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Chapter 1

Introduction

Owing to significant progress in multidimensional infrared (IR) laser techniques, [2, 3] the

investigation of the vibrational bands of peptides and proteins has recently received con-

siderable attention. Most studies have focused on the strongly IR-active amide I mode

(mainly C=O stretch), which is a sensitive probe of hydrogen bonding, dipole-dipole in-

teractions, and the conformation of the peptide backbone. [4, 5] Amide I modes possess

several features which make them suitable conformational probes. The first advantage of

the amide I modes is that they are IR-active. This property is conditioned by a large value

of the transitional dipole moment associated with the amide I modes. Because of that

property the amide I peaks are very high and can be easily distinguished in vibrational

spectra. The second advantage of the amide I modes is that they are well separated in

frequency from other normal modes. Because of that fact the overlap of the amide I peaks

with other ones is quite small. This also facilitate the extraction of the amide I peaks

from total vibrational spectra. And finally, the main advantage is that the amide I modes

are structurally sensitive. This means that different characteristic of the amide I peaks

(such us position, intensity and shape) strongly depend on the conformational structure

and dynamics of peptides.

Some information about the structure of peptides can be obtained from one-dimensional

infrared spectra. Employing empirical rules that relate frequencies of amide bands to sec-

ondary structures, structural motives such as α- and 310-helices as well as parallel and

antiparallel β-sheets have been identified. For example, Schweitzer-Stenner et al. have in-

vestigated the conformation of small peptides by using a combination of vibrational spectro-

scopies including Fourier-Transform IR, polarized Raman and vibrational circular dichro-

ism. [6–9] Recently, the advent of multidimensional IR techniques has revealed a wealth of

novel and quite detailed information on the structure and dynamics of biomolecules. [2,10]



12 Introduction

Beautiful examples are the two-dimensional infrared studies of various small peptides by

Hamm and Hochstrasser and their coworkers. [1, 11–15] The interpretation of these ex-

periments, however, is far more involved than for simple linear IR absorption and clearly

requires substantial theoretical support. A first-principle theoretical description gives a re-

lation between the peptides geometry and their vibrational spectra and, as a consequence,

is required for the interpretation of the IR-experiments in terms of the conformational

structure and dynamics.

A theoretical description of the IR response of a peptide in aqueous solution represents a

considerable challenge. Since a direct ab initio molecular dynamics description [16–18] of a

solvated peptide is in general computationally too expensive, usually some mixed quantum-

classical strategy [19–26] is chosen, which contains the following parts. (i) First, we have

to perform a state-of-the-art molecular dynamic (MD) simulation of the complete system

in order to get the correct thermal populations of the existing conformational states. The

MD trajectories has to be sufficiently long to get a comprehensive conformational sampling

and to reach the convergence in the statistical averaging of the spectra calculation. (ii)

Precise ab initio calculations, giving the vibrational properties of the peptide, have to be

performed. The large numerical effort of ab initio calculations as well as the high flexibility

of peptides restricts to the calculation of small peptides. (iii) It is a priori not clear which

approximations are applicable to calculation of vibrational spectra of a solvated peptide.

As a consequence, additional analysis is often required. In this work we are concerned with

the latter two parts of the calculation.

To this end, we first calculate the vibrational frequencies of the gas-phase system for all

conformational structures visited by the MD trajectory. Since the vibrational frequency

splitting of interest are relatively small, their calculation requires accurate ab initio methods

using large basis sets. Because of that, direct ab initio calculations of vibrational frequencies

for the entire molecule are restricted to small systems and/or only few conformations.

The computational costs dramatically increase with the size of the system. First, the

numerical effort of the ab initio geometry optimization and normal mode analysis, giving

the vibrational properties of the system, exponentially increases with the system size.

Moreover, peptides are very flexible molecules (the relative orientation of adjacent peptide

units is given by two very flexible dihedral angles) and, as a consequence, the number of

possible conformations exponentially depends on the number of peptide units.

The complexity of the first principle modeling of the vibrational properties requires

a set of approximations. As we have already mentioned, we focused our study on the

12
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amide I modes. We assume that — to a first approximation — these modes do not

interact with the remaining vibrational degree of freedom of the peptide. This allows us

to construct an exciton model in which only the amide I excitations are considered. The

assumption of a separable amide I subspace reduces the full system including all degrees

of freedom to an N -dimensional vibrational problem, where N is the number of peptide

units. Recent ab initio calculations of the amide I anharmonic couplings indicate that

this basis assumption of separability is surprisingly well fulfilled [27–30]. As the second

approximation, we consider only harmonic terms in the amide I potential energy of the

systems. The accuracy of the harmonic approximation has been studied in the present

work by direct ab initio calculations of higher order terms in the amide I potential energy.

In the next approximation, we suppose that all amide I normal modes can be presented

as superposition of local vibrations. For the sake of simplicity, the local vibrations can

be imagined as the C=O stretch vibrations of the corresponding peptide unit. The local

modes, as a basis for the amide I vibrational motion, are used in the construction of the

vibrational Hamiltonian of polypeptides. The construction of the polypeptides Hamilto-

nian, called “building block model”, is based on the assumption that the local vibrational

properties of a polypeptide depend on the local conformational structure in the same way

like in smaller peptides (called building blocks). The necessity to use the building block

model is due to the fact that a direct ab initio calculation of the vibrational properties is

possible only for small peptides and/or several conformations.

To parameterize the vibrational Hamiltonian of the building block, we have to perform

ab initio calculations of its vibrational properties. In the case of dipeptides the dependency

of the vibrational properties on the dihedral angles φ and ψ, giving conformation of the

system, can be found directly (so called ab initio parameterization of the Hamiltonian).

Several groups have considered the amide I vibrations of Ac-Gly-NHCH3 (CH3-CONH-

CH2-CONH-CH3), often referred to as glycine dipeptide (GD) [28, 31–34] (see Fig. 1.1).

Employing various approaches, the off-diagonal vibrational coupling between the two pep-

tide units as well as the diagonal force constants have been calculated as a function of the

(φ, ψ) dihedral angles of the peptide backbone. To calculate these maps, several choices

of local amide I modes have been suggested, including the C=O stretch vibrations and

the normal modes of N-methylacetamide (CH3-CONH-CH3). Various ways to calculate

the vibrational couplings and force constants for a given set of local modes have been

proposed, including finite-difference differentiation [31] and the so-called Hessian matrix

reconstruction method. [28, 32] It has to be noted that the question of the Hamiltonian

13
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Figure 1.1: “Glycine dipeptide” (GD)

parameterization is not trivial. Different parameterization schemes were found to give

qualitatively different force constant. Therefore a more detailed investigation of the pa-

rameterization is required and will be performed in this work. Next question which is

related with the parameterization of dipeptides is to which extend ab inito maps of cou-

pling and force constants obtained for one dipeptide are transferable to other ones. In

particular it would be interesting to study to what extent the (φ, ψ) maps are transferable

to peptide with other side chains or other end-groups. In the present work we answer these

questions.

To complete the theoretical modeling of the vibrational Hamiltonian of the system, we

have to take the solvent effects into account. The solvent-induced frequency shift can be

obtained via electrostatic models based on empirical relations between the electric field

produced by the surrounding solvent and the induced amide I frequency shift. Since the

influence of the solvent on the vibrational spectra is considerable, an accurate parame-

terization of the frequency shift is required. [28, 29, 35–42]. This consists of the following

steps. To this end, representative MD snap shots of a peptide unit including the first

solvation shell are adopted and geometry optimization of the peptide with fixed solvent

and a subsequent normal mode analysis are performed. Based on these data an empirical

expression relating the amide I frequency shift to the values of the electric potentials at the

atoms of the peptide unit is derived, which can be used to calculate the solvent induced

frequency shift directly from the MD trajectories. Another way to include solvent effects is

14
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Figure 1.2: Scheme and atom labeling of trialanine cation A+
3 .

a direct calculation of the frequency shift via ab initio calculations of MD snapshots of the

solvated peptide including the surrounding water. However, in many cases this strategy is

not applicable, since the MD trajectory has to be sufficiently long to reach convergence in

the spectra calculations.

The construction of the vibrational Hamiltonian is the first of the two main parts of

the present work. In the second part, we implement the Hamiltonian to the calculation

of vibrational spectra. The main goal of this part is to study the applicability of differ-

ent spectroscopic approximation to some particular systems as well as to demonstrate a

practical way to relate a time-dependency of vibrational spectra to conformational changes.

Assuming that the fluctuations of the peptide and the surrounding solvent molecules

result in a classical time-dependence of the vibrational frequencies and dipoles moments,

the spectral line shape of the system is calculated using semiclassical line shape theory.

[43, 44] However, in many cases the applicability of spectroscopic approximations (such

as the Franck-Condon approximation [45], the second-order cumulant expansion, [46, 47]

and the adiabatic approximation. [20,34,48]) has to be studied additionally. In the present

work, we analyzed the accuracy of the mentioned approximations for the cationic trialanine

(A+
3 ). Trialanine is a small peptide with two peptide bonds and one set of backbone

dihedral angles (φ, ψ), see Fig. 1.2. Driven by a number of experimental [1, 6, 13–15,

49] and theoretical [20, 50–54] studies, trialanine has emerged as a paradigm to study

conformational dynamics of a small peptide in aqueous solution.

