde agarose gel containing 1% agarose 

(agarose was dissolved by boiling in DEPC water, the temperature was brought down to 50-

60°C and then 12.3 mol/L formaldehyde was added). Finally 1/10th volume of running buffer 

MOPS was added and poured in the gel plate. RNA bands were separated in RNA running 

buffer (40 mmol/L MOPS, 10 mmol/L Na-acetate, 1 mmol/L EDTA, pH 7.0). Under a UV-

lamp (at 315nm) 28S, and 18S ribosomal RNA (the ratio of the band intensity of 28S and 18S 

RNA should be 2:1) were visualised. The RNA was then transferred onto a positively charged 

nylon membrane via upward capillary transfer, as described above but with 20X SSC (3 

mol/L NaCl, 250 mmol/L sodium citrate pH 7.0 adjusted with 10 N NaOH) as transfer buffer. 

The hybridisation and the detection of the radioactivity were performed as described above. 

 

3.5 Cell culture and adenoviral methods 

3.5.1 Generation of eNOS adenoviruses 

Construction of recombinant adenoviruses with eNOS mutants was performed as described 

(Fleming et al., 2005).  

Briefly, the full-length, myc/his-tagged eNOS wild-type and mutant cDNA inserts (~ 3.6 kb) 

were excised from pcDNA3.1 myc/his with sequential digestion using HindIII and PmeI in a 

total volume of 50 µg using 5 µg DNA. The DNA fragment of interest was purified by gel 

purification using a gel extraction kit from QIAGEN (Düsseldorf, Germany). The overhangs 

of the inserts were blunted by the large fragment of E. coli DNA polymerase I (Klenow 

fragment) and ligated into linearized and dephosphorylated EcoRV adenoviral shuttle vectors, 

pAd-Track-CMV and pAdShuttle-CMV (kindly provided by Bert Vogelstein, Howard 

Hughes Medical Institute, Baltimore, MD). The plasmids were recombined into the 

adenovirus 5 genome by homologous recombination in E. coli. Briefly, the shuttle vectors 

carrying the eNOS cDNAs were linearized with the restriction endonuclease PmeI, purified 

by phenol/chloroform extraction and ethanol precipitation. These vectors were used to 

transform the recombination positive E. coli strain BJ5183 carrying the plasmid pAdEasy-1. 

The resulting recombinant plasmids conferred resistance to kanamycin (70 µg/mL), and 

plasmids from antibiotic-resistant colonies were isolated and analyzed for eNOS by restriction 

digestion with KpnI/HindIII. Positive plasmids were transformed into E. coli JM109 for large-

scale isolation. Following linearization with PacI and extraction with phenol/chloroform and 
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ethanol precipitation, plasmids were transfected into HEK 293 cells (American Type Culture 

Collection). Transfected cells were incubated for up to 2 weeks and monitored for GFP 

expression (for inserts in pAdTrack-CMV) and plaque appearance. Viruses were obtained 

from these cells and infected into fresh HEK 293 cells for amplification and to confirm 

expression of mRNA and protein. Constructs that expressed eNOS mRNA (detected by 

Northern blotting) were screened for eNOS protein. Only one orientation (sense) resulted in 

increased protein expression. For large scale amplification and purification, five T175 flasks 

of 90% confluent HEK cells were infected with the viruses. The virus particles were purified 

using the BD Adeno-X Virus purification kit (BD Biosciences, Heidelberg, Germany) 

according to the manufacturer’s instructions. The resulting titre of each preparation was 

approximately 109 plaque forming unit (PFU)/mL. 

3.5.2 Culturing of cells 

Human umbilical vein endothelial cells (HUVEC) were isolated from fresh umbilical vein 

using dispase as described (Popp et al., 1996) and cultured in growth medium, a 1:1 mixture 

of MCDB 131 (Invitrogen, Karlsruhe, Germany) and M199 (PAA laboratory, Pasching, 

Austria) containing 14% fetal calf serum (FCS), epidermal growth factor (EFG; 0.05 ng/mL), 

basic fibroblast growth factor (bFGF; 0.5 ng/mL), endothelial cell growth supplement (1.5 

mg/mL), heparin (22.5 mg/mL), penicillin (50 U/mL) and streptomycin (50 µg/mL). All 

experiments were performed with cells of passage one.  

Porcine aortic endothelial cells (PAEC) were isolated from fresh porcine aorta using dispase 

and cultured in growth medium, a 1:1 mixture of MCDB 131 (Invitrogen, Karlsruhe, 

Germany) and M199 (PAA laboratory, Pasching, Austria) containing 14% FCS, EGF (0.05 

ng/mL), bFGF(0.5 ng/mL), endothelial cell growth supplement (1.5 mg/mL), heparin (22.5 

mg/mL), penicillin (50 U/mL) and streptomycin (50 µg/mL). 

3.5.3 Transfection with calcium choloride  

HEK 293 cells cultured in 6 cm dishs, were grown in minimal essential medium (MEM) 

supplemented with EARLE’s salts, containing 8% FCS, 50 µg/mL gentamycin, 1% non-

essential amino acids and 1 mmol/L sodium pyruvate. At 70-80% confluence cells were 

incubated with a transfection mix containing the desired plasmid (5µg DNA, 0.126 mol/L 

CaCl2 and 500µL 2X HEPES buffer saline; HBS, in a total volume of 1 mL). After 4 hours 

the transfection mix was removed and subjected to glycerol shock for 60 seconds, with 15% 

glycerol in HBS to facilitate the uptake of DNA. The cells were washed with PBS and 

incubated in fresh growth medium for 48 hours.  
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3.5.4 Adenoviral infection of COS-7 cells 

COS-7 cells cultured in 6 cm dishes, were grown in MEM supplemented with EARLE’s salts, 

containing 8% FCS, 50 µg/mL gentamycin, 1% non-essential amino acids and 1mmol/L 

sodium pyruvate. At 70-80% confluence, cells were serum-starved (medium containing 0.1% 

BSA) for 4 hours. Infection with recombinant adenoviruses expressing human wild-type 

eNOS or the T495A, T495D, S114A, S114D, S633D or T495A/S1177D eNOS mutants (2 

PFU/cell, in 1 mL medium with 0.1% BSA per 6 cm dish) was for 4 hours followed by 

addition of 2 mL growth medium and further incubated for 48 hours. 

3.5.5 Adenoviral infection of human umbilical vein endothelial cells 

For the infection of endothelial cell, the cells were serum-starved (medium containing 0.1% 

BSA) for 16 hours. Infection with recombinant adenoviruses expressing human eNOS wild-

type or the T495A, T495D, S114A, S114D, S633D or T495A/S1177D eNOS mutants (2 

PFU/cell, in 1 mL medium with 0.1% BSA per 6 cm dish) was for 4 hours followed by 

addition of 2 mL growth medium with 1% FCS and further incubation for 48 hours.  

3.5.6 Ox-LDL treatment 

Confluent cultures of human endothelial cells, were serum-starved (medium containing 0.1% 

BSA) for 24 hours followed by the addition of required concentration of ox-LDL (30 µg/mL, 

unless mentioned otherwise) and incubated for the indicated period of time.  

3.5.7 Stimulation with bradykinin 

Confluent cultures of porcine endothelial cells, were serum-starved (medium containing 0.1% 

BSA) for overnight (~ 16 hours). The cells were then stimulated with bradykinin (1 µmol/L) 

for different time points (10 seconds to 5 minutes). The cells were quickly washed with ice 

cold phosphate buffer saline (PBS) and drained and frozen in liquid nitrogen. 

3.6 Immunohistochemistry 

Human endothelial cells were infected with different eNOS mutants and after 48 hours of 

protein expression used for immunohistochemistry. The cells were fixed in 4% 

paraformaldehyde in PBS for 10 minutes, followed by incubation with glycine (2%) in PBS 

and permeabilized with Triton X-100 (0.05%) in PBS for 10 minutes each. Each step was 

followed by washing the cells 3 times with PBS for 3 minutes. The cells were then blocked 

with 3% BSA in PBS for 60 minutes and followed by incubation with a specific myc 

monoclonal (Santa Cruz Biotech, Heidelberg, Germany) and β-catenin polyclonal (Santa Cruz 

Biotech) antibodies (1:200 dilution) overnight at 4°C. The cells were washed at least 3 times 
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with PBS (with 0.2% Tween) and then incubated with Alexa dye-coupled secondary 

antibodies for 1 hour at room temperature. The cells were again washed with PBS (containing 

0.2% Tween) 3 times and were mounted in antifade (Molecular probes, Karlsruhe, Germany) 

or Dako-Fluoromount (Dako, Hamburg, Germany). Co-localisation studies were carried out 

using a Zeiss laser-scanning confocal microscope LSM 510 META in multi-tracking mode to 

prevent interference of the dyes.  

 

3.7 Methods with protein 

3.7.1 Isolation of protein 

Cells expressing the protein of interest were lysed with Triton X-100 lysis buffer containing 

NaF (100 mmol/L), Na4P2O7 (15 mmol/L), Na3VO4 (2 mmol/L), leupeptin (2 µg/mL), 

pepstatin A (2 µg/mL), trypsin inhibitor (10 µg/mL), PMSF (44 µg/mL) and Triton X-100 

(1% vol/vol). The sample was collected in 1.5 mL tubes and incubated on ice for 10 minutes. 

The lysate was centrifuged at 12,000 g (4°C for 10 minutes) and the supernatant was 

transferred into a fresh tube. The concentration of the proteins was determined at 570 nm 

using Bradford reagent. 

3.7.2 Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 

Western blotting 

Proteins were analysis using SDS-PAGE and Western blotting. Protein extracts (20-50 µg) 

per samples were denatured by heating in Laemmli buffer (7.3% w/v SDS, 29.1% v/v 

glycerol, 83.3 mmol/L Tris with bromophenol blue) at 95°C for 5 minutes and separated by 

SDS-PAGE. The proteins were then subjected to electrophoresis (running buffer: 190 mmol 

glycine, 0.1% SDS and 25 mM Tris-HCl) and resolved for about 2 hours with approximately 

35 mA/gel. 

Western blotting was performed using the tank blot technique onto nitrocellulose membranes 

(Bio rad, Munchen, Germany) for 90 minutes, in transfer buffer ( 190 mmol/L glycine, 25 

mmol/L Tris-HCl and 20% methanol) with 250 mA per apparatus (two gels). The 

nitrocellulose membranes were stained with Ponceau S to determine the quality of transfer 

and equal loading of the protein. After destaining with distilled water the membranes were 

blocked in Tris buffer saline(TBS, 150 mmol/L NaCl, 50 mmol/L Tris-HCl, pH 7.5) 

containing 3% BSA and 0.03% Tween-20 for 1 hour at room temperature. The membranes 

were incubated with the primary antibody (routinely diluted 1:1000) in TBS containing 3% 



Materials and methods 

 43

BSA and 0.03% Tween-20 overnight at 4°C. The membranes were then washed in TBS with 

0.03% Tween-20 for 30 minutes at an interval of 5 minutes. The membranes were blocked 

again for 1 hour. The secondary antibody coupled to horse-radish-peroxidase (HRP, 1:20000 

TBS/0.03% Tween-20) was incubated with the membrane for 1 hour at room temperature and 

washed again. The protein were visualised on X-ray film by enhanced chemiluminescence 

solution (ECL, Amersham Pharmacia, Freiberg, Germany).  

3.7.3 Low temperature- polyacrylamide gel electrophoresis (LT-PAGE) 

SDS-resistant eNOS dimers and monomers were assayed using LT-PAGE. Protein extracts 

(20 µg) in Laemmli buffer with or without 2.5% β-mercaptoethanol or heating at 95°C were 

subjected to PAGE at 4°C and with constant current of 30 mA per apparatus. Western blotting 

was performed as described earlier. Fresh protein samples were used exclusively as freeze 

thawing disrupted the eNOS dimer. 

3.7.4 Immunoprecipitation 

Immunoprecipitation (IP) is employed to isolated protein of interest using a specific antibody 

which is subsequently pulled down using protein A/G Sepharose beads.  

Endothelial cells were lysed in 1% Triton lysis buffer, and incubated on ice for 10 minutes. 

The lysate was centrifuged at 12,000 g (4°C for 10 min) and the supernatant was transferred 

into a fresh tube. All subsequent steps were performed at 4°C. Cell extract (50µl) was kept 

aside to check for total expression of the protein of interest and the rest volume was used for 

immunoprecipitation. The cell lysate (300 µg) was subjected to preclearing with 60 µl protein 

A/G Sepharose beads (Santa Cruz Biotechnology,Heidelberg, Germany) without a primary 

antibody and incubated with the sample for 1 hour at 4°C on a rotating wheel. The preclearing 

step, allows the clearing of the lysate of non-specific protein binding to the sepharose. The 

supernatant of the preclearing was used for immunoprecipitation with the specific antibodies. 

For this, 2 µg of the antibody of interest was added to the lysate. The mixture was agitated on 

a spinning wheel in tubes at 4°C, for 2 hours. Then 60 µl of protein A/G Sepharose beads 

were added and incubated with the sample for 1 hour on a rotating wheel at 4°C. The complex 

of antigen, antibody and sepharose was than isolated via multiple centrifugation at 12 000 g 

(4°C for, 10 minutes) and washing with 1% Triton lysis buffer. Finally, 60 µl of Laemmli 

buffer were added and the protein denatured at 95°C for 5 minutes. After centrifugation for 1 

minute in a microfuge at 10 000g, the supernatants were separated by SDS-PAGE and 

Western blotting. 
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3.7.5 Reproducing Western blots 

To strip antibodies from the bolts, stripping buffer (Tris-HCl; 67.5 mmol/L, pH 6.8,and SDS, 

2%) was prewarmed (10 mL per blot) at 50°C. Membranes were added along with 70 µL β- 

mercaptoethanol (0.7% v/v) and incubated for 30 minutes at 50°C under gentle agitation. The 

buffer was decanted and membranes washed thoroughly in TBS with 0.03% Tween-20. The 

membranes were then blocked in TBS containing 3% BSA and 0.03% Tween-20 and 

incubated with specific antibody of interest and processed as described above. 

 

3.8 Assays of eNOS activity, NO and O2
- detection. 

3.8.1 Citrulline assay: 

A standard method for determining the enzymatic activity of NOS is based on determining the 

conversion of radiolabeled L-arginine to L-citrulline. In principle, radiolabelled L-arginine is 

converted by NOS to L-citrulline and separated by trapping the positively charged L-arginine 

on dowex, while the neutral L-citrulline (at pH 5.5), remains in the supernatant. The 

radioactivity in the supernatant gives a direct measure of NOS activity. 

With cell lysate 

The activity of the different eNOS mutants was monitored by conversion of [³H]L-arginine to 

[³H]L-citrulline. HEK 293 cells overexpressing eNOS wild-type or mutants were lysed in 

Triton X-100 lysis buffer and protein extracted as described above. 100 µg of total protein 

was used per assay reaction and was diluted in a total volume of 180 µL of activity assay 

buffer containing (in mmol/L: NADPH 1.0, 6R-H4B 0.015, CaM 0.001, FAD 0.001, HEPES 

50.0 in pH 7.4, DTT 1.0, EDTA 1.0, orthovanadate 2.0, and CaCl2 2.5). All of the reaction 

samples were kept on ice, the reaction was initiated by the addition of 20 µL [³H]L-arginine 

(0.5 µmol/L, 0.5 µCi) and incubation at 37 °C for 30 min. The incubations were terminated by 

the addition of 1000 µL ice-cold HEPES buffer (100 mmol/L, pH 5.5) containing EGTA (10 

mmol/L) and 500 mg Dowex AG 50 W-X8 (counter-ion Na+ form) cation exchange resin and 

incubated for 5 minutes on ice. The samples were centrifuged (4000 rpm at 4°C). To 5 mL 

scintillation fluid, 500 µL of supernatant was added and [³H]L-citrulline in the supernatant 

was quantified using a liquid scintillation counting. The specific activity of eNOS was 

calculated as the N-nitro-L-arginine sensitive formation of [³H]L-citrulline. 