The second system considered in the present work, is a photoswitchable bicyclic azoben-

15
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zene octapeptide. The considered system is an example of a molecular photoswitch in-

cluded into biomolecule. The considered system has been well characterized experimen-

tally [55–59]. In photoswitchable peptides, the light-induced structural changes of the

chromophore upon photoisomerization around the central N=N double bond are directly

transferred into the peptide chain. By photoexciting the system by an ultrashort laser

pulse, the subsequent conformational dynamics of the peptide is investigated by opti-

cal [56, 57] or infrared [58, 59] spectroscopy. These types of experiments, especially in

combination with two-dimensional infrared probing [60], provide a new and promising way

to study the folding and unfolding of peptides in unprecedented detail. This system is also

interesting from a theoretical point of view. First, we can test the building block model

on a real system. Second, we show a clear example of how the vibrational Hamiltonian

can be used for the interpretation of the time-dependent vibrational spectra in terms of

conformational changes. Third, we demonstrate that even weak spectroscopic changes can

be, in principle, reproduced with the formulated vibrational model. An finally, we develop

a strategy of the treatment of non-equilibrium processes.

16



Chapter 2

Ab initio models of amide I
vibrations

2.1 Exciton Model

2.1.1 Terms Definition

As we have explained in Introduction the vibrational exciton model is a suitable choice

for the description of the amide I vibrations in polypeptides. Let us summarize the main

definitions associated with this model. For simplicity, we restrict the discussion to the

special case of a peptide with two interacting amide I vibrations. Within the harmonic

approximation, the Hamiltonian of two coupled oscillators can be written as

H =
p2

1

2
+

p2
2

2
+

1

2
k1q

2
1 +

1

2
k2q

2
2 + k12q1q2 , (2.1)

where q1 and q2 are mass-weighted local modes residing on the first and second peptide

unit, respectively, and p1 and p2 are the corresponding conjugate momenta. The potential

energy is characterized by the force constants k1 and k2 of the local modes as well as by

the bilinear vibrational coupling k12. In this work we are not concerned with anharmonic

potential terms of the exciton model, which have been introduced by several authors on

an empirical [11] as well as on an ab initio [29] level, respectively.

To consider the normal modes Q∓ of the model, we introduce the unitary transformation

(

Q−

Q+

)

=

(

cos Θ sin Θ
− sin Θ cos Θ

)(

q1

q2

)

, (2.2)

with the mixing angle

Θ =
1

2
arctan[2k12/(k1 − k2)], (2.3)
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which diagonalizes Hamiltonian (2.1). This yields

H =
P 2
−

2
+

P 2
+

2
+

1

2
K−Q2

− +
1

2
K+Q2

+, (2.4)

where Q− and Q+ are the two amide I normal modes with corresponding momenta P− and

P+ and the force constants

K∓ = 1
2(k1 + k2) ∓

1

2

√

(k1 − k2)2 + 4k2
12. (2.5)

To make contact with the state representation commonly used in exciton theory, we intro-

duce harmonic-oscillator creation and annihilation operators

b†j = (k
1/4
j qj − ik

−1/4
j pj)/

√
2~, (2.6)

bj = (k
1/4
j qj + ik

−1/4
j pj)/

√
2~, (2.7)

where j = 1, 2. The operators b†j and bj create and destruct a localized vibration in the

jth peptide unit with frequency
√

kj, respectively, and satisfy the bosonic commutation

relations [bi, b
†
j] = δij. Insertion into Eq. (2.1) yields

H = ε1b
†
1b1 + ε2b

†
2b2 + β

(

b†1b2 + b†2b1 + b†1b
†
2 + b2b1

)

, (2.8)

where εi = ~

√

ki, (2.9)

β =
~k12

2(k1k2)1/4
(2.10)

denote the energy of the ith site and the intersite coupling, respectively. Neglecting the

nonresonant terms b†1b
†
2 and b2b1, Hamiltonian (2.8) reduces to the Frenkel exciton model

[44]

H =
(

b1 b2

)

(

ε1 β
β ε2

)(

b†1
b†2

)

, (2.11)

which conserves the number of excitations. Diagonalizing Hamiltonian (2.11), we obtain

the normal mode frequencies

Ω∓ = 1
2(ε1 + ε2) ∓

1

2

√

(ε1 − ε2)2 + 4β2. (2.12)

Note that the frequencies Ω∓ obtained from Eq. (2.12) and ω∓ = ~K∓ obtained from Eq.

(2.5) are not exactly the same, which is a consequence of neglecting the nonresonant terms

b†1b
†
2 and b2b1 in Eq. (2.8). For amide I vibrations with β/ε ¿ 1, these deviations are quite

small, though, and can be safely neglected.
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The system described by the Hamiltonian (2.11) separates into blocks of the ground

state, the one-exciton Hamiltonian, the two-exciton Hamiltonian, and higher terms (which

are not of interest for the description of 2D-IR spectra). This results into the following

model (ψ, φ)-dependent Hamiltonian

H(ψ, φ) =

















0
ε1 β(ψ, φ)

β(ψ, φ) ε2

2ε1 − ∆11 0
√

2β(ψ, φ)

0 2ε2 − ∆22

√
2β(ψ, φ)√

2β(ψ, φ)
√

2β(ψ, φ) ε1 + ε2 − ∆12

















(2.13)

In the above written Hamiltonian we have have additionally introduced the anharmonic

terms ∆ij. The anharmonicity of the amide I vibratio is very weak. The experimentally

measured difference between (0 → 1) and (1 → 2) absorption frequencies in NMA [11]

is 16 cm−1 , and given that ω=1600 cm−1 the ration ∆/ω = 0.01. However, the anhar-

monic terms must be taken into account since the nonlinear response of a harmonic system

vanishes exactly, and anharmonicity is a pivotal conditions for 2D IR spectroscopy.

2.1.2 Choice of Theory Level and Basis Set

The density function theory (DFT) was selected for all further ab initio calculations since

they are less demanding than other post-Hartree-Fock methods but yields the comparable

results for peptides. Of all available functional, the gradient-corrected hybrid functionals

provide the best overall coherence with MP2 calculations and experimental data. All

calculations were performed using the Gaussian98 [61] and Gaussian03 [62] programs at

the B3LYP level of theory. The notation B3 indicates a three-parameter Becke exchange

functional in which a part of exchange contribution has been calculated in the same fashion

as that in Hartree-Fock approximation but using Kohn-Sham orbitals instead Hartree-Fock

ones [63,64]. LYP indicates the Lee-Yang-Parr correlation functional [65].

To study the importance of electron correlation for the calculation of amide I vibrations

in peptides and check the selected level of theory, we compare computations of GD ob-

tained for three levels of theory: Hartree Fock (HF), density functional theory (DFT) with

B3LYP functional, [64] and Møller-Plesset perturbation theory (MP2). In all cases, the 6-

31+G(d) basis set is used. As a representative example, Fig. 2.1 shows the conformational

dependency of the force constants k1, k2 and the vibrational coupling k12 as a function of

the backbone dihedral angle ψ. The vibrational constants are calculated for NMA-based

19
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Figure 2.1: Comparison of the amide I vibrational coupling k12 and force constant k1 of
GD as obtained for φ = −60◦ at three levels of theory: Hartree Fock, density functional
theory, and Møller-Plesset perturbation theory.
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local modes, using the finite-differences method. Choosing φ = −60◦, the plots monitors

the transition from a αR-helical structure at ψ = −60◦ to a poly(Gly)II (PII) structure at

ψ = 140◦.

The diagonal and off-diagonal vibrational constants are seen to depend in a different

way on the theory level and on the peptide conformation, respectively. The vibrational

coupling k12 is only little affected by the level of theory chosen, but is a sensitive probe

of the peptide conformation. The force constants k1 and k2, on the other hand, vary only

weakly as a function of ψ. Depending on the level of theory, the curves are significantly

shifted to each other, thus reflecting the degree of electron correlation taken into account

by the method. Employing the recommended frequency scale factors (0.90 for HF, 0.99 for

B3LYP, and 0.94 for MP2), however, all three levels of theory give similar results for the

force constants.

To study the basis-set dependency of the amide I vibrations of GD, we chose DFT/B3LYP

as level of theory. Table 2.1 compares the vibrational constants for selected conformations

of GD (parallel and antiparallel β-sheet as well as right- and left-handed α-helices), as

obtained for eight different basis sets from 6-31G(d) to 6-311++G(3df,2pd). Furthermore

the root mean square deviation (RMSD) of each basis set is given with respect to the

6-311++G(3df,2pd) data, using in total 17 conformations (see caption). On the basis of

RMSD results, two main observation can be made. First, it is noted that already with the

smallest basis set 6-31G(d) the vibrational coupling k12 is given with a relative accuracy of

≈ 1 %. The force constants k1 and k2, on the other hand, are found to be much more sensi-

tive to the choice of the basis set. Second, while the addition of polarization functions does

not significantly improve matters (compare, e. g., 6-31G(d) and 6-31G(d,p) results), even

moderate basis sets supplemented by diffuse s and p orbitals to C, N and O atoms yield

results that are comparable with the 6-311++G(3df,2pd) reference calculations. In the

Fig. 2.2 We have plotted amide I normal mode frequencies of the NMA and GD molecules

as functions of the basis set.

Due to these findings, DFT calculations using a 6-31G+(d) basis set and the B3LYP

functional are chosen as a compromise between high accuracy and low computational

effort. Based on the observation that the combination of the B3LYP functional with

a 6-31+G(d) basis set leads to maximally planar peptide group in NMA, this level of

theory was also recently employed to compute amide vibrations of the alanine and glycine

dipeptides. [34,66]
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Table 2.1: Basis-set dependency of the diagonal force constants k1 and k2 and the vi-
brational coupling k12 as obtained from DFT calculations on glycine dipeptide. Data
are shown for the following conformations and Ramachandran angles (φ, ψ): Parallel β-
sheet βP (-119,113), antiparallel β-sheet βAP (-139,135), right-handed α-helix αR (-57,-47),
and left-handed α-helices αL1 (57,47) and αL2 (90,-90). The root mean square deviation
(RMSD) is computed with respect to the 6-311+G(2df,2p) data, using besides the five listed
structures 12 additional conformations with (φ, ψ) = (−n ·90,−m ·90), with n,m = 1, 2, 3.
Units are mdyn/Åu.

basis set βP βAP αR αL1 αL2 RMSD

k12 0.00676 0.01079 0.01792 0.01793 -0.00424 5 ∗ 10−5

6-31G(d) k1 1.8667 1.8697 1.8551 1.8550 1.8667 0.2
k2 1.8714 1.8721 1.8537 1.8538 1.8702 0.2
k12 0.00636 0.01036 0.01791 0.01790 -0.00455 6 ∗ 10−5

6-31G(d,p) k1 1.8615 1.8645 1.8500 1.8502 1.8617 0.1
k2 1.8667 1.8660 1.8492 1.8489 1.8659 0.1
k12 0.00637 0.01073 0.01999 0.01999 -0.00453 3 ∗ 10−6

6-31+G(d) k1 1.7827 1.7868 1.7740 1.7746 1.7852 0.003
k2 1.7901 1.7918 1.7707 1.7703 1.7884 0.003
k12 0.00574 0.01008 0.01999 0.01987 -0.00461 6 ∗ 10−6

6-31+G(d,p) k1 1.7795 1.7814 1.7701 1.7705 1.7807 0.002
k2 1.7859 1.7879 1.7666 1.7667 1.7836 0.002
k12 0.00619 0.01036 0.02088 0.02069 -0.00434 3 ∗ 10−6

6-311+G(d,p) k1 1.7635 1.7667 1.7556 1.7553 1.7666 0.0005
k2 1.7708 1.7723 1.7527 1.7520 1.7694 0.0006
k12 0.00672 0.01082 0.02044 0.02026 -0.00352 8 ∗ 10−7

6-311+G(2d,p) k1 1.7456 1.7482 1.7376 1.7379 1.7481 0.009
k2 1.7542 1.7553 1.7352 1.7341 1.7519 0.009
k12 0.00651 0.01048 0.0204 0.02024 -0.00370 1 ∗ 10−7

6-311+G(2df,2p) k1 1.7579 1.7618 1.7511 1.7504 1.7611 0.002
k2 1.7669 1.7681 1.7473 1.7468 1.7650 0.002
k12 0.00654 0.01051 0.02037 0.02028 -0.00379 0.0

6-311++G(3df,2pd) k1 1.7686 1.7719 1.7612 1.7612 1.7709 0.0
k2 1.7774 1.7778 1.7580 1.7572 1.7755 0.0
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Figure 2.2: Amide normal mode frequencies of the NMA and GD molecules as functions
of the basis set. GD molecule is in the parallel sheet conformation βP (-119,113).

2.2 Parameterization Schemes

The fist part of the present work was dedicated to the calculation of the parameters of the

vibrational Hamiltonian (2.1) or (2.11). The ab initio parameterization of the Hamiltonian

is based on one of two main ideas. The first one uses definitions of the force and coupling

constants (kj and kij, respectively) as second order derivatives of the potential energy

over the corresponding vibrational coordinates. If the potential energy is known as a

function of the local coordinates, the force and coupling constants can be calculated by

finite-difference differentiation [31]. The second method is based on the unitary relation

between the vibrational properties of the normal and local modes. In this method the site

energies εj of the local oscillations and coupling β can be calculated if the normal mode

frequencies ωj and the localization angle Θ (see formula (2.3)) are known. The ωj and Θ

can be obtained from a common normal mode analysis. This method is known as Hessian

matrix reconstruction [28,32]

We have found that the two parameterization schemes give a qualitatively different

conformational dependencies of the force constants and, as a consequence, site energies.

Thereby the separate part of the project was dedicated to the comparison of the two
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mentioned parameterization schemes and understanding of the reasons of the disagreement.

2.2.1 Finite Difference Method

In this section we describe the finite difference method which was one of the two param-

eterization schemes analyzed and used in the present work. According to the vibrational

Hamiltonian written in the form (2.1), the force and coupling constants can be expressed

as the second order derivatives of the potential energy over the local coordinates qj:

kj =
∂2E

∂q2
j

, kij =
∂2E

∂qi∂qj

. (2.14)

In more details the method performs as follows.

1. We define the local modes (shifts of atoms of corresponding peptide unit) as functions

of the local coordinates qj.

2. For different values of the local coordinates (and as a consequence different positions

of atoms) we perform ab initio calculations of the potential energy.

3. The obtained potential energy as a function of the local coordinates is used for the

calculation of the second-order derivatives (via the usage of finite-difference formula).

All the above mentioned steps are considered in more details further.

2.2.2 Construction of Amide I Local Modes

As we have already mentioned, in order to apply the finite difference method for the

calculation of the force and coupling constants we have first to define the local modes. In

other words we have to specify dependecy of the GD geometry on the local coordinates qj.

For simplicity of the model, the local modes are defined to be independent on the normal

modes, peptide units and conformations of the peptide. The independence on the normal

modes means that for different normal modes we can use the same set of the local modes

to construct an appropriate linear combination representing the given normal mode. The

independence on the peptide unit allows us to treat all local modes in the same manner.

And finally, because of the independence of the local modes on the conformation we can

keep the conformational dependency of the Hamiltonian in its parameters εj and βij (and

not, for example, in the creation and annihilation operators).
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Figure 2.3: Scheme of the “glycine dipeptide analog” (GD) molecule, introducing the two
local coordinate systems, which are employed to define NMA-based amide I local modes
of the system.

One of the simplest way to define the local modes is to use the amide I normal mode

of the NMA molecule which is often considered as a model of the single peptide unit. In

other words we project the amide I normal mode motion of the NMA molecule into peptide

units of GD. In more details the projection procedure can be defined as follows.

1. We begin with a full geometry optimization and a subsequent normal mode analysis

of the NMA molecule. Based on these calculations, the relative positions of atoms

in the CONH peptide units and the methyl groups of GD are constrained to their

NMA values. Moreover, the Ramachandran angles (φ, ψ) are fixed to represent the

peptide conformation of interest.

2. A partial geometry optimization of GD with fixed (φ, ψ), CONH peptide units, and

the methyl groups is performed, i. e., only the coordinates of two hydrogen atoms

bonded to Cα and the lengths of the bonds N-Cα and Cα-C are optimized.

3. The positions of atoms in the peptide units of GD are given in terms of the two local

coordinate systems shown in Fig. 2.3. For each CONH peptide unit, the origin of

the coordinate system is located at the C atom, the first two axes are given by the

C-O and C-N bonds, and the third axis is obtained by the a cross product of the

first two basis vectors. Since the CONH peptide units are constrained to their NMA
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geometry, it is straightforward to project amide I vibrations of NMA into peptide

units of GD.

Let us consider the construction of the local modes on basis of the output of the normal

mode analysis generated by the Gaussian program [61, 62]. In particular we will consider

question of the local modes normalization.

We start from the terms definition. Matrix of transition from normal coordinates to

Cartesian displacements will be denoted as l̂mCART . Upper indexes m indicates that columns

of the matrix are orthonormalized in the mass-weighted coordinates i.e.

3N
∑

i=1

mil
m 2
CART i,j = 1, (2.15)

where mi are atomic masses and N is number of atoms in the molecule. Here we need

to emphasize that columns of the introduced matrix are not orthogonal in the Cartesian

coordinates since orthogonalization cannot be fulfilled in both Cartesian and mass-weighted

coordinates. According to the definition, each column of l̂mCART is a normal mode given in

Cartesian coordinates and orthonormalized in the mass-weighted ones. Or in other words,

the n-th column is Cartesian displacements of atoms (with respect to their equilibrium

positions) at n-th normal coordinate equal to 1 and other normal coordinates are zeros.

To obtain Cartesian displacements corresponding to a given set of values of the normal

coordinates one needs to multiply the considered matrix l̂mCART by column consisting of the

values of the normal coordinates.

The introduced matrix is not printed by the Gaussian program. However, in the output

files one can find a matrix obtained by normalization of the l̂mCART . The normalization

procedure is relatively straightforward. Each of the 3N elements of a given column of the

lmCART is scaled by a normalization factor Ni, which is defined as follows

Ni =

√

√

√

√

(

3N
∑

k

lmCART k,i

)−1

. (2.16)

In other words, each element of a given column i of lmCART is multiplied by the factor Ni.