Materials and methods 

 45

With 100000 g pellet 

Transfected HEK 293 cells in 10 cm dishes overexpressing recombinant eNOS protein were 

washed twice with PBS and scrapped in 800 µL sterile double distilled water. The cells were 

subjected to 5 cycles of freeze thawing at 40°C, followed by addition of 1 mL 2X 

homogenization buffer I (homogenization buffer I:Tris-HCl; 50 mmol/L, pH 7.4, KCl; 1.15% 

w/v, EDTA; 1 mmol/L, glucose; 5 mmol/L, DTT;0.1 mmol/L, SOD; 200 U/mL, leupeptin; 2 

µg/mL, pepstatin A; 2 µg/mL, trypsin inhibitor; 10 µg/mL, PMSF; 44 mg/L). The cellular 

debris was pelleted by centrifugation at 4000 rpm for 10 min at 4°C. The supernatant with the 

membrane fraction was subjected to ultra centrifugation at 35000 rpm (100000 g), for 1 hour 

at 4°C. The pellet was resuspended in 200 µL of 1X homogenization buffer II (2X 

homogenization buffer II: Tris-HCl; 50 mmol/L, pH 7.4, glycerin; 10% v/v, 0.1 mmol/L 

EDTA, leupeptin; 2 µg/mL, pepstatin A; 2 µg/mL, trypsin inhibitor; 10 µg/mL, PMSF; 44 

mg/L) and 50 µL was used per reaction and the assay was performed as described above with 

varying concentration of Ca2+ and calmodulin. 

In vivo on intact cells: 

Transfected HEK 293 cells in 3.5 cm dishes overexpressing recombinant eNOS protein were 

washed 2X with Earle's balanced salt solution (EBSS) and incubated with 1 mL EBSS for 5 

hours to starve cells of L-arginine. To determine eNOS specific activity, cells were incubated 

in the presence or absence of L-NA (500 µmol/L) for 1 hour before incubated with [14C]L-

arginine (10 µmol/L, 0.05µCi/µL) and further incubated for 15 minutes. A time interval of 3 

minutes between each plate was maintained. The cells were stimulated with ionomycin (100 

nmol/L) for further 5 minutes at 37°C. The reaction was quickly terminated by washing the 

cells twice with ice cold HT and the cells were snap frozen in liquid nitrogen. The cells were 

scraped in 500 µL lysis buffer (Triton X-100 0.2 %, pH 5.2, sodium acetate 20.0 mmol/L, 

citrulline 1.0mmol/L, EGTA 2.0 mmol/L and EDTA 2.0 mmol/L) and transferred to a 2 mL 

eppendorf tube. 10µL was taken to check for total incorporation of [14C] as a control. 1 mL 

ice-cold HEPES buffer (100 mmol/L, pH 5.5) containing EGTA (10 mmol/L) and 500 mg 

Dowex AG 50 W-X8 (counter-ion Na+ form) cation exchange resin was added, vortexed and 

incubated for 5 minutes on ice, this was repeated twice. 800 µL of the supernatant was added 

to 5 mL scintillation fluid and [14C] L-citrulline in the supernatant was quantified by a liquid 

scintillation analyzer.   
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3.9 Measurement of nitric oxide using Fe(DETC)2 by electron spin resonance 

spectroscopy 

Give the short half life of NO and O2
-, its very difficult to measure it in a biological system. 

This problem has been overcome by trapping NO and O2
-, with other compounds, which can 

then be detected by ESR spectroscopy. 

Preparation of Fe(DETC)2 Colloide: 

10ml Krebs buffer (in mmol/L: NaCl 98.93, KCl 4.69, MgSO4.7H2O 1.2, CaCl2 
2.49, 

NaHCO3 25.0, K2HPO4.3H2O 0.61, glucose 11.1 and HEPES 21.85 pH 7.4) in two 50ml 

falcon tubes was deoxygenated by using argon gas for at least 45 minutes. Parent solutions of 

ferrous sulfate heptahydrate (FeSO4.7H2O) and sodium diethylthiocarbimate (Na DETC) were 

prepared by adding 2.24mg FeSO4.7H2O and 3.6mg Na DETC to each tube and bubbled with 

argon. As soon as the FeSO4.7H2O crystals were dissolved the Na DETC solution was mixed 

with it, giving an almost translucent solution (which is an indication of a good colloid 

preparation). A multi-pipette was deoxygenated by aspirating argon gas. Fe(DETC)2 colloid 

was aspirated in the multi-pipette and use immediately.  

3.9.1 Measurement in cells: 

COS-7 cells (6 cm culture dish) overexpressing recombinant eNOS protein were washed 

twice with Krebs buffer and incubated in 1200 µL for 45 min at 37°C. 400 µL of freshly 

prepared Fe(DETC)2 colloid,(≅ 100 µmol/L Fe2+) was added and further incubated for 30 min. 

eNOS was inhibited by pre-incubating the cells with L-NAME (300 µmol/L, 45 minutes) and 

activated by stimulating the cells with ionomycin (100 nmol/L, 10 minutes) before stopping 

the reaction by placing the plates on ice. Buffer was aspirated and cells were scraped 

carefully/gently in 100µL Krebs buffer and transferred to a insulin syringe and quickly frozen 

in liquid nitrogen. 

The formation of paramagnetic mono-nitrosyl-iron complex was determined at 77 K in a 

liquid nitrogen cooled dewar using a ESR EMX spectrometer (Bruker, Karlsruhe, Germany). 

The instrument settings were as follows: microwave frequency, 9.487 GHz; power, 20.07 

mW; receiver gain, 1x105; modulation amplitude, 5.000G; modulation frequency, 100 KHz; 

conversion time, 81.92ms; time constant, 327.680ms; sweep time, 41.94s; sweep width, 

100G; resolution, 512 points and 3 scans. 
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3.10 Measurement of superoxide anion (O2
-)  

3.10.1 Chemiluminescence 

HUVEC were cultured in 3.5 cm dishes, on attaining confluency the cells were starved of 

serum for 16 hours. The cells were then incubated with nLDL or ox-LDL for 24 hours. To 

determine eNOS-dependent O2
- production, cells were treated with L-NAME (300 µmol/L, 1 

hour). The cells were then washed twice with HEPES-Tyrode solution (in mmol/L: NaCl 

137.0, KCl 2.7, MgCl2 0.5, CaCl2 1.8, NaH2PO4 0.36, glucose 5.0 and HEPES 10.0) scraped 

and gently resuspended in 500 µL. The cell suspension was then transferred to a cuvette and 

the reaction was initiated by the addition of freshly prepared lucigenin (5µmol/L), 15 minutes 

later the cells were stimulated with ionomycin (100 nmol/L), and when the signal reached its 

peak, SOD was added. The concentration of lucigenin used has been shown to accurately 

reflect levels of ambient O2
- and is not subject to redox cycling and the artifactual production 

of O2
- that is observed with higher concentrations of the reagent (Li et al., 1998; Skatchkov et 

al., 1999). Light emission was detected using a Berthold luminometer (LB 9505, Berthold, 

Wildbad, Germany). The mean chemiluminescence observed during a period of 10 minutes 

was used to estimate the production of O2
-.  

3.10.2 Electron spin resonance (ESR) spectroscopy 

O2
- generation in intact cells was assessed using the spin trap 1-hydroxy-3-methoxycarbonyl-

2,2,5,5-tetramethyl-pyrrolidine (CMH, Alexis, Grunberg, Germany) (Dikalov et al., 1997; 

Kuzkaya et al., 2003). 

COS-7 or HEK 293 cells in 6 cm dishes, expressing recombinant eNOS protein were washed 

twice with HEPES-Tyrode (ESR-HT) solution which was pre-treated with chelax-100 (5%, 

overnight, Sigma) and contained diethylenetriamine-pentaacetic acid (DTPA; 100 µmol/L, 

used to decrease the autooxidation of hydroxylamines catalysed by trace transition metal 

ions). To quantify eNOS-dependent formation of O2
- , cells were incubated at 37°C with 1 mL 

ESR-HT in the absence or presence of L-NAME (300 µmol/L) for 1 hour prior to the addition 

of CMH dissolved in argon purged saline (2 mmol/L final concentraiton). After additional 5 

minutes, 400 µL of the solution was withdrawn into an insulin syringe and immediately 

frozen in liquid nitrogen. The formation of the stable spin label 3-methoxycarbonyl-proxyl 

(CM
.
) was determined at 77 K in a liquid nitrogen cooled dewar using an EMX ESR 

spectrometer (Bruker, Karlsruhe, Germany). The instrument settings were as follows: 

microwave frequency, 9.463 GHz; power, 20.02 mW; receiver gain, 1x105; modulation 
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amplitude, 2.010G; modulation frequency, 100 KHz; conversion time, 81.92ms; time 

constant, 327.680ms; sweep time, 41.943s; sweep width, 400G; resolution, 512 points and 3 

scans. 

 

3.11 Statistical analysis  

Data are expressed as mean ± SEM, and statistical evaluation was performed by using the 

Student’s t test for paired or unpaired data, one way ANOVA followed by a Bonferroni t test, 

or ANOVA for repeated measures, where appropriate. Values of P<0.05 were considered 

statistically significant. 
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4 Results  

Investigation of the role of eNOS serine, threonine and tyrosine residues on the regulation of 

the enzyme activity provided us with the following data. 

 

4.1 Effects of mimicking phosphorylation at specific serine residues of eNOS  

4.1.1  Effect of Ser114 or Ser633 mutations on eNOS catalytic activity and Ca²+-CaM 

dependence 

Potentially phosphorylable serine residues within the eNOS sequence were identified using 

the NetPhos 2.0 program (http://www.cbs.dtu.dk/services/NetPhos). Based on the 

phosphorylation score, with a threshold score for possible phosphorylation being 0.5, two 

serine residues on human eNOS sequence were selected for study; Ser114 (probability of 

phosphorylation = 0.994) because of its vicinity to H4B and Zn2+ binding site and Ser633 

(probability of phosphorylation = 0.987) because of its location within the auto-inhibitory 

loop located with in the FMN binding domain. 

The effect of serine phosphorylation on the activity of the enzyme can be mimicked by the 

mutation of the uncharged serine (S) to a negatively charged aspartate (D) while a non-

phosphorylatable site can be generated by replacing serine with alanine (A). To assess the role 

of phosphorylation of eNOS on Ser114 and Ser633 we generated a series of eNOS point 

mutants; S114A, S114D, S633/634A and S633D. As reported previously (Dimmeler et al., 

1999), the activity of the S633D eNOS mutant was comparable to that of the wild-type 

enzyme, it was initially decided to assess the effects of mutating both serines in the Ser633/634 

doublet to alanine. The activity of eNOS was then determined by monitoring the L-NAME-

sensitive conversion of [³H]L-arginine to [³H]L-citrulline under Vmax conditions using Triton 

X-100 soluble fractions prepared from HEK-293 cells transfected with either the wild-type 

eNOS or one of the eNOS mutants. There was no marked difference in the activity of the 

wild-type eNOS or the S114D or S633/634A mutants. However, there was a significant ~2-

fold increase in the enzymatic activity of the S114A eNOS mutant (196.28 ± 11.82%, 

P<0.001, n=6) over that of the wild-type eNOS or the S114D eNOS mutant, and between the 

S633D eNOS mutant (193.85 ± 13.33%, P<0.001, n=6) and the wild-type eNOS or the 

S633/634A mutant (Fig. 12A). Thus under Vmax conditions, the activity of the non-

phosphorylatable S114A mutant and the phospho-mimetic S633D eNOS mutant were 
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significantly higher than that of the wild-type enzyme. As the S633/634A mutant exhibited 

similar activity as the wild-type enzyme, it was excluded from the next assays. 

In intact HEK-293 cells over-expressing either the wild-type eNOS or one of the mutants, 

stimulation with ionomycin slightly increased eNOS activity but there was no significant 

difference between the ionomycin-induced increase in the activity of the wild-type eNOS and 

that of the S633D mutant. This could be explained by the fact that eNOS expressed in 

cultured cell, which may not retain all of the signalling pathways present in native endothelial 

cells is predominantly uncoupled and thus generates a lot of O2
-. Also ionomycin stimulates 

other O2
- generating enzymes. However, the ionomycin-induced increase in the activity of the 

S114A mutant was significantly greater than that of the S114D mutant and ~25% greater than 

either the wild-type enzyme or the S633D eNOS mutant (Fig. 12B).  

 

 Figure 12. Comparison of the activity of wild-type eNOS and Ser114 and Ser633 eNOS mutants in 
vitro and in situ. (A) eNOS activity was determined by monitoring the conversion of [³H]L-arginine to 
[³H]L-citrulline under Vmax conditions and using Triton X-100-soluble fractions prepared from HEK-
293 cells transfected with either wild-type (WT) eNOS or one of the S114A, S114D, S633/634A or 
S633D eNOS mutants. eNOS expression was analysed by Western blotting using a specific antibody. 
(B) eNOS activity was assessed in the presence or absence of ionomycin (0.1 µmol/L, 5 minutes) in 
intact HEK-293 cells transfected with wild-type (WT) eNOS or the S114A, S114D and S633D eNOS 
mutants Data are expressed as percent eNOS activity over the activity measured in the absence of 
ionomycin. The bar graphs represent the mean ± SEM of data obtained in four to six independent 
experiments; **P<0.01, ***P<0.001. 

 

Next, the sensitivity of the wild-type eNOS, as well as each of the S114A, S114D and S633D 

eNOS mutants to activation by Ca2+ and CaM was determined (Fig. 13). In these experiments 

eNOS proteins were expressed in HEK-293 cells and eNOS activity in the 100000g cell pellet 

determined using the citrulline assay. The advantage of using this technique is that it 

facilitates the determination of changes in the sensitivity of the enzyme to Ca2+/CaM. 
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However, all of the tested eNOS mutants (S114A, S114D and S633D) were concentration-

dependently activated by increasing concentrations of Ca2+ and CaM. Differences in the 

enzymatic activity of the eNOS mutants could not be attributed to differences in protein 

expression, as determined by Western blotting.  

Figure 13. Effect of the mutation of eNOS Ser114 and Ser633 on the Ca2+ and CaM dependency of the 
enzyme. eNOS activity was determined by monitoring the conversion of [³H]L-arginine to [³H]L-
citrulline in samples prepared from HEK-293 cells transfected with either wild-type eNOS or the 
S114A, S114D and S633D eNOS mutants. The enzymatic reaction was initiated by the addition of 
[³H]L-arginine to a reaction mixture containing different concentrations of Ca2+, CaM and Nωnitro-L-
arginine (L-NA; 100 µmol/L; black bar). Data are presented as percent activity with respect to the 
activity of the enzyme at Vmax conditions (1µmol/L CaCl2 and 1µmol/L CaM) and the bar graph 
represents the mean ± SEM of data obtained in three independent experiments.  

 

4.1.2 Effect of shear stress and bradykinin on the phosphorylation of eNOS  

To assess the basal and stimulation-dependent phosphorylation of eNOS, human endothelial 

cells were exposed to either fluid shear stress (12 dynes cm-2) or bradykinin (10 nmol/L) for 

up to 60 minutes. eNOS was basally phosphorylated on Thr495 and got dephosphorylated at 

one minute in response to bradykinin and back to basal levels in five minutes. Shear stress 

had no effect on Thr495 dephosphorylation. eNOS Ser1177 which was basally not 

phosphorylated showed a transient increase in phosphorylation (at 30 seconds and 1 minute) 

and got back to basal levels at 5 minutes. While Ser1177 got phosphorylated in response to 

shear at 10 minutes and was maintained as long as the stimuli was applied (up to 60 minutes). 
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eNOS was basally phosphorylated on Ser114 under basal conditions and there was no change 

in phosphorylation upon application of shear stress or bradykinin (Fig. 14). Interestingly the 

Triton X-100-insoluble fraction showed a decrease in the phosphorylation on Ser114 in 

response to shear, but the same was not true for bradykinin stimulation. While, under basal 

conditions Ser633 was not phosphorylated, phosphorylation was detected upon application of 

shear stress for 30 minutes which persisted as long as the cells were exposed to fluid shear 

stress i.e., for up to 60 minutes. The effect was not evident at shorter time points studied i.e. 

five and 10 minutes. However, there was no noticeable change in phosphorylation on Ser633 

upon bradykinin stimulation (Fig. 14). 

Figure 14. Effect of shear stress and bradykinin on the phosphorylation of eNOS. Confluent 
primary cultures of human endothelial cells were exposed to fluid shear stress (12 dynes cm-²) or 
bradykinin (10 nmol/L) for the time indicated. Thereafter, the cells were harvested and Triton X-100 
soluble and insoluble fractions were analyzed for eNOS phosphorylation on Ser1177, Thr495, Ser114 and 
Ser633 by Western blotting using phosphospecific antibody. The blots are representative of three 
independent experiments. 

 

4.1.3 Effect of the mutation of eNOS on NO production in intact COS-7 cells as 

measured by ESR spectroscopy  

In vitro activity assays performed in the presence of optimal concentrations of Ca2+/CaM and 

other essential cofactors cannot accurately reflect the production of NO in living cells since 

phosphorylation, sub cellular localisation and regulated protein-protein interactions can all 

affect eNOS activity (Ghosh et al., 1998; Sessa et al., 1995). Therefore, we compared the 

ability of wild-type eNOS to generate NO in intact COS-7 cells with that of the eNOS 

mutants. Recombinant adenoviruses encoding either the myc-tagged wild-type enzyme or one 

of the T475A/S1177D (TA/SD), S114A, S114D, T495A, T495D, or S633D eNOS mutants 

were used to infect COS-7 cells. The latter cells were chosen because of the need to obtain a 
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high level of protein expression and because the viruses used can replicate in HEK-293 cells, 

leading to cell lyses. In these experiments a non-phosphorylatable mutant of Thr495 (T495A), 

a phospho-mimetic mutant of Thr495 (T495D) and a highly active double mutant TA/SD were 

expressed in COS-7 cells as additional positive controls. A colloidal Fe(DETC)2 complex was 

used to trap NO as it has been shown to be specific and appropriate for detection by ESR 

spectroscopy (Kleschyov et al., 2000; Mülsch et al., 1995). NO production was assessed 

under basal conditions as well as following stimulation with ionomycin (0.1 µmol/L, 15 

minutes) by trapping with Fe(DETC)2 at 37°C.  

Figure 15. A typical ESR spectrum of the NO-Fe(DETC)2 complex. A typical ESR spectrum of the 
NO-Fe(DETC)2 complex (+/- L-NAME, 300 µmol/L) obtained by incubating Fe(DETC)2 for 30 min at 
37°C with cells expressing eNOS. The cells were scraped, frozen and measured at 77 K in a liquid 
nitrogen cooled dewar using a ESR EMX spectrometer (Bruker). The arrows indicated the triplet 
signal that is typical for NO. The intensity of the signal marked as h in the figure gives the measure of 
NO detected. 

 

Under basal (unstimulated) conditions, COS-7 cells expressing either the TA/SD, S114A, 

S114D or S633D eNOS mutants generated more NO than cells expressing the wild-type 

eNOS enzyme, or the T495A or T495D mutants (Fig. 16A). Cell stimulation with ionomycin 

(0.1 µmol/L, 15 minutes) elicited a moderate increase in NO production by all of the 

enzymes. Differences in the enzymatic activity of the mutants were not related to differences 

in protein expression, as determined by Western blotting (Fig. 16A; inset).  

As intracellular levels of H4B decrease rapidly in cultured cells (d'Uscio et al., 2003), and can 

lead to eNOS uncoupling (Landmesser et al., 2003; Smith et al., 2002), experiments were 

repeated using cells pre-treated with sepiapterin, a stable precursor of H4B. The presence of 

sepiapterin resulted in a modest increases in NO production from all the samples. However, 

the difference in the amount of NO produced under basal condition between cells expressing 

the wild-type enzyme and either of TA/SD, S114A, S114D or S633D eNOS mutants was 

-10000

-5000

0

5000

10000

15000 eNOS
eNOS+L-NAME

20G

N
O

. Fe
(D

E
TC

) 2

77K

h

-10000

-5000

0

5000

10000

15000 eNOS
eNOS+L-NAME

20G

N
O

. Fe
(D

E
TC

) 2

77K

h



Results 

 54

significantly enhanced, while the activity of the T495A and T495D eNOS mutants did not 

deviate much from that of the wild-type eNOS (Fig. 16B). Stimulation with ionomycin caused 

a moderate increase in NO production in all the samples. In contrast, stimulation of 

endothelial cells generally results in a 10-20 fold increase in intracellular cGMP levels. This 

discrepancy can most likely be attributed to the fact that cultured cells do not retain all the 

signalling pathways that regulate eNOS in primary cells. 

 

Figure 16. Effect of specific mutation of eNOS on NO production in COS-7 cells. NO production 
from intact COS-7 cells infected with wild-type (WT) eNOS or the TA/SD, T495A, T495D, S114A, 
S114D and S633D eNOS mutants in the absence (open bars) or presence (closed bars) of ionomycin 
(100 nmol/L), was assessed by NO spin trapping with Fe(DETC)2 and measured by electron spin 
resonance (ESR) spectroscopy at 77K. Experiments were performed in cells pre-treated with either 
(A) solvent or (B) sepiapterin (10 µmol/L, 24 hours). eNOS expression was analysed by Western 
blotting using an eNOS-specific antibody. The bar graphs represent the mean ± SEM of data obtained 
in three independent experiments; *P<0.05, **P<0.01, ***P<0.001 vs WT in the absence of 
ionomycin. 

 

4.1.4 Effect of specific mutation on eNOS dimer formation  

Since the treatment of eNOS expressing cells with sepiapterin caused significant increases in 

the production of NO production by the wild-type (WT) eNOS as well as the TA/SD, S114A, 

S114D or S633D eNOS mutants and H4B has been proposed to stabilise the eNOS dimer 

(Franco et al., 2004; List et al., 1997), we next determined whether or not the mutations 

studied affected the ability of eNOS to dimerise.  

Protein extracts (Triton-soluble) from COS-7 cells expressing wild-type eNOS or one of the 

TA/SD, T495A, T495D, S114A, S114D or S633D eNOS mutants were subjected to low 

temperature (LT)-PAGE and Western blot analysis. The gels were run both under reducing 

and non-reducing conditions as the displacement of Zn2+ from the eNOS dimer leads to the  
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formation of disulphide bridges between the cysteine residues of eNOS are disrupted under 

reducing conditions(List et al., 1997; Zou et al., 2002). We found that most of the eNOS 

expressed in COS-7 cells was dimeric (Fig. 17) and we were unable to detect any difference 

between the ability of the wild-type enzyme and the eNOS mutants studied to dimerise. Any 

differences observed could be attributed to differences in eNOS expression levels.  

 

Figure 17. Effect of specific mutation on eNOS dimer formation. The ability of eNOS to form 
homodimers was analysed using Triton X-100-soluble fractions prepared from COS-7 cells expressing 
either wild-type (WT) eNOS or one of the TA/SD, T495A, T495D, S114A, S114D and S633D eNOS 
mutants by low temperature PAGE (LT-PAGE) and Western blot analysis. Protein extracts (20 µg) 
were subjected to LT-PAGE in the presence (reducing) or absence (non-reducing) of 5% β-2 
mercaptoethanol. The Western blots shown are representative of data obtained in two to three 
additional experiments. 

 
To compare the ability of eNOS to dimerise in the COS-7 over expression model versus 

endothelial cells as well as to determine whether or not cell stimulation was associated with 

any change in the dimer:monomer ratio, we assessed the effects of bradykinin (1 µmol/L, 10 

seconds to 5 minutes) on eNOS dimer levels in porcine aortic endothelial cells.  

In control (unstimulated) endothelial cells, eNOS existed predominantly as a dimer although 

significantly more monomer was detected in the endothelial cells studied than in the COS-7 

cells that over-expressed eNOS. Cell stimulation with bradykinin elicited a rapid and transient 

dephosphorylation of Thr495 that was maximal at 30 seconds to 1 minute after stimulation but 

was rapidly rephosphorylated within 5 minutes; changes which have previously been linked to 

the activation of eNOS (Fleming et al., 2001). However, the bradykinin-induced activation of 

eNOS did not affect the dimer to monomer ratio in endothelial cells (Fig. 18).  
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Figure 18. Effect of bradykinin stimulation on eNOS dimer formation. To study the effect of 
bradykinin stimulation on eNOS activation and homodimers, porcine endothelial cells were stimulated 
with bradykinin (1 µmol/L) for the times indicated (10 to 300 seconds). Protein extracts (20 µg) were 
subjected to low temperature PAGE (LT-PAGE) and Western blot analysis. The bradykinin-induced 
stimulation of eNOS was evident from the dephosphorylation at Thr495 as determined by using 
phospho-specific Thr495 antibody The Western blot shown is representative of data obtained in two 
independent experiments. 

 

4.1.5 Effect of eNOS inhibitors, an NO.
 donor and radicals on eNOS dimer stability  

Treatment of endothelial cells or purified eNOS with an NO donor, ONOO- and O2
- have been 

reported to reduce the stability of eNOS dimer (Ravi et al., 2004; Stocker et al., 2004; Zou et 

al., 2002). As dimerisation is an absolute requirement for the catalytic activity of all three 

NOS isoforms (Baek et al., 1993; Klatt et al., 1995; Lee et al., 1995), we ascertained the 

effects of NO, ONOO- and O2
- on the stability of eNOS dimer in porcine aortic endothelial 

cells using LT-PAGE. Porcine endothelial cells were used for this study as the dimer to 

monomer ratio was higher than that detected in human umbilical vein endothelial cells (data 

not shown). Under control conditions, i.e. cells treated with solvent (HEPES-Tyrode) eNOS 

existed predominantly as a dimer (Fig. 19). The dimer:monomer ratio was not affected by the 

treatment of cells with the ONOO- donor; 3-morpholino-sydnonimine (SIN-1), while a high 

concentration of ONOO- (3.75 mmol/L) significantly decreased the dimer levels (34.33 ± 

1.2% vs CTL, P<0.001, n=3). The exogenous O2
--generating system; xanthine/xanthine 

oxidase (X/XO) slightly but non-significantly attenuated dimerisation (Fig. 19). The NOS 

inhibitor L-NAME (300 µmol/L, 1hour), increased basal eNOS dimerisation and under these 

conditions only ONOO- was able to affect the dimer:monomer ratio (Fig. 19). 

The mutation of eNOS did not interfere with the dimerisation of the enzyme and only a high 

concentration of ONOO- (3.75 mmol/L) was able to disrupted the eNOS dimer. This 

observation suggests that the eNOS dimer is too stable to be disrupted by the modification of 

a single amino acid.  
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Figure 19. Effect of SIN-1, ONOO-, O2
- and a NOS inhibitor on the dimerisation of eNOS. Porcine 

aortic endothelial cells were pretreated with solvent, 3-morpholino-sydnonimine (SIN-1, 1 mmol/L, 30 
minutes) xanthine/xanthine oxidase (X/XO,1 mmol/0.1U/mL, 30 minutes) and peroxynitrite (ONOO-, 
3.75 mmol/L, 10 seconds) in the absence or presence of L-NAME (300 µmol/L). Protein (20 µg extract 
from each sample) was then used to determine the ratio of eNOS dimer to monomers detected by LT-
PAGE. The bar graph summarizes the data from three independent experiments; ***P<0.001 vs. CTL. 

 

4.1.6 Effect of specific eNOS mutation on its intracellular localisation 

Given that the subcellular localisation of eNOS is known to affect its activity (Jiang et al., 

2003; Ortiz & Garvin, 2003; Sessa et al., 1995), one possible explanation for the differences 

in the activity of the eNOS mutants could be an alteration in its subcellular targeting. To 

investigate the consequence of specific mutation of eNOS on its subcellular localisation 

human umbilical vein endothelial cells were infected with recombinant adenovirus carrying 

cDNA encoding myc-tagged wild-type eNOS or one of the TA/SD, TD/SD (Fig. 20), S114A, 

S114D, T495A, T495D, S633/634A or S633D eNOS mutants (Fig. 21) and 

immunohistochemically stained with an antibody directed against myc and an appropriate 

secondary antibody conjugated with the dye Alexia 546. β-catenin was visualised to mark the 

plasma membrane. First passage endothelial cells were used as the culturing of endothelial 

cells results in the loss of certain cellular factors as well as signalling pathways that are 

important for the activation of eNOS. 
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As reported previously by others (Fulton et al., 2002), the wild-type eNOS was localised 

discretely at the plasma membrane and in the peri-nuclear Golgi apparatus (Fig. 20). There 

was no difference in the localisation pattern of eNOS mutants S114A, S114D, T495A T495D 

and S633/634A to that of wild-type eNOS. However, the phospho-mimetic S633D mutant 

showed a distinct and continuous localisation of eNOS at the plasma membrane which was 

not observed with the wild-type enzyme (Fig. 21). The TA/SD double mutant exhibited a 

similar pattern of localisation to the wild-type enzyme, while the TD/SD mutant showed a 

greater degree of eNOS staining at the plasma membrane as well as to the peri-nuclear Golgi 

apparatus to that of wild-type. However, this effect could be due to the higher level of TD/SD 

expression (Fig. 20).  
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Figure 20. Effect of mutation on Thr495 and Ser1177 on the intracellular localisation of eNOS. 
Confocal microscopy of human endothelial cells (first passage) infected with a myc-tagged wild-
type eNOS or either of the T495D/S1177D (TD/SD) or T495A/S1177D (TA/SD) eNOS mutants and 
labelled with antibodies directed against c-myc (red) and β-catenin (green). The results presented 
are representative of data obtained in three independent experiments. 
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Figure 21. Effect of specific mutations on the intracellular localisation of eNOS. Confocal 
microscopy of human endothelial cells (first passage) infected with a myc-tagged eNOS mutants 
(S114A, S114D, S633/634A, S633D, T495A and T495D) and stained with antibodies directed against 
myc (red) and β-catenin (green). The results presented are representative of data obtained in three 
independent experiments. 

 

4.1.7 Effect of specific mutation on superoxide anion (O2
-) production by eNOS 

eNOS has been reported to generate O2
- under specific conditions, particularly when the 

concentrations of L-arginine and H4B are limited (Xia et al., 1996; Xia et al., 1998) but it is 
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unclear whether or not phosphorylation-dependent regulatory mechanisms are involved in this 

process. We therefore set out to elucidate the effect of various mutations on eNOS uncoupling 

i.e. the ability of the enzyme to generate O2
-. To this end, the L-NAME (300 µmol/L)-

sensitive generation of O2
- was assessed by monitoring the formation of the stable spin label 

3-methoxycarbonyl-proxyl (CM•) in HEK-293 cells expressing either of the eNOS mutants 

S114A, S114D, TA/SD, S633D, T495A or T495D. A tracing of a typical ESR spectrum for 

CM• is shown in figure 22. 

 

Figure 22. A typical ESR spectrum of 3-methoxycarbonyl-proxyl (CM•). Representative tracing 
showing the typical ESR spectrum of 3-methoxycarbonyl-proxyl (CM•) in the presence (dotted line) or 
absence (continuous line) of L-NAME (300 µmol/L), obtained by incubating CMH for 5 minutes at 
37°C with cells expressing eNOS. The supernatant was frozen and measured at 77 K in a liquid 
nitrogen cooled dewar using a EMX ESR spectrometer (Bruker). The arrows indicated the triplet 
signal that is typical for CM• radicals. 

 

Under basal conditions the TA/SD and T495A eNOS generated more O2
- than the S633D 

S114D S114A or T495D mutants. An increase in O2
- production was observed following the 

application of L-NAME to cells expressing either the S114A or the S114D eNOS mutants a 

finding which can be attributed to the loss of basal NO production which scavenges O2
-. The 

NOS inhibitor did not affect O2
- production by the S633D or the T495D eNOS mutants. 

However, the generation of O2
- by the T495A mutant as well as the TA/SD double mutant 

was attenuated by L-NAME (Fig. 23), indicating that the phosphorylation of these residues 

may affect the ability of eNOS to generate O2
- versus NO.  
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Figure 23. Effect of specific mutation on the L-NAME-sensitive production of superoxide anions 
(O2

-) by eNOS. HEK-293 cells expressing the eNOS mutants; S114A, S114D, TA/SD, S633D, T495A 
or T495D, were treated with either solvent or L-NAME (300 µmol/L), and O2

- generation was 
assessed by monitoring the formation of the stable spin label 3-methoxycarbonyl-proxyl (CM•) using 
ESR spectroscopy. The bar graph summarizes the mean ± SEM of data obtained in four different 
experiments (each in duplicate). The inset shows a representative Western blot to demonstrate the 
equivalent expression of eNOS. 