After this procedure columns of the new matrix

lcCART i,j = lm 2
CART i,jNj (2.17)

are normalized in the Cartesian coordinates
3N
∑

i=1

lc 2
CART i,j = 1. (2.18)
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Upper index c is used to indicate that columns of the matrix are normalized in Cartesian

coordinates. One needs to emphasize that modes consisted in lcCARTi,j are normalized but

still not orthogonal in Cartesian coordinates.

It will be observed that the above introduced normalization factor is related with the

so called reduced masses µi of the normal modes (µi can also be found in the Gaussian

output files)

µi = N2
i =

(

3N
∑

k

lm 2
CART k,i

)−1

. (2.19)

Therefore, in order to calculated the Cartesian displacements corresponding to some val-

ues of the normal coordinates nj, matrix lcCART printed out by the Gaussian should be

multiplied by column consisting of the normal coordinates divided by the corresponding

reduced masses

∆xi =
3N
∑

j=1

lcCART i,j

(

nj√
µj

)

=
3N
∑

j=1

lmCART i,jnj. (2.20)

So, we have the explicit definition of the reduced mass (2.19). However, the reduced masses

are defined through Cartesian displacements of the normal modes which are normalized

in the mass-weighted coordinates. Let us find an expression which does not rely on this

specific property and can be used in the general case. Using the definition of the reduced

masses (2.19) as well as its relation with normalization coefficients, we can obtain the

following relation involving the reduced mass

lcCART i,j = lmCART i,j

√
µj. (2.21)

The equation (2.21) can be considered as another definition of the reduced masses. Using

(2.21) and (2.15) it is easy to express µj through atomic masses and Cartesian displace-

ments

3N
∑

i=1

mil
m 2
CART i,j = 1 =

1

µj

3N
∑

i=1

mil
c 2
CART i,j (2.22)

µj =
3N
∑

i=1

mil
c 2
CART i,j

Further, we express the displacement normalized in the Cartesian coordinates through

arbitrary ones

lcCARTj,j =
lCART i,j

√

∑3N
i=1 l2CART i,j

. (2.23)
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Substituting (2.23) in (2.22) we obtain the final result

µ =

∑3N
i=1 mi l2CART i,j
∑3N

i=1 l2CART i,j

. (2.24)

Now we can see that derived expression (2.24) gives previous definition of the reduced

masses (2.19) in the partial case of modes normalized in mass-weighted Cartesian coordi-

nates. In such way we have obtained generalized definition of reduced masses, which can

be applied to arbitrary mode. The most convenient way to calculate reduced masses of the

normal modes is to use the formula (2.22), since elements lcCARTi,j can be directly taken

from the Gaussian output.

As we have already mentioned, we use the amide I normal mode of NMA to construct the

local modes of GD (so called projection procedure). The local modes motion, considered

in the present work, involves only four atoms of the peptide unit (O-C-N-H). It means

that the projection procedure implies fixations of some atoms taking a part into the initial

amide I normal mode motion in the NMA molecule. As a result, the mode obtained by

the fixation will not possesses some properties inherent in the normal modes. Firstly, they

will not be normalized in the mass-weighted coordinates. And secondly, the variation of

the local coordinates, defined in such way, will shift center of mass of the system. The

normal modes constructed as linear combination of such local modes will also not posses

the required properties. Therefore, after the fixation of atoms we need to modify obtained

modes to fulfill the two about mentioned requirements. On the first step a constant vector

has to be added to each element of the initial local mode to eliminate the shift of the

center of mass related with the variation of the local coordinate. And on the second step

one needs to multiply each element of the redefined local mode by an appropriate scaling

factor to normalize the mode in mass-weighted Cartesian coordinates. These two steps do

not commute and should be performed in the above mentioned order. Really, if
∑

y2
i = 1

in general case
∑

(yi + ∆)2 6= 1, while from
∑

yi = 0 follows that
∑

αyi = 0. In other

words fixation of center of mass violates normalization while normalization does not effect

on the movement of the center of mass.

One can calculate the force and coupling constants using the initial, not normalized,

local modes and than correct the obtained values by a corresponding scaling factor. Let us

consider this procedure in more details. With l∗c we will denote the initial local coordinate

which was obtained by fixation of some atoms (∗ is used to indicate the fixation of atoms)

in the amide I normal mode which was initially normalized in the Cartesian coordinates

(c index). Next mode is obtained form the previous one by adding a constant vector and
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subsequent multiplication of a constant. As the result of the above transformation the new

mode does not shift the center of mass and is normalized in the Cartesian coordinates. The

corresponding vibrational coordinate will be denoted as lc. The upper index indicates the

normalization in the Cartesian coordinates. And finally, the coordinate of the normalized

in the mass-weighted coordinates mode will be denoted as lm. Since the Cartesian atomic

shifts in the three considered modes are linear proportional to each other one can find

simple linear relation between the corresponding local coordinates (l∗c, lc, and lm). Doing

that we will use the following notation

∆x∗c
i (l∗c) =

3N
∑

j=1

l∗cCART i,j l∗cj , (2.25)

∆xc
i (lc) =

3N
∑

j=1

lcCART i,j lcj ,

∆xm
i (lm) =

3N
∑

j=1

lmCART i,j lmj .

Properties of the local modes, corresponding to the local coordinates lc and lm are set by

the formula (2.15) and (2.18). The length of the initial local mode we will denote as L, i.e.

3N
∑

i=1

l∗c 2
CARTi,j = L2

j (2.26)

Let suppose that only amide I local coordinate (indicated by j) is equal to 1 and all other

coordinates are equal to zero. In this case the interrelationships among different types

of the local coordinates can be found from the requirement of equality of the Cartesian

displacements.

∆x∗c
i (l∗c) = ∆xc

i (lc) (2.27)

l∗cCART i,j l∗cj = lcCART i,j lcj

l∗c 2
j

∑

i

l∗c 2
CART i,j = lc 2

j

∑

i

lc 2
CART i,j

l∗c 2
j L2

j = lc 2
j ,

l∗cj =
1

Lj

lcj .
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The relation between lc and lm can be found In the same way

∆xc
i (lc) = ∆xm

i (lm) (2.28)

lcCART i,j lcj = lmCART i,j lmj

lc 2
j

∑

i

lc 2
CART i,j = lm 2

j

∑

i

lm 2
CART i,j

lc 2
j = lm 2

j /µ,

lcj =
1

√
µj

lmj

Using (2.27) and (2.28) we get

∂2E

∂lm 2
j

=
∂2E

∂l2j

1

µjL2
(2.29)

From the output of the Gaussian we extract the normal modes which are normalized in the

Cartesian coordinates. In order to obtain the second order derivatives corresponding to the

mass-weighted coordinates we have to devide the derivatives over the Cartesian coordinates

by reduced masse of the normal mode µn. The same procedure can be performed with the

modes where some atoms are fixed. In this case we obtain the following relation between

the two type of the derivatives
∂2E

∂lm∗ 2
j

=
∂2E

∂lc∗ 2
j

1

µn
j

, (2.30)

where ∗, as before, is used to indicate the fixation of the atoms. However, the above

relation does not account for the correction related with the atoms fixation. It means that

the relation between the uncorrected and corrected derivatives over the mass-weighted

coordinates is the follows
∂2E

∂lm 2
j

=
∂2E

∂lm∗ 2
j

µn
j

µj

1

L2
j

. (2.31)

With this equation we summarize the question of the local modes normalization.

In the final part of the given chapter we consider the kinetic energy term of the Hamil-

tonian. In general case, the Hamiltonian of the considered system can be written in terms

of the local coordinates as follows

Ĥ =
(

p1 p2
)

(

a11 a12

a21 a22

) (

p1

p2

)

+
(

q1 q2
)

(

b11 b12

b21 b22

)(

q1

q2

)

, (2.32)

where qi, as before, are mass-weighted local coordinates and pi are conjugated momenta.

Let us find values of the coeficients aij of the above Hamiltonian (all anharmonic terms
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are niglected). Let us strictly define momenta pi. We will use standard the definition of

momenta

pi =
∂L

∂q̇j

=
∂

∂q̇j

(T − V ) =
∂T

∂q̇j

, (2.33)

where L is the Lagrangian of the system. We suppose that main contribution to the kinetic

energy of the system is conditioned by classical motion of nuclei, i.e.

T =
N

∑

i=1

mi~v
2
i

2
(2.34)

To express ~vi through q̇i let us find a relation between the local coordinates qi and the

Cartesian displacements ∆xi.

∆xi = lmCART i,1q1 + lmCART i,2q2 (2.35)

In the above expression we use two local mode (denoted as q1 and q2) which correspond

to the consideration of dipeptides. Expresions (2.35) can be straightforvardly used for the

calculation of the atomic velocities

∆vi = lmCART i,1q̇1 + lmCART i,2q̇2. (2.36)

Let us substitute the previous formula in the expresions for the kinetic energy (2.34)

T =
N

∑

i=1

mi~v
2
i

2
=

N
∑

i=1

mi

2

(

lmCART i,1q̇1 + lmCART i,2q̇2

)2
= (2.37)

N
∑

i=1

mi

2
lm 2
CART i,1q̇1 +

N
∑

i=1

mi

2
lm 2
CART i,2q̇2 +

N
∑

i=1

mi

2

(

lmCART i,1l
m
CARTi,2

)

2q̇1q̇2.