 

To get relatively equal amounts of eNOS expressed for all the mutants studied, COS-7 cells 

were infected with recombinant adenoviruses. Significantly more O2
- was generated in cells 

expressing the non-phosphorylatable T495A mutant than in cells expressing the phospho-

mimetic T495D mutant (Fig. 24A). The additional mutation of Ser1177 to aspartate in order to 

increase electron flow through the reductase domain (McCabe et al., 2000), slightly, but not 

significantly, enhanced O2
- production. The L-NAME sensitive production of radicals by the 

T495A mutant and the wild-type enzyme were comparable; a phenomenon that can be 

accounted for by the fact that, unlike the situation in endothelial cells, eNOS is not basally 

phosphorylated on Thr495 in COS-7 cells (Fig. 24B).  
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Figure 24. Superoxide anion (O2
-) production by wild-type eNOS and eNOS mutants. (A) COS-7 

cells expressing either wild-type eNOS (WT) or the T495A, T495D or T495A/S114D (TA/SD) eNOS 
mutants were treated with either solvent (CTL) or L-NAME (300 µmol/L) and O2

- generation was 
assessed by monitoring the formation of the stable spin label 3-methoxycarbonyl-proxyl (CM•) using 
ESR spectroscopy. The bar graph summarizes the L-NAME sensitive production of O2

- measured in six 
independent experiments; *P<0.05, ***P<0.001 vs. WT. (B) Western blots showing the 
phosphorylation status of wild-type eNOS (WT) and the T495A, T495D or TA/SD eNOS mutants in 
COS-7 cells. Positive controls (+ve; unstimulated human endothelial cells in the case of Thr495 and 
cells stimulated with bradykinin for 2 minutes in the case of Ser1177) were included to demonstrate the 
sensitivity of the phospho-specific antibodies.  

  

4.2 Effect of ox-LDL on eNOS uncoupling 

Oxidative stress plays a pivotal role in the pathogenesis of vascular injury and in the 

progression of atherosclerosis. Oxidized low-density lipoprotein (ox-LDL) is reported to 

increase O2
- production in endothelial cells (Heinloth et al., 2000; Rueckschloss et al., 2001) 

and to decrease the bioavailability of NO via a process involving the lectin-like ox-LDL 

receptor-1 (Cominacini et al., 2001). Since we have previously shown that the 

dephosphorylation of eNOS on Thr495 is associated with the enhanced production of O2
- (Lin 

et al., 2003) , and animal and clinical studies have revealed a strong correlation between the 

extent of atherosclerosis and titers of auto-antibodies to epitopes of oxLDL (Cyrus et al., 

1999; Palinski et al., 1995; Salonen et al., 1992), we set out to determine whether the ox-

LDL-induced uncoupling of eNOS can be linked to changes in its phosphorylation. 

The bioavailability of eNOS-derived NO from human umbilical vein endothelial cells was 

assessed by monitoring the basal and bradykinin-induced increase in cyclic GMP. Under 

basal conditions, ox-LDL attenuated cyclic GMP production by approximately 25% while the 

bradykinin-induced increase in cyclic GMP levels was reduced by 45% (Fig. 25A). In cells 

pre-treated with SOD, basal cyclic GMP levels were significantly (2.8 ± 0.1-fold, P<0.01, 

n=8) elevated such that there was no longer a difference between the control and ox-LDL-
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treated groups. SOD however failed to completely normalize the response to bradykinin in 

cells exposed to ox-LDL (Fig. 25A).  

A low level of O2
- could be detected using lucigenin-enhanced chemiluminescence in human 

endothelial cells treated with either solvent or native LDL. Superoxide anion levels were 

however markedly increased in cells treated with ox-LDL for 24 hours (Fig. 25B). L-NAME 

attenuated O2
- production in ox-LDL-treated cells but did not significantly affect radical 

production in either solvent- or native LDL-treated cells. Similar results were obtained in cells 

stimulated with ionomycin. Superoxide dismutase (200 U/mL) attenuated the 

chemiluminescence signal in all samples indicating specificity of lucigenin to O2
- (Fig. 25C). 

As H4B is reported to influence eNOS coupling (d'Uscio et al., 2003; Tiefenbacher et al., 

1996), we assessed cellular H4B levels in the absence and presence of native-LDL or ox-LDL 

(Fig. 25D). Ox-LDL (30 µg/mL) failed to significantly attenuate H4B levels. 

Figure 25. Effect of ox-LDL on the generation of NO and O2
- by human endothelial cells. Human 

endothelial cells were pretreated with either solvent (culture medium) native LDL (nLDL) or ox-LDL 
(30 µg/mL) for 24 hours. Thereafter, the production of (A) cyclic GMP, (B and C) O2

- (lucigenin-
enhanced chemiluminescence) were assessed and (D) tetrahydrobiopterin (H4B) levels were 
determined. Experiments were performed in the absence and presence of bradykinin (10 nmol/L, 5 
minutes), superoxide dismutase (SOD, 150 U/mL), ionomycin (100 nmol/L) and Nωnitro-L-arginine 
methyl ester (L-NAME, 300 µmol/L). The bar graphs summarize the data obtained in three to eight 
independent experiments; *P<0.05, **P<0.005 vs. CTL. 
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4.2.1 Time course of the LDL-induced changes in eNOS phosphorylation 

In cultured human endothelial cells eNOS was phosphorylated on Thr495 but only weakly on 

Ser1177, as reported previously (Fleming et al., 2001). Incubation of endothelial cells with 

native LDL did not affect the phosphorylation of eNOS, while ox-LDL resulted in the time-

dependent dephosphorylation of eNOS on Thr495 (Fig. 26A). Ox-LDL concentration-

dependently dephosphorylated eNOS on Thr495, with an approximately 50% decrease in 

phosphorylation being observed using concentrations of 5 and 10 µg/mL and almost complete 

dephosphorylation occurring after 24 hours treatment with 30 µg/mL (Fig. 26B).  

  

Figure 26. Time- and concentration-dependent effects of nLDL and ox-LDL on the 
phosphorylation of eNOS. Human endothelial cells were incubated with native LDL (nLDL; 30 
µg/mL) or ox-LDL (5 to 30 µg/mL) for 2 to 48 hours and (A) the phosphorylation of eNOS on Thr495 
and Ser1177 and the phosphorylation of Akt were assessed by Western blotting with phospho-specific 
antibodies. The data were quantified relative to (B) total eNOS and the graph summarizes data 
obtained in nine to 12 independent experiments; *P<0.05, **P<0.005 vs. native LDL. (C) 
Comparison of the effects of the dephosphorylation of eNOS Thr495 by histamine (0.1 µmol/L; 30 
seconds to 5 minutes) and by ox-LDL (30 µg/mL, 24 hours) on the association of eNOS with 
calmodulin (CaM). The upper Western blot (WB) shows the stimulus-induced changes in Thr495 
phosphorylation in the same lysates used to immunoprecipitate (IP) eNOS. Identical results were 
obtained in three additional experiments. 

 

Oxidized-LDL did not alter eNOS protein expression. However there was a time-dependent 

increase in Akt phosphorylation, which was not associated with the phosphorylation of eNOS 

on Ser1177 (Fig. 26A). 
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Since dephosphorylation of eNOS on Thr495 lead to an increase in CaM binding, which in turn 

increase the turnover of NO from NOS (Fleming et al., 2001), we compared the effects of 

histamine and long-term (24 hours) stimulation of ox-LDL on the ability of CaM to bind to 

eNOS by co-immunoprecipitation. In cells maintained under control conditions, histamine 

induced the transient dephosphorylation of eNOS Thr495, which was temporally correlated 

with the association of CaM. Interestingly, although ox-LDL elicited the dephosphorylation 

of eNOS on Thr495, CaM did not associate with the enzyme (Fig. 26C).  

To determine whether or not ox-LDL interfered with agonist-mediated activation of eNOS, 

we stimulated human endothelial cells with bradykinin (100 nmol/L). In contrast to the cells 

treated with native LDL, stimulation of ox-LDL-treated cells with bradykinin did not further 

affect Thr495 phosphorylation (Fig. 27A), but it did increase the phosphorylation of eNOS on 

Ser1177. Ox-LDL-treatment also attenuated the PMA (300 nmol/L)-induced phosphorylation 

of eNOS Thr495 while slightly increasing that of Ser1177 (Fig. 27B). The ox-LDL-induced 

changes in eNOS phosphorylation were not associated with the activation of PKA or the 

AMP-activated protein kinase (data not shown).  

Loss of phosphorylation on Thr495; kinase or phosphatase involved? 

The loss of phosphorylation can be attributed to either inhibition of the activity or expression 

of a kinase or an increase in the expression or activity of a protein phosphatase. The protein 

phosphatase 1 (PP1) specifically dephosphorylates eNOS on Thr495 (Fleming et al., 2001) 

and, the PP1 inhibitor calyculin A (300 nmol/L) increased the phosphorylation of eNOS 

Thr495 in ox-LDL-treated cells (Fig. 27C). However, the dephosphorylation of eNOS was not 

associated with an increase in the expression of the phosphatases PP1 or PP2A (Fig. 27D), 

indicating the involvement of a kinase for the loss of phosphorylation on Thr495. 

Role of PKC in the ox-LDL-induced dephosphorylation of eNOS 

Since PKC phosphorylates Thr495 (Michell et al., 2001), and the response to PMA was 

attenuated in ox-LDL-treated cells, we assessed the effects of ox-LDL on PKC 

phosphorylation and activity. The PKC-pan antibody used detects PKCα, βI, βII, ζ, ε and δ 

isoforms only when phosphorylated at a carboxy terminal residue (Tyszkiewicz et al., 2004; 

Walker & Plows, 2003). 
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Figure 27. Effect of endothelial cell activation on the phosphorylation of eNOS in ox-LDL-treated 
cells. Human endothelial cells were incubated with either solvent or ox-LDL (30 µg/mL) for the time 
indicated prior to stimulation with either (A) bradykinin (10 nmol/L, 30 seconds to 5 minutes), (B) 
PMA (300 nmol/L, 5 to 30 minutes) or (C) calyculin A (CA, 10 nmol/L for 10 minutes). (D) The effect 
of ox-LDL (30 µg/mL, 24 hours) on the expression of PP1 and PP2. The Western blots shown are 
representative of data obtained in three to five additional experiments and the bar graph summarizes 
data obtained in three independent experiments. 

 

Upon activation PKC translocates from the cytosol to the plasma membrane fraction. The 

basal phosphorylation of a PKC isoform (approximately 77 kDa) was detected in the Triton 

X-100-insoluble fraction of unstimulated endothelial cells. Native-LDL failed to affect the 

phosphorylation of this enzyme while ox-LDL induced a time-dependent decrease in the 

phospho-PKC pan signal (Fig. 28A and B). A similar phenomenon was observed using an 

antibody that selectively recognizes the phosphorylated forms of PKCα/β. Although a basal 

phosphorylation of PKC was detected in the Triton X-100-soluble cell fraction, ox-LDL 

affected neither the signal obtained with the PKCpan antibody nor the selective phospho 

PKCα/β antibody (Fig. 28C). PKCα was detected in the Triton X-100-insoluble fraction from 

unstimulated endothelial cells and the signal was time-dependently decreased by ox-LDL 

(Fig. 28A). Since the molecular mass of PKCα and the signal given by the phospho-PKC 
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antibodies used were identical, PKCα appears to be the isoform that phosphorylates eNOS 

Thr495 and is targeted by ox-LDL.  

Global PKC activity was assessed by monitoring the phosphorylation of acetylated myelin 

basic protein (Ac-MBP). Ox-LDL, but not nLDL, induced a time- and concentration-

dependent decrease in PKC activity (Fig. 28D). 

 

 

Figure 28. Effect of nLDL and ox-LDL on the phosphorylation and activity of PKC in endothelial 
cells. Human endothelial cells were pretreated with either solvent (culture medium), native LDL 
(nLDL) or ox-LDL (30 µg/mL) for 8 to 24 hours. The phosphorylation of PKC was determined by 
Western blotting with phospho-specific specific antibodies (A) and quantified densitometrically (B). 
(C) Comparison of the effect of ox-LDL (30 µg/mL, 18 hours) on the phosphorylation of PKC in the 
Triton X-100-insoluble (Tx-insol) and soluble (Tx-sol) cell fractions. (D) Time- and concentration-
dependent effect of ox-LDL pre-treatment on the activity of PKC in endothelial cell lysates, as 
determined by the phosphorylation of myelin basic protein. Cells treated with PMA (1 µmol/L, 10 
minutes) served as a positive control. The graphs summarize data obtained in three to 10 independent 
experiments; *P<0.05, **P<0.005, ***P<0.001 vs. time 0 or CTL. 
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Effect of LPC on the phosphorylation of eNOS 

Lysophosphatidylcholine (LPC) a major lipid constituent of ox-LDL, can mimic the effect of 

ox-LDL on endothelial cells (Wu et al., 1998). LPC-treatment time- and concentration-

dependently decreased PKC activity and led to the dephosphorylation of eNOS Thr495. 

However, in contrast to the effects of ox-LDL, LPC also elicited the phosphorylation of Akt 

and eNOS Ser1177 (Fig. 29A). Moreover, 24 hours after application of the highest 

concentration of LPC used (100 µmol/L) eNOS expression was attenuated (data not shown).  

 

Figure 29. Time- and concentration-dependent effect of lysophosphatidyl choline (LPC) on the 
phosphorylation of eNOS. Human endothelial cells were incubated with LPC (10 to 100 µmol/L) for 
4 to 24 hours. (A) The phosphorylation of eNOS on Thr495, Ser633 and Ser1177 and Akt on Ser473 was 
assessed by Western blotting with phosphospecific antibodies. (B) Changes in the phosphorylation of 
eNOS Thr495 were quantified relative to total eNOS levels and the graph summarizes data obtained in 
six independent experiments; **P<0.005, ***P<0.001 vs CTL.  
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intracellular H4B content (Huang et al., 2000) which in turn might influence the dimer to 
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However, inhibition of eNOS with L-NAME resulted in a maximal restoration of eNOS dimer 
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under reducing as well as non-reducing conditions as the displacement of Zn2+ from the eNOS 

dimer leads to the formation of disulphide bridges between the cysteine residues of eNOS 

which gets disrupted under reducing conditions (Zou et al., 2002). However, no detectable 

differences were observed under the two conditions (Fig. 31). 

 

Figure 30. Effect of ox-LDL on eNOS dimerisation in endothelial cells. Human endothelial cells 
were pretreated in the presence or absence of ox-LDL (30 µg/mL, 24 hours) in the presence or 
absence of L-NAME (300 µmol/L). Protein extracts (20 µg) from each sample were used to determine 
eNOS dimerisation by LT-PAGE under reducing (5% β-2 mercaptaethanol) conditions. The Western 
blot shown is representative of data obtained in two separate experiments performed with different 
batches of ox-LDL and in duplicate.  

 

Figure 31. Effect of ox-LDL on eNOS dimerisation in endothelial cells. Porcine aortic endothelial 
cells were pretreated in the presence or absence of ox-LDL (30 µg/mL) for 24 hours in the presence or 
absence of vitamin C (100 µmol/L) and L-NAME (300 µmol/L). Protein extracts (20 µg) from each 
sample were used to determine eNOS dimerisation by LT-PAGE under reducing or non-reducing 
conditions. The Western blots shown are representative of data obtained in three separate 
experiments.  

 

Effect of ox-LDL on the eNOS localisation 

In endothelial cells treated with either solvent (CTL) or native LDL, eNOS was localised to 

the plasma membrane as well as to the peri-nuclear Golgi apparatus. Ox-LDL (30 µg/mL, 24 

hours) resulted in the redistribution of the enzyme within the cytosol, and the Golgi 

disintegrated and was no longer detectable at the cell membrane (Fig. 32). These observations 

are consistent with previous studies, which reported the displacement of eNOS from caveolae 

upon ox-LDL treatment, by binding to endothelial cell CD36 receptors (Shaul, 2003) 
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Figure 32. Effects of nLDL and ox-LDL on the intracellular localisation of eNOS. 
Immunohistochemical staining of eNOS (red) and β-catenin (green) in human endothelial cells 
pretreated with either solvent (CTL), native LDL (n LDL; 30 µg/mL) or ox-LDL (30 µg/mL) for 24 
hours. The results presented are representative of data obtained in three independent experiments.  

 

4.3 The role of tyrosine phosphorylation in the regulation of eNOS activity 

Although eNOS can be tyrosine phosphorylated and endothelial NO production can be 

modulated by inhibitors of tyrosine kinases as well as tyrosine phosphatases (Fleming et al., 

1996a; Fleming et al., 1998; Takenouchi et al., 2004), almost nothing is known about the 

residues which are phosphorylated or the kinases which are involved. The consequences of 

the tyrosine phosphorylation of eNOS are unknown but are perhaps more likely to be related 

to the docking of associated scaffolding and regulatory proteins than to alterations in eNOS 

activity directly. As preliminary data indicated that both fluid shear stress (which increases 

eNOS activity) and insulin (which generally has no effect on NO production) elicit the 

tyrosine phosphorylation of eNOS (Fisslthaler, unpublished observations), we decided to 

determine the role of tyrosine phosphorylation on the regulation of eNOS. Since two different 

software programmes the NetPhos 2.0 (4 potentially phosphorylatable tyrosine residue) and 

DISPHOS (http://www.ist.temple. edu/DISPHOS, no phosphorylatable tyrosine residue) 

program gave contradicting results we decided to study tyrosine residues based on their 

location (Fig. 33). 
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Figure 33. Scheme showing the organisation of eNOS (human sequence) and tyrosine residues. The 
following tyrosine residues Tyr210, Tyr217, Tyr357, Tyr467, Tyr534, Tyr556, Tyr597, Tyr657, Tyr900 and Tyr939 
based on there location in the eNOS Tyr357 in the arginine binding region, Tyr556 and Tyr657 in FMN 
binding domain and Tyr939 in FAD binding domain, which can potentially be phosphorylated and play 
a role in eNOS regulation.  

 

A number of tyrosine kinases e.g., Src (Cheng et al., 2002; Okuda et al., 1999) and Src-family 

kinases (Davis et al., 2001; Davis et al., 2004), focal adhesion kinase (FAK) (Li et al., 1997; 

Takahashi et al., 1997) and PYK2 (Cheng et al., 2002; Tai et al., 2002) are reported to be 

activated in response to the application of fluid shear stress and/or cyclic stretch to endothelial 

cells. Fluid shear stress is reported to induce the tyrosine phosphorylation of eNOS as well as 

that of PECAM and as a Src or Src-family kinase-dependent has been implicated in the 

tyrosine phosphorylation of PECAM (Cao et al., 1998; Osawa et al., 1997) we next 

determined the time course of Src activation in primary cultures of endothelial cells.  

Effect of fluid shear stress on the tyrosine phosphorylation of Src and PYK2 

The effect of shear stress on the activity of the tyrosine kinase Src, or rather on the 

dephosphorylation of the inhibitory tyrosine residue Tyr527, was assessed in primary cultures 

of porcine aortic endothelial cells. We observed a time-dependent dephosphorylation of Tyr527 

that was significant 5 minutes after the application of shear stress and increased over 

experimental period studied (up to 30 minutes) indicating an increase in the activity of Src 

Fig. 34). 
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Figure 34. Effect of fluid shear stress on the tyrosine phosphorylation of Src. Confluent primary 
cultures of porcine aortic endothelial cells were exposed to fluid shear stress (12 dynes cm-²) for the 
time indicated. Thereafter, the cells were harvested and Src phosphorylation on Tyr527 was analyzed 
by Western blotting with a specific antibody. The same blot was then stripped and reprobed for Src. 
The bar graph summarizes data obtained in four independent experiments; *P<0.05, **P<0.005 
versus static condition. 

 

The application of hemodynamic stimuli to endothelial cells is reported to activate Src which 

in turn activates PYK2 (Cheng et al., 2002), we determined the effect of shear stress on PYK2 

activation. Shear stress was also associated with a slight increase in the phosphorylation of 

PYK2, however a significant effect was only detected after approximately 60 minutes (Fig. 

35).  
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Figure 36. Effect of fluid shear stress on the phosphorylation of PYK2. Confluent primary cultures 
of human umbilical vein endothelial cells were exposed to fluid shear stress (12 dynes cm-²) for up to 
2 hours. Thereafter, the cells were harvested, PYK2 was immunoprecipitated and its tyrosine 
phosphorylation determined using a phospho-specific antibody. The bar graph summarizes the data 
obtained in three independent experiments; *P<0.05 versus static condition. 

 

In contrast to the weak effect observed on the tyrosine phosphorylation of total cellular 

PYK2, we observed a pronounced shear stress-induced association of PYK2 with eNOS. 

While only low levels of PYK2 co-precipitated with eNOS from cells maintained under static 

conditions there was an increase in the physical association of the two proteins that remained 

intact as long as cells were exposed to fluid shear stress i.e., for up to 2 hours (Fig. 36).  

 

Figure 36. Effect of fluid shear stress on the association of eNOS with the tyrosine kinase PYK2. 
Confluent primary cultures of porcine aortic endothelial cells were either maintained under static 
conditions or exposed to fluid shear stress (12 dynes cm-²) for up to 2 hours. eNOS was 
immunoprecipitated and the association of PYK2 determined by Western blotting. The bar graph 
summarizes the data obtained in four to 10 independent experiments; *P<0.05, **P<0.01 versus 
static condition. 

 

Phosphorylation of eNOS by the tyrosine kinase PYK2 and Src 

To determine whether or not PYK2 and Src were able to tyrosine phosphorylate eNOS in 

intact cells, HEK-293 cells were co-transfected with eNOS and either PYK2 or Src. 

Immunoprecipitation of either eNOS (Fig. 37A) or phosphotyrosine (Fig. 37B) revealed that 

both kinases are able to phosphorylate eNOS in intact cells. To directly identify the tyrosine 

residues phosphorylated, eNOS recovered from PYK2-overexpressing HEK-293 cells, was 
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digested with trypsin, and subjected to MALDI-Mass spectroscopic (Toplab, Martinsried, 

Germany) analysis which revealed the phosphorylation of eNOS on Tyr657 which is located in 

the FMN binding region in the reductase domain of eNOS. 

 

 

Figure 37. Phosphorylation of eNOS by the tyrosine kinases PYK2 and Src. HEK-293 cells were 
transfected with eNOS alone (CTL) or in combination with either PYK2 or Src. After 48 hours the 
cells were lysed and either (A) eNOS or (B) tyrosine phosphorylated (P-Tyr) proteins were 
immunoprecipitated. Blots were then probed with either anti-P-Tyr or anti-eNOS antibodies to 
determine the tyrosine phosphorylation of eNOS. Similar results were obtained in three independent 
experiments.  

 

Effect of the mutation of Tyr657 residues on the activity of eNOS and dimer formation 

The consequences of tyrosine phosphorylation on eNOS activity and subcellular localisation 

where then studied using eNOS mutants in which Tyr657 was mutated to the phosphomimetic 

amino acids aspartate (D) or glutamate (E) or the non-phosphorylatable phenylalanine (F). 

The sensitivity of the wild-type eNOS, Y657D, Y657E and Y657F eNOS to Ca2+/CaM was 

then determined by monitoring the L-NAME sensitive conversion of [³H]L-arginine to [³H]L-

citrulline. While the wild-type eNOS and the Y657F mutant demonstrated a similar 

dependency on Ca2+ and CaM, the Y657D and Y657E eNOS mutants were completely 

inactive at all concentrations (Fig. 38).  
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Figure 38. Effect of the mutation of Tyr657 on the activity of eNOS. eNOS activity was determined by 
monitoring the Nω-nitro-L-arginine sensitive conversion of [³H]L-arginine to [³H]L-citrulline in 
samples prepared from HEK-293 cells transfected with eNOS wild-type (WT) or the Y657D, Y657E 
and Y657F eNOS mutants. The bar graph summarizes data obtained in two experiments.  

 

Using NO spin trapping and ESR spectroscopy, the same phenomenon was observed in intact 

HEK-293 cells expressing wild-type eNOS, or either one of the Y657D, Y657E or Y657F 

eNOS mutants. A slight decrease in NO production was detected in cells expressing the 

Y657F mutant compared to that of wild-type eNOS which was correlated with a consistently 

lower recovery of the Y657F eNOS mutant in Triton X-100 lysis buffer. The Y657D and 

Y657E eNOS mutants were completely inactive (Fig. 39) and stimulation with ionomycin 

failed to affect NO production. 
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Figure 39. Effect of the mutation of Tyr 657 on NO production. NO. production from intact HEK-293 
cells transfected with the eNOS WT or the Y657D, Y657E and Y657F eNOS mutants was determined 
by NO. spin trapping with Fe(DETC)2 and measured by ESR spectroscopy at 77K. Experiments were 
performed in cells pretreated with sepiapterin (10 µmol/L). eNOS expression was analysed by Western 
blotting using an eNOS-specific antibody. The bar graph summarizes data obtained in three 
independent experiments.  

 

To determine whether the lack of activity of the Y657D and Y657E eNOS mutants was 

related to the inability of the enzyme to dimerise we performed LT-PAGE. No consistent 

difference in the ability of the wild-type eNOS and Y657D or Y657F eNOS mutants to 

dimerise was detected, although the Y657E eNOS mutant showed a tendency towards a 

greater degree of dimer disruption (Fig. 40), this effect can most probably be attributed to a 

difference in protein expression. The recovery of eNOS mutants in Triton X-100 lysis buffer 

or SDS-PAGE sample buffer showed Y657E was more resistant to Triton X-100 lysis buffer, 

than the wild-type or the Y657D and Y657F eNOS mutants. Upon preparing the protein 

extract with SDS-PAGE sample buffer relatively more protein was detected for Y657E, 

indicating that this eNOS mutant get localised in the Triton X-100 insoluble fraction (Fig. 41). 
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Figure 40. Effect of the mutation of Tyr657 on 
eNOS and dimer formation. Western blot 
showing the effect of the Tyr657 mutation on eNOS 
dimer formation as determined by LT-PAGE. The 
data shown are representative of two 
independent experiments. 
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Intracellular localisation of wild-type eNOS and the Y657D and Y657E mutants 

To determine whether or not the wild-type and Tyr657 eNOS mutants localised to the same 

intracellular compartments, immunohistochemical analysis was performed. Human umbilical 

vein endothelial cells were infected with recombinant adenovirus carrying cDNA encoding 

myc-tagged wild-type eNOS or one of the Y657D, Y657E or Y657F eNOS mutants (Fig. 42) 

and immunohistochemically stained with an antibody directed against myc and an appropriate 

secondary antibody conjugated with the dye Alexia 546. β-catenin was visualized to mark the 

plasma membrane. The wild-type eNOS was localised discretely at the plasma membrane and 

in the peri-nuclear Golgi apparatus. Of the two phosphomimitic mutants Y657D and Y657E, 

the latter showed a greater degree of eNOS localisation in the cytoskeletal compartments. 

This would well explain the low levels of Y657E detection by Western blotting using Triton-

X 100 soluble fraction from cells overexpressing this eNOS mutant. The Y657F mutant 

localised in a much diffused pattern in the Golgi apparatus and around the nucleus. 

Effect of the mutation on additional tyrosine residues on the activity of eNOS  

As mentioned earlier, two different stimuli, shear stress (which results in an increase in eNOS 

activity) and insulin (which has no effect on NO production) elicit the tyrosine 

phosphorylation of eNOS but with opposite effects, indicating the possible involvement of 

more than one tyrosine residue. We screened other tyrosine residues which would be involved 

in the regulation of eNOS. Additional tyrosine residues, which could regulate eNOS activity, 

were determined by citrulline assay. Mutation of either of theTyr357, Tyr534, Tyr556 and Tyr939 

tyrosine residue of eNOS to Ala proved to be lethal to the activity of the enzyme, while eNOS 
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Figure 41. Effect of the mutation of Tyr 657 on the 
Triton solubility of eNOS. Protein extracts (20 µg) 
from HEK-293 cells transfected with eNOS WT or 
the Y657D, Y657E and Y657F eNOS mutants, were 
used to determine the effect of the eNOS tyrosine 
mutation on the Triton X-100 solubility of the 
enzyme. Total eNOS expression was determined by 
treating the samples with Laemmli buffer (7.3% w/v 
SDS) and analyzed by Western blotting using eNOS 
specific antibody. The blot is representative of four 
independent experiments. 
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Figure 42. Comparision of the intracellular localisation of wild-type eNOS and the Y657D, Y657E 

and Y657F mutants. Immunohistochemical staining of myc (red) and β-catenin (green) in human 

endothelial cells (first passage) infected with a myc-tagged wild-type eNOS (WT) or the Y657D, 

Y657E and Y657F eNOS mutants for 48 hours. The results presented are representative of data 

obtained in three independent experiments.tyrosine residue Tyr210, Tyr217, Tyr597 and Tyr900 

mutated to Ala were at least 100% more active than the wild-type, with Tyr900 Ala mutants 

showing a maximum increase of approximately 400% (Fig. 43).  
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Figure 43. Effect of the mutation of specific tyrosine residues on eNOS activity. HEK-293 cells were 
transfected with wild-type eNOS (WT) or one of the Y210A, 217A, Y357A, Y467A, Y534A, Y556A, 
Y597A, Y900A and Y939A tyrosine to alanine mutants. Thereafter eNOS activity was assessed by 
monitoring the conversion of [³H]L-arginine to [³H]L- citrulline under Vmax conditions (1 µmol/L 
CaCl2 and 1 µmol/L CaM. The bar graph summarizes data obtained in three experiments and 
corrected to the protein expressed. nt: non-transfected control. 

 

The work done with the eNOS tyrosine residues (40% of the total tyrosine residues were 

studied) have provided evidence for the involvement of the putative tyrosine residues whose 

phosphostatus could modulate the activity of eNOS. Since some of the alanine mutants 

completely inhibited the activity of the enzyme, and while some others increased the activity 

by at least 100%, it is possible that more than two tyrosine residues might regulate the activity 

of eNOS with opposing effects. Clearly much further work needs to be done to establish the 

physiological relevance of these tyrosine residues, and the signalling pathway involved for 

their phosphorylation and/or dephosphorylation.  

Conclusion: The data with tyrosine mutants clearly indicate the potential importance of Tyr657 

for the regulation of eNOS activity, as Tyr657 mutated to a phosphomimetic aspartate or 

glutamate completely inactivated the enzyme. Recent published data (Garcin et al., 2004) on 

the structure of reductase domain of eNOS goes a long way to explaining why this residue is 

critical, given its involvement in the correct positioning or “stacking” of the FMN on FAD so 

that electron transfer can take place.  
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5 Discussion 

The findings of this study highlight the central role of phosphorylation in the regulation of the 

function of eNOS. We have demonstrated the consequences of phosphorylation on the 

activity of eNOS and identified the amino acid residues which can modulate eNOS activity to 

either produce NO, or lead to eNOS uncoupling i.e. the flow of electrons in the eNOS dimer 

does not result in the formation of NO but reactive oxygen species (ROS) which reacts with 

NO to generate RNS.  

In unstimulated endothelial cells eNOS is phosphorylated on Thr495 and no phosphorylation is 

detected on Ser1177. The role of Ser1177 and Thr495 in the regulation of eNOS has been well 

documented. Upon activation by various stimuli such as bradykinin, VEGF etc, Thr495 is 

rapidly dephosphorylated while there is a concomitant increase in Ser1177 phosphorylation. 

Not much is known about the other phosphoryatable residues on eNOS which can regulate the 

enzyme activity. We have identified two phosphorylation sites; Ser114, within the vicinity of 

Zn2+ and H4B binding sites and Ser633 in the putative CaM autoinhibitory sequence (586–641) 

within the FMN binding domain of eNOS, whose phospho-status influenced the enzyme 

activity.  

Previous reports suggest that eNOS stimulation with fluid shear stress resulted in an increase 

in serine and tyrosine phosphorylation as evident from 2D gel analysis (Dimmeler et al., 

1999) (Fissithaler et al., 2000) as well as mass spectroscopic analysis, which revealed the 

existence of at least two serine residues which gets phosphorylated (Gallis et al., 1999). Based 

on the location and the probability of phosphorylation as predicted by NetPhos 2.0 

programme, we identified serine residues Ser114 and Ser633 for our study. 