The considered modes are localized on different peptide units and, as a consequence, there

are no atoms wich take a part in both local modes. From this fact follows that for any

atoms number i, at least one multiplier in the bracets of the last term is equal to zero. In

such way the expresion for the kinetic energy can be rewriten in the form

T =
q̇2
1

2

N
∑

i=1

mil
m 2
CART i,1 +

q̇2
2

2

N
∑

i=1

mil
m 2
CART i,2. (2.38)

Using normalization condition (2.15) the above expresion can be transformet to very simple

form

T =
q̇2
1

2
+

q̇2
2

2
. (2.39)

In such way we have shown that elements of the matrix representing the kinetic energies

are given by aij = δij where δij is the Kronecker symbol.
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2.2.3 Step for the Numerical Differentiation

In this section we consider the finite difference method used for the calculation of the

second derivatives of the potential energy over the local coordinates. In particular, we

consider selection of the step for the numerical differentiation. The formulas used for the

calculation of the second derivatives are given bellow.

∂2E (0, 0)

∂q2
1

≈ E (∆q, 0) + E (−∆q, 0) − 2E (0, 0)

∆q2
, (2.40)

∂2E (0, 0)

∂q2
2

≈ E (0, ∆q) + E (0,−∆q) − 2E (0, 0)

∆q2
, (2.41)

∂2E (0, 0)

∂q1∂q2

≈ E (∆q1, ∆q2) − E (−∆q1, ∆q2) − E (∆q1,−∆q2) + E (−∆q1,−∆q2)

4∆q1∆q2

. (2.42)

Where E is the energy of the system and ∆qj are the differentiation steps. In our case the

two local coordinates are treated in the same way, so we set ∆q1 = ∆q2 = ∆q.

The approximate values of the second derivatives calculated by formulae (2.40) - (2.42)

dependent on ∆q. As an example, in the Fig. 2.4 the coupling and force constants are

shown as functions of ∆q for several conformations. According to the Fig. 2.4, range of the

step values ∆q can be conditionally divided into two parts where second derivatives shows

qualitatively different behavior. In the first range ∆q ∈ [0.001, 0.01] the force and coupling

constants show unregular fluctuations, whose amplitude decreases with increasing value of

∆q. The amplitude of the force constant fluctuations is comparable with conformational

dependency, while the conformational dependency of the coupling constant dominates over

the dependency on the step ∆q. In the second range ∆q ∈ [0.01, 0.1] the force constant

shows a regular dependency on the ∆q, while the coupling constant remains constants.

Since dependency on ∆q can exceed conformational dependency, we have performed

an additional study to estimate the optimal step ∆q. The first origin of the inaccuracy

is the systematic dependency of the force constants on the differentiation step ∆q. This

effect could not be observed if the potential energy is a parabolic quadratic function of

the local coordinates. So, we can conclude that anharmonic terms becomes important if

∆q is sufficiently large and causes the systematic shift of the force constants. In order to

evaluate parabolicity of the energy as a function of the local coordinates we constructed

the following functional:

F [y (x) , x2, x1] =
ln [y (x2) − y (xmin)] − ln [y (x1) − y (xmin)]

ln (x2 − xmin) − ln (x1 − xmin)
, (2.43)
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Figure 2.4: The force and coupling constant as function of the step used in the numerical
differentiation.

where y is quasi-parabolic function with minimum located at x = xmin, x1 and x2 are two

arbitrary points. The usage of (2.43) with respect to the function

y (x) = α (x − xmin)n (2.44)

gives n. So the closer n to the 2, the more precisely point [x2, y (x2)], minimum of the de-

pendency [xmin, y (xmin)] and some intermediate point [x1, y (x1)] can be fitted by parabola.

The functional (2.43) has been applied to four intersections of the energy E as a function

of the local modes Y1 (q) = E (q, 0), Y2 (q) = E (0, q), Y3 (q) = E (q, q), Y4 (q) = E (q,−q).

For the given functions Yj(q) functional (2.43) has been considered as a function of the x2:

ξi (∆qi) =

{

F [Yj (q) , ∆qi, ∆qi−1] if ∆qi < Deltaqmin

F [Yj (q) , ∆qi, ∆qi+1] if ∆qi−1 > Deltaqmin
(2.45)

In this way we can estimate the accuracy of the harmonic approximation for different

ranges of the local coordinates.

We found out that high precision of the minimum finding is important for the calcula-

tion of ξi. In the Fig. 2.5 we show the above defined function ξ1 calculated for φ = −180

and ψ = −180. Different curves correspond to different ways of the minimum definition.
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Figure 2.5: Dependence of the functions ξj (∆q) on the accuracy of the minimum definition.

In the first one, as a position of minimum ∆qmin of the function Y1 we took a value of the

step ∆qimin
where a function Y1 (∆q) was minimal in comparison with values corresponding

to other steps. In the second case the localization of the minimum was found by mini-

mization of the parabola obtained by fitting of the three nearest to the minimum points

[∆qimin−1, Yj (∆qimin−1)], [∆qimin
, Yj (∆qimin

)], and [∆qimin+1, Yj (∆qimin+1)]. In the Fig. 2.5

one can see that relatively small shift of the approximate value of the minimum used in the

formula (2.45) from its real position causes an increasing systematic deviation from 2 near

zero. Absence of a systematic deviation in the case of the usage of our minimum finding

procedure tell us about its sufficient accuracy.

The above introduced functions ξj were calculated for different conformations of GD.

The representative dependencies are shown in the Fig. 2.6. From the figure one can see

that in the range ∆q ∈ [0.01, 0.1] ξj as a function of ∆q shows a systematic dependency on

∆q and ∆q ∈ [0.001, 0.01] non-regular fluctuation that increase by ∆q → 0 in the range.

On this basis we can conclude that the optimal step for the calculation of the second

derivatives by formulae (2.40)-(2.41) has to be around 0.01, what seams the be the best

compromise between the systematic deviation and non-regular fluctuations.

In order to understand the mentioned behavior, the dependency of the second derivative
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Figure 2.6: Examples of the functions ξj (∆q).

on ∆q have been studied in more details. If we apply the expressions (2.40) to the Taylor’s

expansion of the energy over the local coordinate ∆q1 and ∆q2 we obtain:

∂2E (q1,min, q2,min)

∂q2
1

≈ ∂2E (0, 0)

∂q2
1

−
[

∂3E (0, 0)

∂q3
1

q1,min +
∂3E (0, 0)

∂q2
1∂q2

q2,min

]

+

[

1

2

∂4E (0, 0)

∂q4
1

q2
1,min +

1

2

∂4E (0, 0)

∂q2
1∂q2

2

q2
2,min +

∂4E (0, 0)

∂q3
1∂q2

q1,minq2,min

]

+ (2.46)

1

12

∂4E (0, 0)

∂q4
1

∆q2 + · · ·

For the mixed second derivative (2.42) the same procedure gives the next expressions:

∂2E (q1,min, q2,min)

∂q1∂q2

≈ ∂2E (0, 0)

∂q1∂q2

−
[

∂3E (0, 0)

∂q2
1∂q2

q1,min +
∂3E (0, 0)

∂q1∂q2
2

q2,min

]

+

[

1

2

∂4E (0, 0)

∂q2
1∂q2

2

q2
1,min +

1

2

∂4E (0, 0)

∂q1q3
2

q2
2,min

∂4E (0, 0)

∂q2
1∂q2

2

q1,minq2,min

]

+ (2.47)

1

6

∂4E (0, 0)

∂q3
1∂q2

∆q2 + · · ·

One can see from formulae (2.46) and (2.47) that there ara two types of inaccuracies

involved in the in calculations of the second derivatives. The first one is related with the
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fact that second derivatives are calculated in the point q1 = q2 = 0, which is not exact the

minimum of the energy. As we can see in the above given formulas (2.46) and (2.47), this

type of inaccuracy does not depend on ∆q and consequently cannot cause the above found

systematic dependencies of the second derivatives on ∆q.

The second type of inaccuracy is related with finite value of the step ∆q. This contri-

bution is proportional to the square of ∆q and the fours order of the second derivatives of

the energy. This inaccuracy causes systematic dependency of second derivatives and ξj on

the ∆q in the region ∆q ∈ [0.01, 0.1].

The non-regular fluctuations in the region ∆q ∈ [0.001, 0.01] can be explained as follows.

In the case of a cubic function y (q) = αq2+βq3 the second derivative calculated by formula

(2.40) is equal to 2α + 6βq. In order to explain observed behavior in the vicinity of zero

we introduce an additional non-regular function Υ (q) so that y (q) = αq2 + βq3 + Υ (q).