Gallis et al (Gallis et al., 1999) reported that fluid shear stress stimulates the phosphorylation 

of Ser1177as well as that at Ser114 but that these events were mediated by two different kinases, 

Akt/PKB and a proline- directed protein kinase respectively. The regulatory consequences of 

Ser114 phosphorylation are almost entirely unknown. Our preliminary experimental data on 

the enzyme activity using the citrulline assay revealed that the activity of wild-type eNOS and 

the S114D mutant was almost the same, while the S114A mutant showed a two-fold increase 

in its activity, compared to the S114D mutant or wild-type enzymes. This gave us the first 

indication of the involvement of this site in enzyme activity. Since it is proposed that multiple 

sites of phosphorylation contribute to NO formation and activity assays performed with 

protein extracts may be misleading until the mutants are examined in an appropriate cellular 

environment, we performed the activity assay and direct NO measurement by ESR 
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spectroscopy at either basal or elevated [Ca2+]i concentrations in intact HEK-293 cells and 

COS-7 cells overexpressing the protein in study. Under basal conditions there was no 

difference in the activity of wild-type eNOS, S114A and the S114D mutants, but upon 

stimulation with ionomycin, the S114A mutant exhibited a higher activity than either the 

wild-type eNOS or the S114D mutant as measured with citrulline assay. Surprisingly, cells 

expressing the S114A and S114D eNOS mutants released almost equal amounts of NO and 

were twice as active as the wild-type enzyme when NO was assessed by ESR spectroscopy. 

These findings regarding the S114A eNOS mutant were independently confirmed by Kou et 

al (Kou et al., 2002), who reported that the activity of wild-type eNOS was similar to that of 

the S114A mutant under basal conditions, and was significantly enhanced upon stimulation 

with a calcium ionophore. However, their study lacked the S114D mutants, which would have 

been ideal in studying the consequence of phosphorylation on this serine residue. On the basis 

of the data obtained with this mutant on direct NO production, surprisingly both S114A and 

S114D made similar amounts of NO. Also both the mutants produce higher amounts of NO 

than the wild-type enzyme or an active double mutant TA/SD. The inhibition of the S114A 

and S114D mutants with L-NAME resulted in an increase in O2
- production as measured by 

spin labelling with CMH, due to the loss of the scavenging effect of NO on O2
-. Also no 

changes in phosphorylation on Ser114 were observed on stimulating the cells with shear stress 

or bradykinin.  

It is presently not clear whether the importance of Ser114 is actually conferred by changes in 

its phosphorylation status as evident from the same amount of NO released from both the 

S114A and S114D mutants. It may be possible that Ser114 will determine the phospho-status 

of other amino acids. Recent reports have suggested that S114A promoted a greater 

interaction with Hsp-90 and Akt and an enhanced Ser1177 phosphorylation (Bauer et al., 

2003). 

The mechanisms whereby Ser114 modulates eNOS enzyme activity remain to be determined. 

Some clues may be derived from inspecting the crystal structure of eNOS in the vicinity of 

Ser114; which is the region that includes sites for Zn2+ ligation and H4B binding, both of which 

stabilizes the dimer. The Zn2+ is tetrahedrally coordinated by four cysteine residues, two from 

each subunit (Cys94-Cys99) forming a zinc tetrathiolate (ZnS4) cluster, (Fischmann et al., 

1999; Li et al., 1999; Raman et al., 1998) (Fig. 43). The residue Ser102 helps in the binding of 

H4B (Li et al., 1999). Disruption of ZnS4 cluster by S-nitrosylation (Ravi et al., 2004) or by 

ONOO- (Zou et al., 2002), and also depletion of H4B (List et al., 1997) result in an unstable 

eNOS dimer . This eNOS dimer monomerises under reducing condition due to the disruption 
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of the disulphide bridges. However, Ser114 mutated to Ala or Asp did not interfere with the 

dimerisation of eNOS, suggesting that Ser114 may not critically interfere with Zn2+ or H4B 

binding. 

 

Our findings on Ser114 contradict findings by other groups (Kou et al., 2002) attributing a role 

for Ser114 phosphorylation in the regulation of eNOS which we dispute and conclude that this 

residue might not be directly relevant in the regulation of eNOS by phosphorylation. 

Ser633 is situated in the autoinhibitory loop which impart part of the Ca2+ dependency of the 

constitutively expressed NOS isoforms. The putative auto-inhibitory loop which has been 

speculated to interfere with binding of CaM with the CaM binding peptide is present only in 

nNOS and eNOS and, interestingly, Ser633 is conserved only in human, mouse, and bovine 

eNOS, but not in nNOS (Butt et al., 2000; Garcin et al., 2004; Salerno et al., 1997). Deletion 

of the auto-inhibitory loop increased the activity of the Ca2+-dependent enzyme. In previous 

studies it was reported that the activity of S633D eNOS mutant was similar to that of wild-

type enzyme when determined with the citrulline assay in lysates from transfected cells as 

well as by assessing nitrate accumulation (Dimmeler et al., 1999; Fulton et al., 1999). Ser633 

has been reported to be phosphorylated in vitro by PKA and PKG (Butt et al., 2000), but the 

functional relevance of Ser633 in regulating eNOS activity in intact cell system has not been 

addressed so far. Keeping this in mind, we decided to reassess the role of this residue in 

regulating eNOS activity in intact cell system. 

 

Figure 43. Zinc thiolate cluster of 

eNOS. Crystal strcuture of eNOS 

showing the zinc thiolate cluster (C94 

and C99) and the interaction with heme 

and tetrahydrobiopterin (H4B). Modified 

from Raman et al, Cell 1998; 95: 939-

950. 
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Using three different methods we examined the effects of the mutation of Ser633 to aspartate 

(S633D) on eNOS activity by performing citrulline assays using cell lysates, in intact cells 

overexpressing the wild-type and mutant eNOS enzymes and by directly measuring NO 

production from intact cells with the aid of ESR spectroscopy. Studies using cell lysates 

obtained from transfected cells showed that the abilities of the S633D mutant and wild-type 

eNOS to convert L-arginine to L-citrulline were similar (Bauer et al., 2003; Dimmeler et al., 

1999). In contrast, with the aid of the citrulline assay and ESR spectroscopy we observed that 

in intact cells under basal conditions the S633D eNOS mutant was twice as active as the wild-

type enzyme. These apparent differences can most probably be attributed to the experimental 

conditions employed. The other groups employed nitrate accumulation over a period of 24 

hours to determine the enzymatic activity and nitrate in the cells cannot be solely attributed to 

eNOS activity. However, we were careful in selecting NO spin trapping using Fe-DETC for 

determining NO release from the cells, which gives a direct measure of NO release. In intact 

cells or in broken cell lysates, eNOS interacts with many regulatory proteins such as caveolin, 

Hsp90, and numerous other factors (Boo & Jo, 2003; Fleming et al., 2001; Fulton et al., 2001) 

which could play a role in the activity of the enzyme. We did not see any change in the Ca2+ 

sensitivity for S633D mutant using 100,000 g pellet and citrulline assay but Boo et al have 

reported Ser633 to be Ca2+ insensitive (Boo et al., 2002; Boo et al., 2003) which they observed 

by determining the total nitrate content from intact cells. It could also be due to the fact that 

phosphorylation of Ser633 by PKA and PKG enhanced the Vmax of eNOS activity in the 

presence of Ca2+/CaM, which would explain our result as we determined the enzyme activity 

over a period of 30 minutes, which would have been too long to detect small differences 

between the eNOS wild-type and the S633D mutant. 

Stimulation of human endothelial cells with shear stress resulted in an increase in the 

phosphorylation on Ser633 at 30 minutes and remained phosphorylated as long as shear was 

applied up to 60 minutes which suggest the physiological relevance of this residue in the 

regulation of the eNOS enzyme.  

Based on our finding and other work reported during our study, the physiological implication 

of eNOS phosphorylated at Ser633 can be as follows. Shear stress elicits the biphasic 

production of NO so that responses generally consist of an initial short NO burst phase 

followed by a maintained phase where the levels of NO are maintained at levels two to three 

times higher than the basal levels (Fleming et al., 1997; Kuchan & Frangos, 1994). The initial 

NO burst phase is characterised by a transient increase in the levels of intracellular Ca2+ 

(Ayajiki et al., 1996; Corson et al., 1996) leading to a Ca/CaM dependent activation of eNOS, 
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which is associated with the transient dephosphorylation of Thr495 and phosphorylation of 

Ser1177 by CaMKII (Fleming et al., 2001) or Akt (Dimmeler et al., 1998; Fulton et al., 1999; 

Michell et al., 1999). As a result the levels of NO are maintained at levels much higher than 

basal over a period of time. Ser633 has been reported to become phosphorylated in a PKA-

dependent manner upon exposing endothelial cells to shear stress for 30 minutes (Boo et al., 

2002), roughly corresponding to the beginning of the second phase of NO production in 

response to shear (Frangos et al., 1996). Therefore it can be suggested that the Ser633 

phosphorylation may be responsible for the long-term potentiation of eNOS activation that 

persists at basal Ca2+ levels beyond peak activation, resulting in a low level of NO production 

which may play a critical role in the atheroprotective role of chronic shear stress. 

Many studies have demonstrated a link between the localisation and activity of eNOS. We 

studied the influence of eNOS mutants on this link. There was no marked difference between 

the mutants studied, wild-type eNOS and TA/SD, TD/SD, S114A, S114D, or S633/634A, all 

of them localising at the plasma membrane and at the perinuclear Golgi apparatus. However, 

S633D showed a greater localisation at the plasma membrane.  

With respect to the possible molecular mechanism underlying Ser633 phosphorylation-

dependent activation of eNOS, studies by Salerno et al (Salerno et al., 1997) presented 

evidence for an auto-inhibitory control element, a 45-amino acid insert located near the CaM-

binding region of only constitutive NOS forms (eNOS and nNOS), not iNOS. The 

autoinhibitory region is postulated to stabilise an inhibited NOS conformation. Binding of 

CaM could cause displacement of the auto-inhibitory element, thereby evoking a 

conformational change of eNOS to support activation. The auto-inhibitory domain is notably 

rich in positively charged amino acid residues, especially in the case of eNOS which contains 

the sequence RRKRK (Lane & Gross, 2000) immediately before Ser633. Phosphorylation of 

Ser633 would increase the negative charge in the autoinhibitory domain, and could thereby 

facilitate displacement of this domain from the site with which it interacts, thus partially 

activating NOS in the absence of Ca2+/CaM, as well as facilitating Ca2+/CaM binding and 

enhancing maximal NOS activity. Based on CaM binding and displacement of auto-inhibitory 

element its tempting to propose a cooperation between Ser633 and Thr495. This scenario is 

however unlikely as the dephosphorylation on Thr495 is transient and rapid which is evident 

within the first 3 minutes of stimuli application, the phosphorylation on Ser633 is evident only 

at 30 minutes. Although eNOS uncoupling has received a lot of interest, the mechanisms 

involved are not entirely clear and very little is known about the role of phosphorylation in 

regulating eNOS uncoupling. Here we report the identification of Thr495, as a potential 
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“phospho switch” for eNOS uncoupling. Oxidized-LDL was identified as a 

pathophysiological stimuli and PKCα as the kinase responsible for the phosphorylation of 

Thr495. Stimulation of eNOS with ox-LDL led to a decrease in the basal phosphorylation on 

Thr495 with a consequential increase in O2
- production as a result of eNOS uncoupling. The 

importance of this residue in the ability of eNOS to generate O2
- was evident from the fact 

that a non-phosphorylatable T495A eNOS mutant generated more O2
- than the phospho-

mimetic T495D eNOS mutant does. 

As eNOS has been reported to uncouple and produce O2
- during endothelial dysfunction, we 

were interested in elucidating if there was any eNOS residue involved whose phosphostatus 

determined whether eNOS makes NO or O2
-. Lin el al (Lin et al., 2003) had previously 

reported that dephosphorylation of eNOS on The495 is associated with the enhanced 

production of O2
-. It has also been shown by other investigators that exposure of endothelial 

cells to ox-LDL results in the formation of ROS, although the source of these species remains 

an area of uncertainty (Cominacini et al., 2001). Our study with the eNOS mutants expressed 

in COS-7 cells indicated the involvement of Thr495 in O2
- production. 

Based on previous reports and on our findings it is tempting to postulate that the 

dephosphorylation of Thr495 leads to eNOS uncoupling. We initially observed that the 

dephosphorylation of Thr495 elicited by down regulating of PKC by long-term treatment with 

PMA was previously found to enhance rather than attenuate NO production by eNOS 

(Fleming et al., 2001). This gave us a hint for the involvement of other factors involved in the 

regulation of eNOS activity. While dephosphorylation of Thr495 is associated with a 

concomitant increase in the binding of CaM to eNOS (Fleming et al., 2001), surprisingly 

eNOS dephosphorylated by ox-LDL at Thr495 failed to associate CaM, but histamine 

stimulation of eNOS led to transient binding of CaM to eNOS which was very short-lived as 

the level of CaM returned to levels as observed in ox-LDL treated eNOS with in 1 minute. 

However, this would make a good argument for eNOS-dependent O2
- generation. As CaM 

binding results in an increased flow of electrons from the reductase domain to the oxygenase 

domain(Abu-Soud & Stuehr, 1993; Matsuda & Iyanagi, 1999), this loss in the ability of eNOS 

to bind to CaM could possible result in a state where the electrons are flowing through the 

reductase domain but are not able to cross over to the oxygenase domain for the effective 

generation of NO. Under such conditions the electron is accepted by O2 leading to radical 

formation (Stuehr et al., 2001), which was exactly what was observed with ox-LDL treated 

endothelial cells. 
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There has been a lot of discrepancy in the reports on the effect of ox-LDL on Ser1177 

phosphorylation as well as on the kinases involved. This can be attributed to the diverse 

concentration of ox-LDL employed in such studies, ranging from 5 to 250 µg/ml and the 

duration of the stimulation. In our study we used a maximal concentration of 30 µg/mL. A 

transient enhanced phosphorylation of Ser1177 has been reported in endothelial cells exposed 

to higher concentration of ox-LDL (150 µg/mL), we failed to see the same with 30 µg/mL, 

while similar levels of ox-LDL levels were found to attenuate eNOS Ser1177 phosphorylation 

in VEGF-stimulated endothelial cells and, thus, to inhibit cell migration (Chavakis et al., 

2001). However, we found no significant attenuation of the bradykinin-induced 

phosphorylation of Ser1177 in cells pre-treated with ox-LDL. This latter discrepancy may be 

explained by the fact that the kinases activated by the two stimuli that mediate the 

phosphorylation of eNOS on Ser1177 are distinct; VEGF-induced phosphorylation is Akt-

dependent, while the phosphorylation induced by bradykinin is CaM kinase II-dependent 

(Fleming et al., 2001). While such observations indicate that ox-LDL differentially affects 

Akt-mediated cell signalling, we found that ox-LDL treatment resulted in modest, but 

significant, time- and concentration-dependent activation of this kinase without a concomitant 

increase in eNOS Ser1177 phosphorylation, rather than the dephosphorylation and 

inactivation of Akt reported previously (Chavakis et al., 2001). 

The loss of phosphorylation of eNOS Thr495 as a result of ox-LDL stimulation can be the 

consequence of either the down-regulation/inhibition of a kinase or an up-

regulation/activation of a phosphatase. The phosphatase involved in the dephosphorylation of 

Thr495 is thought to be PP1 (Fleming et al., 2001; Michell et al., 2001), but although the PP1 

inhibitor, calyculin A , was able to increase Thr495 phosphorylation in ox-LDL treated cells, 

we found no evidence to suggest that its activity or expression was increased by ox-LDL. 

Harris et al have reported that the serine/threonine phosphatase, calcineurin (PP2B) can also 

dephosphorylate eNOS Thr495 (Harris et al., 2001), but this is not a universally observed 

phenomenon (Fleming et al., 2001; Michell et al., 2001). Moreover, since this phosphatase is 

sensitive to inhibition by O2
- (Namgaladze et al., 2002), ox-LDL would be expected to result 

in a decrease rather than an increase in its activity. Therefore, our data indicate that ox-LDL-

induced dephosphorylation of eNOS Thr495 can be attributed to the down- 

regulation/inactivation of a kinase. 

eNOS is reported to be basally phosphorylated on Thr495 by a constitutively active kinase 

most probably PKC (Fleming et al., 2001; Matsubara et al., 1996; Michell et al., 2001), a 

finding that can account for the fact that protein kinase inhibitors and the down-regulation of 
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PKC attenuate the phosphorylation of this residue. The inhibition and down-regulation of 

PKC were also associated with a marked increase in endothelial NO production, which is 

consistent with a negative regulatory role of Thr495 on CaM binding and eNOS activity 

(Davda et al., 1994; Hirata et al., 1995). Mukherjee et al (Mukherjee et al., 2001) have 

reported that ox-LDL stimulates PKC activity, in contrast, our data clearly demonstrate that a 

constitutively active isoform of PKC is targeted by ox-LDL and that this effect underlies the 

ox-LDL-stimulated Thr495 dephosphorylation of eNOS. Indeed, the dephosphorylation of 

Thr495 was temporally correlated with a decrease in the phosphorylation and activity of PKC 

in ox-LDL-treated endothelial cells. The PKC isoform targeted by ox-LDL was tentatively 

identified as PKCα on the basis of its molecular mass and the fact that the same signal was 

obtained using three different antibodies. So far there has not been any report on the PKC 

isoform involved, ours is the first study which has identified the PKC isoform involved in 

Thr495 phosphorylation. Whether PKCα forms part of the eNOS signalosome remains to be 

determined, as this analysis is hampered by the fact that the activated PKC is detergent-

insoluble. However, eNOS can also be detected in the Triton-insoluble cell fraction and the 

bradykinin- as well as the fluid shear stress- induced increase in NO production has been 

linked to a change in the solubility of eNOS (McCabe et al., 2000; Venema et al., 1996b). 