In this case the second unmixed derivative will be equal to

∂2E

∂q2
= 2α + 6βq +

Υ (∆q) + Υ (−∆q) − 2Υ (0)

∆q2
(2.48)

To extract function Υ (q) from energy dependencies we performed its interpolation in the

range ∆q ∈ [0.01, 0.1] by square function. Difference between the interpolating function

and interpolated data is shown in the Fig. 2.7 (upper panel) where one can see systematic

deviation of data form interpolating function. Systematic deviations disappears if one

performs the same procedure with a cubic function (see Fig. 2.7, lower panel). It means

that in the considered range of ∆q one can distinguished only quadratic and cubic terms

in the dependency of the energy on the local coordinates. In such way we proved that our

assumption concerning Υ (q) was correct. The function Υ (q) appears in the expression ()

and causes above considered non-regular fluctuations. Devision by ∆q in (2.48) causes the

increase of the fluctuation amplitude if ∆q decreases.

In order to estimate an influence of the function Υ (q) on the value of the second

derivative calculated by formula (2.40) with the usage of ∆q = 0.01 we calculated second

derivative of the interpolating function analytically. Derivatives of the energy and its fitting

cubic function are shown in the Fig. 2.8 as functions of configurations. From the fig. one

can see that at ∆q = 0.01 influence of the ∆ (q) on the result is neglectable.

2.2.4 Hessian Matrix Reconstruction Method

In the above considered finite difference method, the approximate normal modes are defined

as set of orthonormal linear combinations of the local modes, diagonalizing the potential
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Figure 2.7: Difference between the exact potential energy and the fitting polynomial of
different order.
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energy matrix. As another possibility, we can define the approximate normal modes as

such linear combinations of the local modes, which minimizes geometrical deviation from

the exact normal modes. This definition is used as a basis in the so called Hessian ma-

trix reconstruction (HMR) method [28, 32]. The existence of different definitions of the

approximate normal modes is based on the fact that exact normal modes cannot be ex-

actly expressed as linear combinations of the local ones. As a consequence, one can use

different criteria to estimate to which extent a given linear combination of the local modes

can be considered as an approximation to a normal mode. Different criteria used for the

definition of the approximate normal modes require different quantities as the input. In

the case of the FD method we have to know the potential energy as a function of the local

coordinates. Diagonalization of the corresponding potential energy matrix gives us the

localization angle Θ and the normal mode frequencies (see definition (2.3)).

In the HMR method we have to know the normal modes and their frequencies ωj. The

normal modes are used to find Θ which parameterize the unitary transformation relating

the local and normal modes. Having Θ and the normal mode frequencies ωj we can find

the site energies εj and the coupling β between the local modes. The HMR method will

be considered in more details in this sections.

2.2.5 Usage of the NMA-Based Local Modes

For simplicity we will describe the usage of the HMR method for parameterization of the vi-

brational Hamiltonian of dipeptides (systems which have only two amide I normal modes).

All further derivations can be straightforwardly extended on the case of polypeptides. Let

~n1 and ~n2 be the amide I normal modes of dipeptide, which are given as 3N -components

vectors of atomic mass-weighted Cartesian displacements (where N is number of atoms).

In this representation the normal modes can be expressed through the local modes ~lj in

the following way
(

~n1

~n2

)

=

(

α11 α12

α21 α22

)

(

~l1
~l2

)

+

(

~l
(t)

1

~l
(t)

2

)

. (2.49)

The first summand in the above expression corresponds to the fact that the normal modes

~nj can, within some approximation, be presented as linear combinations of the local modes
~lj. The last summand (containing ~l

(t)
j ) counts for the fact that the above representation

is not exact (the upper index t indicates that this component of the normal modes is

transverse to the plane spanned by the local modes). The smaller ~l
(t)

j are, the better is

the representation of the normal modes by linear combination of the local modes. If ~l
(t)

j
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are exactly equal to zero, we can find αij by the following formula

αij =
(

~ni,~lj

)

. (2.50)

It should be noticed that the local modes ~l
(t)

j given in mass-weighted Cartesian coordinates

depends on the orientation of the corresponding peptide unit. If vectors ~l
(t)

t are rather

small the relation (2.49) can be written in the following form

(

~na
1

~na
2

)

=

(

cos(θ11) sin(θ12)
− sin(θ21) cos(θ22)

)

(

~l1
~l2

)

, (2.51)

where θij are close to each other and the upper index a indicates that normal modes

given by the expression are approximations to the exact modes. The vectors ~na
j given

by the equation (2.49) are nothing else than projections of the exact normal modes on

the plane spanned by the local modes ~lj. The projections are neither perpendicular nor

normalized, whereas the local modes ~lj are normalized by the construction. In order to

obtain normalized normal modes we have to set θj1 = θj2 ≡ θj. Under this condition θ1

can be calculated as follows

θ1 ≡ arctan
sin (θ1)

cos (θ1)
= arctan

sin (θ21)

cos (θ11)
= arctan

α12

α11

= arctan

(

~n1,~l2

)

(

~n1,~l1

) . (2.52)

It should be noticed that normal modes calculated by the equation (2.51)

~na
1 = cos (θ11)~l1 + sin (θ12)~l2 (2.53)

are not equal to the modes calculated with the usage of θ1

~na
1 = cos (θ1)~l1 + sin (θ1)~l2. (2.54)

Replacement of the equation (2.53) by the (2.54) is nothing but the normalization of the

normal mode ~na
1. The above normalization does not change angles between the considered

normal mode and the two local ones. It should be also noticed that the angle θ1, defined as

above, does not require normalization of the initial (exact) normal modes ~n1. In the range

[−180, 180], the expression (2.52) gives two values for θ1. However, only one of them gives

correct sign of α11 and α12 which are equal to cos (θ1) and sin (θ1), respectively. It should

be added that we defined the first normal mode as those which has the lower frequency.
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The same procedure has been applied for the calculation of the θ2.

θ2 = arctan
sin (θ2)

cos (θ2)
= arctan

sin (θ21)

cos (θ22)
= arctan

(

−α22

α21

)

= arctan



−

(

~n2,~l1

)

(

~n2,~l2

)



 ≡ arctan λ2.

(2.55)

As it was in the case of θ1, the above expression gives two values for θ2. In the case of θ2

we select those value which is closer to the θ1. We can do that since sign of the normal

modes has no physical meaning. So we always can define it in the way giving the relation

(2.51), where θij are close to each other. In other words, the sign of the second normal

mode was defined in such way that

[~n1, ~n2]3 > 0, (2.56)

where ~nj = (αj1, αj,2, 0).

Finally, after θ1 and θ2 are calculated, we replace them with their average value Θ =

(θ1 + θ2) /2. The latter reduction of the parameters number makes the approximate normal

modes orthogonal to each other.

Here we have to mention that the difference between θ1 and θ2 was in the range

[−3.5◦, 5.9◦] and its quadratic mean was about 1.7◦. It means that projections of the

normal modes on the plane spanned by the local modes can be considered as perpendicu-

lar to each other within a good approximation. In its turn it means that planes spanned by

the local and normal modes, respectively, are close to each other. This proves that normal

modes can be ruther accurately presented by linear combinations of the local modes.

The found angle Θ and the normal mode frequencies are then used to calculate the

local mode frequencies and coupling. In order to find the relation between normal mode

frequencies as well as the site energies and coupling we will use the following expression

for the potential energy

V (l1, l2) =

(

l1
l2

)(

ε1 β
β ε2

)

(

l1 l2
)

=

(

n1

n2

)(

ω1 0
0 ω2

)

(

n1 n2

)

(2.57)

Using the relation between the normal and local coordinates
(

na
1

na
2

)

=

(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(

l1
l2

)

. (2.58)

we can find the following relation between the vibrational properties of the normal and

local modes
(

ω1 0
0 ω2

)

=

(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)(

ε1 β
β ε2

)(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

(2.59)
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This gives the following expressions for the normal modes frequencies

ε1 = ω1 cos2(θ) + ω2 sin2(θ),

ε2 = ω1 sin2(θ) + ω2 cos2(θ), (2.60)

β =
1

2
(ω1 − ω2) sin (2θ) .

2.2.6 Carbonyl Coordinate Displacement Method

In the above description of the HMR method, as an example, we used the local modes

constructed on the bases of the normal modes of NMA (hereafter NMA-based local modes).

As we have already noticed, the usage of such local modes requires the artificial geometry

restrictions which can cause unphysical contribution to the vibrational properties of the

peptides. This disadvantage of the FD method appears because of the following dilemma.

On the one hand, in the FD method, the local modes have to involve sufficient number

of atoms in order to give a reasonable dependency of the potential energy on the local

coordinates. On the other hand, the more atoms are involved into the local mode motion,

the stronger are the geometrical restrictions. This dilemma can be avoided in the HMR

method since it uses the local modes for another purpose. They are used to calculate

localization of the normal modes. It means that in the HMR method, the local modes

may consist of such combination of internal coordinates which does not reproduce correct

dependency of the potential energy on the local coordinates but still gives rather accurate

localizations of the normal modes. In this section we will show that CO bonds of peptide

units can be used as an accurate measure of the normal modes localizations. The main

advantage of the CO bonds is that their usage does not require the above mentioned

geometry restrictions. The usage of the CO bonds, which is known as carbonyl coordinate

displacement (CCD) method [67], is based on the following calculation of the normal mode

localization angles

θ1 = arctan
CO2 (n1, 0) − CO2 (0, 0)

CO1 (n1, 0) − CO1 (0, 0)
,

(2.61)

θ2 = arctan
CO2 (0, 0) − CO2 (0, n2)

CO1 (0, n2) − CO1 (0, 0)
.