Oxidized-LDL has previously been reported to acutely increase (within 15 minutes) the 

activity of PKCα in coronary artery smooth muscle cells (Giardina et al., 2001) and to 

increase global PKC activity (over 24 hours) in coronary endothelial cells by activating the 

LOX-1 receptor (Li et al., 2003). Clearly, our results are in direct contrast with the results of 

this study. The reasons for this apparent contradiction can most likely be attributed to the 

differences in the concentration and time of incubation with ox-LDL, as well as the cells used. 

However, it is important to note that, in the present study, we were careful to use cells after 

only one passage to avoid artefacts related to the gradual loss of cell signalling pathways in 

multi-passaged cultured cells. 

Intracellular localisation of eNOS plays an important role in the activity of the enzyme 

(Sakoda et al., 1995; Sessa et al., 1995). Oxidized-LDL and hypochlorite-modified LDL have 

been previously reported to alter the intracellular localisation of eNOS (Blair et al., 1999; 

Nuszkowski et al., 2001). Oxidized-LDL causes displacement of eNOS from caveolae by 

binding to endothelial cell CD36 receptors and by depleting caveolae cholesterol content 

(Shaul, 2003; Uittenbogaard et al., 2000), resulting in the disruption of eNOS signalling 

complex and activation. Oxidized-LDL is also reported to interfere with the association of 

eNOS with Hsp90 (Stepp et al., 2002). The association of eNOS with Hsp90 is necessary to 
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mediate the balance of NO and O2
- release from eNOS (Pritchard, Jr. et al., 2001). Thus, it 

appears that ox-LDL has diverse effects on eNOS regulatory mechanisms which includes 

inactivation of a kinase leading to dephosphorylation and loss of interaction with regulatory 

protein and intracellular localisation of the enzyme. 

It has been suggested that oxidative stress results in the disruption of the eNOS dimer by 

disrupting the ZnS4 cluster (Zou et al., 2002) and oxidizing H4B (List et al., 1997), while our 

study has showed that eNOS dimer is relatively stable. These conflicting results can be due to 

difference in the methodologies and experimental conditions employed. In the previous study, 

the experiments were carried out using purified eNOS, where the eNOS dimer is in direct 

contact with the oxidants without any interference in their action on the eNOS dimer. While 

we were not able to detect the same in endothelial cells, where ONOO- can be rapidly 

degraded, we did not detect any difference in levels of eNOS dimer upon treatment with ox-

LDL, or SIN-1 or X/XO. Only when cells were stimulated with high concentration of ONOO- 

(3.75 mmol/L) was the dimer completely disrupted. However, recent reports indicate that the 

NOS dimer once formed is relatively stable, indicating that the uncoupling of eNOS has not 

necessarily to be associated, if at all, with the disruption of the dimer. 

There are numerous reports of the restoration of endothelial dysfunction by treating the cells 

with H4B (Tiefenbacher et al., 1996) or vitamin C (d'Uscio et al., 2003) which is know to 

restore the H4B content (Baker et al., 2001; Heller et al., 2001). Levels of this essential 

cofactor are reported to be decreased by oxidative stimuli, in particular, by ONOO- (Kuzkaya 

et al., 2003), which oxidizes H4B (Milstien & Katusic, 1999), as well as by ox-LDL (Dulak et 

al., 1997; Frank et al., 1998). The H4B oxidation hypothesis also implies that eNOS 

uncoupling is preceded by the activation of other endothelial O2
- generating enzymes. 

Arguing against such a central role of H4B in the uncoupling of eNOS, in the present study, 

ox-LDL did not significantly affect endothelial H4B levels, and the mutation of eNOS Thr495 

to alanine was sufficient to increase O2
- production. Since Thr495 is upstream of H4B, it 

deserves attention in itself as a key player in eNOS uncoupling or which act as a phospho-

switch, determining whether the eNOS makes NO or O2
- upon experiencing 

pathophysiological stimuli.  

Experiments performed on endothelial cells using inhibitors of tyrosine kinases as well as 

tyrosine phosphatases (Fleming et al., 1996a; Fleming et al., 1998; Takenouchi et al., 2004) 

have been reported to modulate the NO production. But there is nothing much known about 

the residues which are phosphorylated or the kinases which are involved. Elaborating the 
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functional consequences of eNOS tyrosine phosphorylation is complicated by the fact that this 

modification is only evident in primary cultured cells (Fleming et al., 1998; Garcia-Cardena 

et al., 1996a) or in cells that overexpress tyrosine kinases such as Src (Takenouchi et al., 

2004). The consequences of the tyrosine phosphorylation of eNOS are unknown but are 

perhaps more likely to be related to the docking of associated scaffolding and regulatory 

proteins than to affect eNOS activity directly. 

Studies using tyrosine kinase inhibitors provide only limited information on the role played 

by tyrosine phosphorylation in the regulation of endothelial NO production as many of these 

compounds directly affect Ca2+-signalling processes (Fleming et al., 1996b; Fleming & 

Busse, 1997) and/or the activity of Akt and the binding of Hsp90 (Fleming et al., 1996b). 

Since preliminary data from our group indicated that both fluid shear stress (which increases 

eNOS activity) and insulin (which generally has no effect on NO production) elicit the 

tyrosine phosphorylation of eNOS (Fisslthaler, unpublished observations) we decided to 

determine the role of tyrosine phosphorylation in the regulation of eNOS.  

Shear stress has been previously reported to activate Src in endothelial cells (Jalali et al., 

1998). We found that application of shear stress on endothelial cells resulted in the activation 

of Src by the displacement of phospho Tyr527 from the Src SH2 domain and mediated its 

dephosphorylation. The dephosphorylation was significant within 5 minutes of shear stress 

application, which increased over a period of 30 minutes, indicating an increase in the activity 

of Src. The activation time followed by Src correlates with the activity pattern exhibited by 

eNOS in response to shear stress. This clearly indicated the possible involvement of a Src 

tyrosine kinase in the shear mediated activation of eNOS (Fig 35). 

Proline-rich tyrosine kinase 2 (PYK2) is a non-receptor tyrosine kinase, structurally related to 

focal adhesion kinase, and has been shown to play a role in signaling cascades (Litvak et al., 

2000; Nakamura et al., 2001). Src has been reported to associate and activate PYK2 by 

tyrosine phosphorylation in response to cyclic stress (Cheng et al., 2002). So we looked for 

the effect of shear stress on PYK2 activation. We found that upon application of shear stress 

on endothelial cells there was a time-dependent increase in the phosphorylation of PYK2 

which results in the activation of the kinase. The increase in phosphorylation was evident in 

10 minutes and increased over the experimental period studied (up to 120 minutes) which 

reached significantly highest levels at 60 minutes. So having witnessed the activation of Src 

and PYK2 upon shear stress we determined whether or not a tyrosine kinase is associated 

with eNOS. 
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In contrast to the slow tyrosine phosphorylation of PYK2 which was maximum at 60 minutes 

of shear, the association of PYK2 with eNOS in response to shear was rapid. While only low 

levels of PYK2 co-precipitated with eNOS from cells maintained under static conditions there 

was a time-dependent increase in the association of the two proteins. The increase in 

association was at least 2-fold more within the first 10 minutes of shear, and remained intact 

as long as cells were exposed to fluid shear stress i.e., for up to 2 hours.  

We next determined the tyrosine phosphorylation of eNOS overexpressed in HEK-293 cells 

along with either PYK2 or Src. Immunoprecipitation of eNOS and Western blotting using 

phosphotyrosine antibody revealed both PYK2 and Src were able to tyrosine phosphorylate 

eNOS. However the level of phosphorylation in PYK2 cotransfected cells was lower than that 

observed in Src expressing cells. This probably could be due to the fact that PYK2 is 

activated by Src, which HEK-293 lack. The phosphorylation of eNOS tyrosine residue(s) by 

Src and PYK2 was also confirmed by immunoprecipitating phosphotyrosine and Western 

blotting using eNOS antibody. This data helps us to suggest that both kinases are able to 

phosphorylate eNOS in intact cells.  

Garcia-Cardena et al (Garcia-Cardena et al., 1996a) had reported that tyrosine 

phosphorylation of eNOS observed following the stimulation of endothelial cells with H2O2 

resulted in the loss of eNOS activity by 50% compared to non-treated cells. However the 

residues involved were not determined in the latter study. Mass spectroscopic analysis for 

tyrosine residues on the eNOS recovered from PYK2-overexpressing HEK-293 cells revealed 

the phosphorylation of eNOS on Tyr657 which is located in the FMN binding region in the 

reductase domain of eNOS. We mutated this residue to a phosphomimetic aspartate (D) or 

glutamate (E) or the non-phosphorylatable phenylalanine (F). The data obtained using the 

citrulline assay performed on the membrane fraction of the HEK-293 cells overexpressing 

eNOS mutants and NO measurement by ESR spectroscopy clearly indicated that the eNOS 

mutants Y657D and Y657E were completely inactive, while the Y657F mutant was slightly 

less active compared to wild-type eNOS. The slight decrease in the activity of Y657F can be 

accounted for by a consistently lower level of transfection rather than an effect on enzyme 

activity. Recent biochemical and crystallographic study has revealed the importance of this 

residue, which is situated in the FMN binding domain, and is suggested to stack the ring plane 

of the FMN almost parallel to the ring plane of another aromatic residue Phe574 (Garcin et al., 

2004) (Fig. 44). This conformation is necessary for the transfer of electrons from FAD to 

FMN. This data clearly demonstrate the significance Tyr657 can play in eNOS regulation. 
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Further, to determine whether the lack of activity of the phosphomimetic eNOS mutants 

Y657D and Y657E was related to the inability of the enzyme to dimerise we performed LT-

PAGE and did not find any consistent difference in the ability of the wild-type eNOS and 

Y657D, Y657E or Y657F eNOS mutants to dimerise, which further suggests that the 

inactivation of the enzyme is due to the disruption of the flow of electrons at the FMN 

binding domain. 

Bradykinin and H2O2 stimulation of endothelial cells resulted in an enhanced tyrosine 

phosphorylation of eNOS, an effect which has been implicated to the localisation of eNOS to 

the cytoskeleton (Venema et al., 1996b) or caveolae (Garcia-Cardena et al., 1996a). Also the 

intact cytoskeleton is required for LPC-stimulated PYK2 phosphorylation (Rikitake et al., 

2001). The tyrosine mutants studied gave a distint localisation pattern. The wild-type eNOS is 

localised mainly in the perinuclear Golgi apparatus and at the plasma membrane. The 

phosphomimetic mutants Y657D and Y657E localised markedly in the cytoskeleton, with 

Y657E showing a greater degree of localisation in the cytoskeleton, while the Y657F 

exhibited a very diffused distribution of eNOS in the cytosol, giving an impression that the 

enzyme is stuck in the endoplasmic reticulum. Further experiments need to be performed with 

specific endoplasmic reticulum markers to confirm this claim.  

However, previous studies have shown that enhanced tyrosine phosphorylation resulting in an 

increased NO production (Fleming et al., 1996a; Takahashi et al., 1997; Takenouchi et al., 

2004) and studies in our group, have observed that two different stimuli, shear stress 

(activated eNOS) and insulin (which does not have any effect on NO production) culminated 

Figure 44. Stacking of FMN by Tyr657 

residue. Structure showing the interaction of 

tyrosin residue Y657 and FMN with FAD and 

NADPH respectively. Tyr657 is proposed to 

stack FMN in the conformation required to 

accept electron from the FAD. Modified from 

Garcin et al, JBC 2004; 279: 37918-37927. 
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in the tyrosine phosphorylation of eNOS but with opposing effects, indicating the possible 

involvement of more than one tyrosine residue which can be phosphorylated. Additional 

eNOS tyrosine residues Y210, Y357, Y534, and Y556 mutated to Ala proved to be lethal to 

the activity of the enzyme, while eNOS mutants Y217A, Y467A, Y597A and Y900A showed 

an enhanced activity of at least 2-fold more than the wild-type enzyme, with Y900 showing a 

maximum increase of 4.5 fold.  

So far no post-translation modification has been know to knock out the activity of eNOS 

completely, it is still premature to speculate the physiological effect of these tyrosine residues 

on the enzyme activity. However, preliminary data suggest a role of Tyr657 in the translocation 

of the enzyme into the cytoskeletal fraction. However it would be interesting to study the 

effect of phosphorylation of Tyr657 on eNOS uncoupling, and if it generates O2
-, then it could 

be the strongest candidate in contention for the phospho-switch which uncouples eNOS. The 

determination of the phospho-switch of eNOS would help us in developing strategies by 

targeting the kinase or phosphatase involved to treat endothelial dysfunction.  
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6 Summary 

Since its recognition as an endothelium-derived relaxing factor, the control and consequences 

of nitric oxide (NO) production have been investigated intensely. We know now that NO is 

not simply a vasodilator or regulator of smooth muscle tone but is a potent anti-platelet agent, 

neuromodulator and regulator of gene expression. NO is synthesized from the amino acid L-

arginine by a family of enzymes termed NO synthases (NOS). The ‘endothelial’ (eNOS or 

NOS III) and ‘neuronal’ (nNOS, NOS I or bNOS) NOS isoforms, which were named after the 

tissues in which they were first identified, are expressed constitutively and are generally 

regulated by Ca2+/calmodulin (CaM). Endothelium-derived NO is thought to be responsible 

for maintaining the vasculature in an anti-atherosclerotic state and a decrease in the 

bioavailability of NO (a state generally referred to as endothelial dysfunction) results in “pro-

atherosclerotic” alterations in vascular gene expression. Recently it has become clear that the 

activity of eNOS is largely determined by its association with regulatory proteins as well as 

by the phosphorylation of the enzyme on serine, threonine and possibly tyrosine residues. 

Moreover, the enzyme can be “uncoupled” i.e. transformed from a NO generating to a 

superoxide (O2
-)-generating enzyme, which would be expected to attenuate vasodilator 

responses and enhance vascular inflammation. The aim of this thesis was to study the 

consequences of phosphorylation on specific serine, threonine and tyrosine residues on the 

activity and intracellular localisation of eNOS and in particular to determine whether a 

phospho-switch for eNOS uncoupling exists. 