Let us show that, if the normal modes can be presented as linear combination of the

identical local modes, the NMA-based local modes and carbonyl coordinate displacement
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methods will give the same results under condition that the variation of the normal co-

ordinates is sufficiently small. Under the two above mentioned conditions, the nonzero

elements of the normal mode will form the following 3*8-dimensional vector

~n1 =
(

α1∆~rH , α1∆~rN , α1∆~rC , α1∆~rO, α2∆~rH , α2∆~rN , α2∆~rC , α2∆~rO

)

(2.62)

where αj is the localization of the normal mode on the jth peptide unit. The local modes

are

~l1 =
(

∆~rH , ∆~rN , ∆~rC , ∆~rO, 0, 0, 0, 0
)

, (2.63)

~l2 =
(

0, 0, 0, 0, ∆~rH , ∆~rN , ∆~rC , ∆~rO

)

. (2.64)

In this case the localization angle θ1 calculated with the usage of the expression (2.52) will

be as follow

θ1 = arctan

(

~n1,~l2

)

(

~n1,~l1

) = arctan
α2

α1

(2.65)

In the carbonyl coordinate displacement method, the localization angle should be calcu-

lated by the formula (2.61) which, under the considered conditions, will give the following

result.

θ1 = arctan
| (~rC + α2∆~rC) − (~r0 + α2∆~rO) | − |~rC − ~r0|
| (~rC + α1∆~rC) − (~r0 + α1∆~rO) | − |~rC − ~r0|

(2.66)

= arctan

∑∞
n=1 Φnαn

2
∑∞

n=1 Φnαn
1

≈ arctan
α2

α1

.

The results of the two last formulas are identical. In such way we have pointed the sufficient

conditions of the agreement between the results obtained with the usage of the NMA-based

local modes and the CCD method. We have to notice that the above comparison of the

local modes can be applied only to the HMR method (and not to the FD one).

2.2.7 Comparison of the Parameterization Schemes

In this section we compare results obtained with the HMR and FD methods. The two

methods are used in combination with the NMA-based local modes and, as a conse-

quence, the restricted geometry. The usage of the same local modes and geometries

allows us to concentrate on the difference related with the usage of the different crite-

ria for the definition of the approximate normal modes. In the Fig. 2.9 we show the
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Figure 2.9: Coupling constants, difference between the force constants, and average force
constant calculated by FD and HMR methods.
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coupling, differnece between the force constants and the avergae force constant as func-

tions of conformation. The shown data have been obtained with the usage of the two-

dimensional grid of the dihedral angles φ and ψ. Each dihedral angles was variate in the

range from −180◦ to 150◦ with the step 30◦ (12 values). All possible combinations of

the φ and ψ angles were considered (144 points). For the simplicity of the comparison

we numerated the 2D data by one integer parameter n in the following way. The data

number n is related to the φ and ψ angles as φ = −180◦ + 30◦ × int [(n − 1) /12] and

ψ = −180◦ +30◦×mod [(n − 1) , 12], i.e. conformations are arranged in the order (φ, ψ) =

(−180◦,−180◦) , (−180◦,−150◦) , . . . , (−180◦, 150◦) , (−150◦,−180◦). Here, int (x) stands

for the largest integer which is ≤ x and mod(x, y) is calculated as x − int (x/y) × y.

As we can see in the Fig. 2.9 the two different parameterization schemes give very close

conformational dependencies of the considered vibrational properties. The only difference

is the average shift of the force constant, which is probably related with the cubic terms of

the potential energy and the fact in that FD method, the second derivative are calculated

not in the minimum of the potential energy over the local coordinates.

In this section we compare results obtained with the usage of the NMA-based local

modes and CCD method. In both cases the HMR method was used. The first reason

to usa this method is that it is less sensitive to the size of the local modes. As we have

shown before, even CO bonds, used as measures of the normal modes localizations, can

give accurate result if the HMR method is used. The latter is not true for the FD method.

The CO bonds, used as local modes in the FD methods, will give rather inaccurate results.

The second reason to use the HMR method is that it is simpler from the technical point

of view. Id does not require the projection procedure in which we have to constrain the

geometry depending on the values of the local coordinates. Instead of that, in the HMR

method, only the full geometry optimization with the subsequent normal mode analysis

are required.

In the Fig. 2.10 we can see that coupling and difference between the force constants

obtained with the NMA-based local modes are very close to those obtained with the usage

of the CCD method. The sum of the force constant in the two considered cases should

be identical since the trace of the matrix is invariant with respect to the arbitrary unitary

transformation. Since the both modes use the same initial diagonal matrix, constructed of

the force constants of the normal modes, after the unitary transformation the sum of the

diagonal elements has also to be identical.

In the previous two sections we have shown that FD and HMR methods give very close
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Figure 2.10: The coupling and difference between the force constants calculated by the
HMR method in combinations with the NMA-based local modes and CCD method.

results under conditions that they use the same local modes and are applied to the same

geometry. We have also shown that replacement of the NMA-based local modes by the CO

bonds causes very small changes of the vibrational properties. In such way we have found

a parameterization scheme (HMR + CCD) which is quite simple from technical point of

view, does not require any geometrical restriction and still is rather accurate.

In this section we apply the HMR method, combined with the CCD ones, to the both

the fully optimized geometry (only φ and ψ angles were fixed) and the restricted one (which

is used if the NMA-based modes are used). The comparison has to show how importante

is the influence of the geometrical restrictions, used in the FD method, on the vibrational

properties. The results of the comparison are shown in the Fig. 2.11. As we can see

in the figure, the force constants are very sensitive to the geometry restrictions while the

coupling is rather insensitive to the change of the geometry. These results indicate that the

NMA-based local modes, and as a consequence the FD method, are not suitable for the

calculation of the force constants. The influence of the considered geometry restriction will

be considered in more details in chapter where the amide I anharmonicities are considered.
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2.3 Amide I Anharmonicities

2.3.1 Anharmonicities in NMA

In the present paper we have calculated the amide I anharmonicities up to the 7th order.

For these purposes we have calculated potential energy of NMA as a function of the amide

I normal coordinate which has been variated in the range [−1.4 u1/2Å, 1.4 u1/2Å] with

the step of 0.01 u1/2Å. Energies obtained on the described grid have been fitted by the

polynomial functions of different order, which afterwards have been used in the calculation

of energies of the ground and the first two excited states.

In more details, Hamiltonian of the system was written in the following form

Ĥ =
1

2
p̂2 +

N
∑

n=0

Cn

n!
q̂n, (2.67)

where coefficients in the potential energy term (Cn) are fitting parameters and q̂ is the

operator of the mass-weighted amide I normal mode coordinate (with the corresponding

momenta operator p̂). N is the order of the polynomial which has been used for the fitting

of the potential energy curve. Then the considered Hamiltonian has been rewritten in

terms of the creation and annihilation operators with the usage of the following relations:

q̂i =
1

C
1

4

2

√

~

2

(

â + â+
)

, (2.68)

p̂i = − iC
1

4

2

√

~

2

(

â − â+
)

,

where C2 is the coefficient before the second order term. Hereafter it is called the force con-

stant. Afterwards Hamiltonian was expressed through eigenvectors of harmonic oscillator

by multiplication from the left and right sides on the unitary operator:

Î =
N

∑

n=0

|n >< n|, (2.69)

where |n > are the eigenfunctions of the harmonic oscillator with the force constant C2.

And finally the eigen values of the Hamiltonian have been obtained by its diagonalized.

Results obtained within the mentioned procedure can significantly depend on three pa-

rameters: range of the normal coordinate used in the fitting of the ab initio values of the

potential energy, order of polynomial used for the fitting of the given ab initio values, and

size of the basis set.
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Figure 2.12: Transition frequencies of the first two excited states as well ground state
energy as functions of size of the basis set.

Let us first consider convergence of the amide I excitation energies with respect to the

number of the basis set functions. For this purposes we have considered cubic potential

energy:

V (q) =
1

2

(

k +
a

3
q
)

q2, (2.70)

for which energy of the ground and the first three excited states have been calculated with

different number of basis set functions. For the mechanical anharmonicity a we took value

a = 3.8 mdyn/(Å2 u
3

2 ) which has been obtained by fitting of the potential energy in the

vicinity to zero. The energy differences between neighboring states ∆Ej = Ej+1 − Ej

(j = 0, 2)are shown on the the Fig. 2.12 as the functions of the basis set size. On the the

Fig. 2.13 we have shown difference between first two transition frequencies. This quantity

is zero if the considered anharmonicity a is zero. As one can see the needed number of

the basis set function is the larger the higher excitation is considered. For all considered

excitation 10 basis functions seams to be sufficient for a reliable energy calculations.

Let us consider other two parameters which can significantly influence on the energy

levels. In order to get reasonable values of the energy levels the precise potential energy

should be known in the range where wave functions of the considered states are localized.

Moreover, order of the interpolating polynomial has to be sufficiently high to accurately
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Figure 2.13: Difference between the first two transition frequencies ((E2−E1)− (E1−E0))

reproduce anharmonicities presenting in the ab initio potential energy in the given range.