 

eNOS is phosphorylated under basal conditions and its serine phosphorylation can be 

enhanced following cell stimulation with hemodynamic stimuli such as cyclic stretch and 

fluid shear stress as well as by hormonal stimuli such as histamine and bradykinin. Our group 

has previously demonstrated the importance of Ser1177 in the activation of eNOS and here I set 

out to determine the relative importance of phosphorylation on Ser633 and Ser114. By 

generating point mutants in which serine was replaced by either alanine (non-

phosphorylatable mutants) or aspartate (phosphomimetic mutants) it was observed that the 

activity of the S633D and S114A eNOS mutants exhibited an 2-fold increase over the activity 

of the wild-type enzyme or either of the S633/634A or S114D eNOS mutants as determined 

by monitoring the conversion of L-arginine to L-citrulline.  
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eNOS is basally phosphorylated on Thr495 and stimulation of endothelial cells with Ca2+-

elevating agonists generally results in the transient dephosphorylation of this residue. The 

latter is essential to allow the binding of calmodulin to the enzyme and is the actually 

initiating step in the generation of NO. Correspondingly, the T495A eNOS mutant can be 

activated at lower Ca2+ and calmodulin concentrations than the T495D mutant. However, 

some eNOS mutants (T494A/S1177D and T495A) showed an enhanced ability to generate 

O2
- in a NOS inhibitor-sensitive manner suggesting that the phosphorylation of the enzyme 

may also play a role in the uncoupling process. To determine the physiological relevance of 

eNOS dephosphorylation on Thr495 we assessed the consequences of treating cells with 

oxidised low-density lipoprotein (ox-LDL) on eNOS phosphorylation as well as on the eNOS-

dependent generation of NO and O2
-. Oxidised LDL concentration- and time-dependently 

decreased phosphorylation of eNOS on Thr495 and led to a concomitant decrease in cellular 

levels of cyclic GMP and an enhanced production of O2
- compared to cells treated with native 

LDL. Alterations in the activity of protein kinase C (PKC) were related to the change in 

eNOS Thr495 phosphorylation. There was not only the basal activity of PKCα inhibited by ox-

LDL but the PKC activator phorbol-12-myristate-13-acetate also failed to elicit the 

phosphorylation of Thr495 in ox-LDL-treated endothelial cells. The dephosphorylation of 

eNOS on Thr495 in response to the addition of ox-LDL was not associated with an increase in 

the binding of calmodulin to eNOS, an association usually necessary for the activation of 

eNOS. Moreover, following treatment with ox-LDL for 24 hours eNOS was no longer 

detected at the plasma membrane but was redistributed to the cytosol indicating that ox-LDL 

may disrupt the eNOS signalling complex or signalosome.  

 

To date the role played by the tyrosine phosphorylation of eNOS in the regulation of its 

activity or intracellular association is controversial. However, during the preparation of this 

thesis we have been able to demonstrate a link between the tyrosine phosphorylation of eNOS 

and the activation of the tyrosine kinases Src and PYK2. The application of fluid shear stress 

to endothelial cells resulted in the activation of Src and PYK2 as well as in the association of 

PYK2 with eNOS. Co-expression of eNOS and PYK2 led to the putative identification of 

Tyr657 as a potential modulatory site. Mutating eNOS at Tyr657 to Asp or Glu resulted in the 

localisation of the mutant eNOS predominantly in the cytoskeleton and also in a complete 

inactivation of the enzyme. The Y657F mutants, on the other hand, did not demonstrate any 

marked alteration in the activity when compared with the wild-type eNOS. However, the 
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intracellular localisation pattern was very diffuse in the cytoplasm, giving the impression that 

this mutant may be stuck in the endoplasmic reticulum. 

 

In conclusion, the results describe in this thesis indicate that eNOS is regulated by 

phosphorylation at multiple sites. Depending on the phosphorylation site involved 

phosphorylation can inhibit or activate NO production or even uncouple the enzyme so that it 

generates O2
-. While the phosphor-status of eNOS on Ser114 and Ser633 influenced NO release 

they did not contribute to O2
- production and the dephosphorylation of Thr495 seems sufficient 

to uncouple eNOS. Cell treatment with ox-LDL, which is known to increase eNOS-derived 

O2
- output was correlated with a dephosphorylation of Thr495 as well as a decrease in the 

activity of the kinase that phosphorylates this site i.e., PKCα. The phosphorylation status of 

all the eNOS serine and threonine residues studied however did not influence the ability of the 

enzyme to dimerise, indicating that contrary to previously published reports the eNOS dimer 

is highly stable in endothelial cells. The tyrosine phosphorylation of eNOS was not initially 

expected to play a determinant role in the regulation but rather to facilitate the docking of 

associated regulatory proteins. However, Tyr657 seems to play a critical role in the generation 

of NO as its mutation resulted in the generation of a completely inactive enzyme as well as in 

an apparent intracellular mislocalisation of the protein. The physiological relevance of these 

findings remain to be further elucidated. 
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7 Zusammenfassung 
 

Seit der Identifizierung des endothel-abhängigen, relaxierenden Faktors als Stickstoffmonoxid 

(NO) durch R. F. Furchgott und L. Ignarro im Jahre 1986 sind die Regulation und die 

funktionellen Konsequenzen der endothelialen NO-Produktion Gegenstand intensiver 

Forschung. Heute ist NO nicht nur als relaxierender Faktor für Gefäße bekannt, sondern auch 

als potenter Hemmer der Thrombozytenaggregation, als Neuromodulator sowie Regulator der 

Genexpression. Die Enzyme der Familie der NO-Synthasen bilden aus der Aminosäure L-

Arginin, NO und L-Citrullin. Die endotheliale und neuronale NO-Synthase, die nach den 

Geweben, in welchen sie zuerst gefunden wurden, benannt sind, sind konstitutiv exprimiert 

und werden vor allem über Ca2+/Calmodulin aktiviert. Als wichtigste Funktion von 

endothelial gebildetem NO wird derzeit angesehen, dass es eine protektive, anti-

atherosklerotische Wirkung auf die Gefäßwand ausübt. Eine Verminderung der 

Bioverfügbarkeit von NO (allgemein als endotheliale Dysfunktion bezeichnet) führt zur 

Expression von pro-atherosklerotischen Genen. Es wurde gezeigt, dass die Aktivität der NO-

Synthasen von der Interaktion mit regulatorischen Proteinen und von der Phosphorylierung 

des Enzyms an Serin-, Threonin- und möglicherweise auch Tyrosinresten abhängt. Außerdem 

kann das Enzym entkoppelt werden, was bedeutet, dass nicht NO sondern Superoxidanionen 

(O2
-) gebildet werden, welche dann die vasodilatierende Wirkung von NO einschränken und 

inflammatorische Antworten verstärken.  

 

Das Ziel dieser Dissertation war es, die Konsequenzen der Phosphorylierung der 

endothelialen NOS (eNOS) an Serin-, Threonin- und auch Tyrosinresten auf die Aktivität und 

intrazelluläre Lokalisation zu untersuchen, vor allem mit der Frage, inwieweit eine 

Phosphorylierung für die Entkopplung des Enzyms mitverantwortlich ist.  

 

Die schon unter basalen Bedingungen beobachtbare Phosphorylierung der eNOS an 

Serinresten kann durch hämodynamische Stimuli wie Schubspannung oder rhythmische 

Dehnung der Gefäßwand bzw. der Endothelzellen sowie durch agonisten-vermittelte 

Stimulation mit Histamin oder Bradykinin erhöht werden. Unsere Gruppe hat vor kurzem die 

Bedeutung der Phosphorylierung von Ser1177 für die Ca2+-unabhängige Aktivierung der eNOS 

gezeigt. In der vorliegenden Arbeit wurde die Relevanz der Phosphorylierungen von Ser633 

und Ser114 untersucht. Durch gerichtete Punktmutagenese („site-directed mutagenesis“) 

wurden Mutanten erstellt, in denen die entsprechenden Serinreste zu Alanin (nicht 



Zusammenfassung 

 97

phosphorylierbare Mutante, A) bzw. zu Aspartat (phosphomimetische Mutante, D) mutiert 

sind. Die Aktivität der überexprimierten eNOS-Mutanten wurde in-vivo und in-vitro durch 

die Bildung von L-Citrullin aus L-Arginin bestimmt, die Menge an gebildetem NO oder O2
- 

durch Elektron-Spin Resonanz (ESR) Analysen ermittelt. Hierbei wurde gefunden, dass die 

Aktivität der S114A- bzw. der S633D-Mutanten um das zweifache gegenüber der Aktivität 

des Wildtyps oder der S114D- bzw. der S633/634A-Mutanten erhöht waren, die Bildung von 

O2
- dieser Mutanten jedoch gleich war wie beim Wildtype 

 

In nicht-stimulierten Zellen ist die eNOS auch am Thr495 phosphoryliert und die Stimulation 

mit Ca2+-erhöhenden Agonisten führt zu einer transienten Dephosphorylierung dieses 

Aminosäurerestes. Dies ermöglicht erst die Bindung von Calmodulin beim initialen Schritt 

der NO-Bildung. Dementsprechend kann die T495A-Mutante im Vergleich zur T495D-

Mutante bei niedrigeren Ca2+-Konzentrationen aktiviert werden. Bei den Mutanten, bei denen 

Thr495 nicht phosphorylierbar ist (T495A und T495A/S1177D), wurde eine Erhöhung der O2
--

Bildung beobachtet, die sensitiv gegenüber NOS-Inhibitoren war, was auf eine Funktion der 

Thr495-Phosphorylierung auch für die Entkopplung der eNOS deutet. Die Stimulation von 

Endothelzellen mit oxidiertem „low-density lipoprotein“ (ox-LDL) führt bekanntermaßen zur 

eNOS-vermittelten Radikalbildung. Die Bedeutung der Thr495-Phosphorylierung für diese 

Beobachtung wurde mittels Western-Blot-Analysen sowie Bestimmung der NO- und O2
--

Bildung ermittelt. Die Behandlung von Endothelzellen mit ox-LDL führte zu einer 

konzentrations- und zeitabhängigen Erniedrigung der Thr495-Phosphorylierung, die mit einer 

verringerten intrazellulären cGMP-Konzentration einherging. Zugleich war die O2
--

Produktion gesteigert im Vergleich zu Zellen, die mit nativem LDL inkubiert wurden. Vor 

allem die Proteinkinase C (PKC) ist für die Thr495-Phosphorylierung verantwortlich und die 

Verringerung der eNOS Phosphorylierung am Thr495 korrelierte nicht nur mit der Hemmung 

der basalen PKCα Aktivität durch ox-LDL, sondern auch der PKC-Aktivator 12-Myristat-13-

Acetat konnte in ox-LDL-behandelten Endothelzellen keine Phosphorylierung am Thr495 

vermitteln. Allerdings führte die Dephosphorylierung des Thr495-Restes nicht zur erhöhten 

Bindung von Calmodulin an die eNOS, was bei Agonisten-Stimulation zu beobachten ist und 

hier den initialen Schritt zur NO-Bildung darstellt. Außerdem konnte mittels 

Immunhistochemie gezeigt werden, dass in Endothelzellen, die über 24 Stunden mit ox-LDL 

inkubiert worden waren, die eNOS nicht mehr an der Plasmamembran lokalisiert war, 

sondern ins Zytosol translozierte. Dies deutet auf eine Zerstörung des „eNOS Signalosoms“ 

durch ox-LDL hin.  
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Derzeit wird die Rolle der Tyrosinphosphorylierung der eNOS für die Aktivätsregulation und 

intrazellulären Lokalisation kontrovers diskutiert. Während der Arbeit an dieser Dissertation 

konnte ein Zusammenhang zwischen der eNOS-Tyrosinphosphorylierung und der 

Aktivierung der Tyrosinkinasen PYK2 und Src gefunden werden. In Endothelzellen führt die 

Stimulation mit Schubspannung zur Aktivierung von PYK2 und Src sowie zur Assoziation 

von PYK2 mit der eNOS. Die Überexpression der eNOS und PYK2 in COS-7 Zellen führte 

zur Identifizierung des Tyr657-Restes als phosphoryliertes Tyrosin der eNOS. In 

Endothelzellen, welche die phosphomimetischen eNOS-Mutanten Y657D bzw. Y657E (Y = 

Tyrosin; E = Glutamat) überexprimierten, zeigte die eNOS in immunhistochemischen 

Untersuchungen eine Assoziation mit dem Zytoskelett und sowohl in ESR-Untersuchungen 

als auch in Citrullin-Assays war keinerlei NO-Bildung nachzuweisen. Die nicht-

phosphorylierbare Y657F-Mutante (F = Phenylalanin) zeigte keine Veränderung der Aktivität 

im Vergleich zum Wildtyp. Die intrazelluläre Lokalisation dieses Proteins war allerdings sehr 

diffus über das gesamte Cytoplasma und vermittelte den Eindruck, dass eine Hemmung des 

Transports vom endoplasmatischen Retikulum zum Golgi-Apparat vorliegt.  

 

Zusammenfassend beschreiben die Ergebnisse dieser Arbeit, dass die eNOS an 

verschiedensten Aminosäureresten phosphoryliert werden kann. Abhängig von der 

Lokalisation dieser Phosphorylierung kann die NO-Produktion gesteigert oder gehemmt 

werden bzw. das Enzym kann entkoppelt werden und O2
- bilden. Während der 

Phosphorylierungszustand von Ser114 und Ser633 die NO-Synthese moduliert, haben diese 

Aminosäurereste keinen Einfluss auf die O2
--Bildung. Die Dephosphospoylierung von Thr495 

scheint für eine Entkopplung des Enzyms ausreichend zu sein. Die Inkubation von 

Endothelzellen mit ox-LDL führte zu einer Dephosphorylierung der eNOS am Thr495 sowie 

zu einer Inaktivierung der PKCα, die diesen Aminosäurerest phosphoryliert. Der 

Phosphorylierungsstatus keiner der untersuchten eNOS-, Serin- und Threonin-Reste hatte 

einen Einfluss auf die Dimerisierung des Enzyms, was darauf hindeutet, dass im Gegensatz zu 

bislang publizierten Untersuchungen das Dimer der eNOS in Endothelzellen sehr stabil ist. 

Funktionell wird von der eNOS-Tyrosinphosphorylierung zunächst eine veränderte 

Interaktion mit regulatorischen Proteinen erwartet, mit einer möglichen Modulation der 

Aktivität. In dieser Arbeit wurde gezeigt, dass die Phosphorylierung von Tyr657 eine kritische 

Rolle sowohl für die Bildung von NO als auch für die Interaktion mit anderen Proteinen hat, 

da eine phosphomimetische Tyrosin-Mutante vollständig inaktiv ist und außerdem keine 
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korrekte intrazelluläre Lokalisation zeigt. Die physiologische Relevanz dieser 

Tyrosinphosphorylierung muss noch weiter untersucht werden.  
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List of abbreviations 
 

Ab   Antibody 

ATP   Adenosine triphosphate 

a.u.   Arbitrary units  

Akt   Protein kinase B 

H4B   Tetrahydrobiopterin 

BK   Bradykinin 

BSA   Bovine serum albumin 

CMH   1-Hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine HCl 

CM-   3-methoxycarbonyl-proxyl 

CaM   Calmodulin 

Ca2+   Calcium 

cpm   Counts per minute 

°C   Degrees centigrade  

cAK and cGK  cAMP- and cGMP-dependent protein kinases  

eNOS/ NOS III Endothelial nitric oxide synthase 

nNOS/ NOS I  Neuronal nitric oxide synthase 

i NOS/ NOS II Inducible nitric oxide synthase 

E. coli   Escherichia coli 

ESR   Electron spin resonance spectroscopy 

EDHF   Endothelium-derived hyperpolarizing factor 

EDRF   Endothelium-derived relaxing factor 

EDTA   Ethylene diamine tetraacetic acid  

FAD   Flavin adenine dinucleotide  

FCS   Fetal calf serum 

FMN   Flavine mononucleotinde 

sGC   Soluble guanylyl cyclase 

Hsp90   Heat shock protein 90 

HT    HEPES Tyrode 

H2O2   Hydrogen peroxide 

D/Asp   Aspartate 

A/Ala   Alanine 

Y/Tyr   Tyrosine 
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S/Ser   Serine 

T/Thr   Threonine 

KD   kiloDalton 

L-NAME  Nω-Nitro-L-arginine methyl ester 

L-NA   Nitro L-arginine 

LOX-1   Lectin-like oxidized LDL receptor-1 

LPC   Lysophosphatidylcholine 

mL   milli Liter 

mol   molar 

NADPH  Nicotinamide adenine dinucleotide phosphate  

NO    Nitric oxide 

NOHA   Nω-hydroxy-L-arginine 

ONOO-  Peroxynitrite 

O2
-   Superoxide 

Ox-LDL  Oxidized low density lipoprotein 

PBS   Phosphate buffer saline 

PKA   Protein kinase A 

PKG   Protein Kinase G 

PKC   Protein kinase C 

PYK2   Proline-rich tyrosine kinase 2 

PMA   Phorbol 12-myristate 13-acetate 

ROS   Reactive oxygen species 

RNS   Reactive nitrogen species 

rpm   Revolutions per minute  

SEM   Standard error of mean 

SOD   Superoxide dismutase 

TEMED  N, N, N.,N.,-tetramethylethylenediamine 

TBE   Tris-borate-EDTA buffer  

TE                               Tris-EDTA buffer  

U   Unit 

VEGF   Vascular endothelial growth factor 

g   gram 

µ   micro 

n   nano 
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ZnS4   Zinc thiolate cluster 
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