The larger range of the normal coordinate is considered the higher order anharmonicity

of the potential energy are visible and, as a consequence, the higher oder polynomial is

needed. In another words results are the more accurate the larger range of the potential

energy is considered and the higher oder polynomial is used. However, one needs to mention

that under fixed order of the fitting polynomial results can become worse if the range of

the normal mode coordinate is increased. Really, if one increases range of the normal

coordinate the polynomial of a fixed order tries to fit potential energy in the hole range

and particularly on the ends of the range (where probability distribution of the considered

wave function can be small) and as a consequence in the vicinity to zero (where probability

distribution is large) agreement between fitted data and fitting function becomes worse. It

means that at fixed ranger results are the better the higher order polynomial is used and

under fixed polynomial order there is an optimal range which will give the most accurate

results. Having this in mind, the convergence of the eigenvalues on the range of the normal

coordinate and order of fitting the polynomial should be carefully studied. In the Fig. 2.14

”frequency anharmonicity” δ∆E = ∆E21 − ∆E10 = (E2 − E1) − (E1 − E0) is plotted as a

function of the range used in the fitting procedure. Different curves correspond to different

order of the used polynomials. For each range of the normal coordinate (x-axis) where the

49



50 Amide I Anharmonicities

−100

−80

−60

−40

−20

 0

 20

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

δ∆
 E

, [
cm

−
1 ]

Range, [u1/2 Å ]

2d order
3d order
4th order
5th order
6th order
7th order

Figure 2.14: (E2 − E1)−(E1 − E0) as a function of the normal mode coordinate range used
during the fitting of the amide I potential energy. Different curves correspond to different
order of polynomial used during fitting.

potential energy has been fitted one needs to reach convergence over polynomial order. In

general, the larger range of the normal coordinate is used, the higher oder polynomial is

needed. However, the oder of the polynomial has to be reasonably high. Superfluous high

order terms of the fitting polynomial can slightly improve agreement with the fitted data in

the range of the interpolation. However, if the range of the interpolation is not sufficiently

large, the coefficients before the high order terms can be obtained with a bad accuracy.

This can cause a strong disagreement between the fitted data and fitting polynomial beyond

the range of the interpolation. In its turn it can significantly change wavefunctions whose

range of the localization is comparable with the range of fitting. The above described effect

can be observed in the figure. For the range of about 0.3 u1/2Å we reached convergence

at 5th, 6th order polynomial, however results obtained with the 7th order polynomial show

completely different behavior. At about 0.4 u1/2Å we observe convergence over polynomial

at about 4th order (since replacement of 4th oder polynomial by 5th (as well as 6th and

7th) order one does not change significantly results). Moreover, we can say that at this

point we have also reached convergence over range. Really, one can say that results have

converged at given range of the normal coordinate only if upon further increase of the range

results converged over polynomial order do not change significantly. In another words, at
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each range one needs to reach convergence over polynomial order and than converged

in this sense results should be converged over increase of range of the potential energy

interpolation. From the physical point of view the range of the wavefunction localization

define range of convergence. The last one, together with the form of the potential energy,

defines required polynomial order. In the considered range of the normal coordinate (up

to the 1.4 u1/2Å) the 7th order polynomial can be considered as results converged over

polynomial order (since in the considered range this results are close to results obtained

with 6th order polynomial). Therefore, range of about 0.4 u1/2Å, and 4th order polynomial

can be considered as ”minimal” parameters which provide convergence of the first three

energy levels. It should be emphasizes that the third order polynomial obtained by the

fitting of the ab initio potential energy in the range where wave functions are localized

cannot give enough accurate result since cubic potential cannot accurately represent ab

initio energies in the hole range of the wave function localization. Therefore, δ∆E obtained

within the cubic potential is about two times larger than corresponding values obtained

with higher order polynomials. It means, that for an accurate description of the first

two excited states corresponding to amide I vibrations in NMA one needs to take into

account at least forth oder anharmonicities. However, in this case, for the consistency one

also needs to take mixed forth order derivatives into account, which are not proved to be

enough small with respect to the unmixed ones. In other words, in order to get reasonable

ab initio value of frequencies splitting one needs to take into account forth oder interaction

of amide I mode with other modes and in in such way to refuse the approximation of

amide I subspace. In the present work we will confine ourself by consideration of the cubic

anharmonicities and work within approximation of the amide I subspace.

2.3.2 Anharmonicities in the GD: Conformational Dependency

The building block model in combination with the harmonic approximation is a common

method for the description of the amide I vibrations in polypeptides. In this model the

local amide I vibrations are considered as harmonic oscillators which are coupled with each

other through the second order interaction. It other words, in the expansion of the potential

energy over the local coordinates only the second order terms remain (which depend on

the peptide secondary structure). In the present work we made one step to the extension

of the Hamiltonian by the inclusion of the mechanical anharmonicities to the potential

energy. Namely, we have calculated all types of cubic anharmonicities and studied their

conformational dependency and influence on the energy levels. Moreover, the introduced
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Figure 2.15: Values of the local coordinate which correspond to fully optimized geometry
of GD as well as mesh used for calculation of cubic anharmonicities in GD.

cubic terms were used to explain earlier found quantitative disagreement between the local

force constant calculated with the finite difference and the Hessian matrix reconstruction

methods.

For each pare of the dihedral angles φ and ψ the third oder anharmonicities have been

calculated by linear fitting of the force constants as functions of the local coordinates. In

more details it has been done in the following way. For calculation of the force and coupling

constants we have used the finite difference formulas given in our previous paper [53]. It

means that in order to calculate all second oder derivatives in point (q1, q2) we need to

know energy in 9 points (q1 +n∆q, q2 +m∆q), where n and m can take on values (−1, 0, 1)

and ∆q is the step used for the numerical differentiation. In the Fig. 2.15 the grid of the

local coordinate where the potential energy has been calculated is shown.

The second derivative over the first local coordinate has been calculated for q1 = 0

and q2 = ∆q ∗ n where n = −3, 3, as well as for q2 = 0 and q1 = ∆q ∗ n, where n =

−2, 2. In this way we have obtained k1 = ∂2E/δq2
1 as function of q1 and q2. The same

strategy has been applied to obtain the second order derivatives as functions of the local

coordinates. Obtained dependencies of the force constants on local coordinates have been
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interpolated by the linear functions kj (q1, q2) = k0j +∂2E/δq2
j = aj1q1 +aj2q2. Coefficients

of proportionality ajm between the local coordinates and force constants are nothing else

as approximate values for the third oder derivatives.

ajm =
∂3E

δq2
j δqm

(2.71)

We have found that in the considered range of the local coordinates the force and cou-

pling constants can within a good approximation be considered as linear functions of the

local coordinates. Mean square deviations of the exact second order derivatives from the

corresponding fitting values are only about 0.005 mdyn/(Åu). The unmixed third order

derivatives calculated for different φ and ψ angles were found to slightly differ from each

other. Moreover, conformational dependency has significantly random character. Tak-

ing this into account we have replace ab initio (φ, ψ)-maps of the cubic unmixed anhar-

monicities by constant numbers. Moreover, the average values of the two types of the

unmixed derivatives were found to be very close to each other (3.8223 mdyn/(Å2 u
3

2 ) and

3.8347 mdyn/(Å2 u
3

2 ) for a11 and a22, respectively) and, as a n approximation, we used one

averaged value (3.8285 mdyn/(Å2 u
3

2 )) for the two cases. It should be mentioned that this

number is close to the corresponding anharmonicity found for the NMA molecules. The

mean square deviation of the calculated anharmonicities from the above introduced average

value is only about 0.13 mdyn/(Å2 u
3

2 ) and 0.17 mdyn/(Å2 u
3

2 ) for the a11 and a22, respec-

tively. The average values of the mixed third order derivatives (a12 and a21) were found

to be very close to zero (0.0126 mdyn/(Å2 u
3

2 ) and 0.0139 mdyn/(Å2 u
3

2 ), respectively).

Moreover, as in the case of the unmixed derivatives, the conformational dependency was

found to be small and rather random. To simplify the model we considered the unmixed

derivatives to be equal to zero. The mean square deviation of the exact number from zero

is only 0.083 mdyn/(Å2 u
3

2 ) and 0.098 mdyn/(Å2 u
3

2 ) for a12 and a21, respectively.

Summarizing the described properties of the cubic anharmonicities we can rewrite gen-

eralized Hamiltonian of the dipeptide

V (l1, l2) =
1

2

[

kf
1 (φ, ψ) +

a

3
l1

]

l21 +
1

2

[

kf
2 (φ, ψ) +

a

3
l2

]

l22 + k12 (φ, ψ) l1l2, (2.72)

where kf
j are the force constants calculated in the equilibrium. In the above equation we

have redefined the local coordinates. They have been shifted (with respect to the original

coordinates) such that zero values correspond to the minimum of the potential energy. In

this way we can simplify Hamiltonian by the removal of the linear terms. If one wants

to use the force constants of the restricted geometry one needs to add a linear term to
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the Hamiltonian, replace force constant, and leaves the second oder coupling and local

cubic anharmonicities. It should be noticed that the above introduced generalization of

the dipeptide Hamiltonian can be easily applied to the polypeptides Hamiltonian.

2.3.3 Explanation of the Disagreement Between FD and HMR
Methods

In our previous paper [53] we have reported about qualitatively different conformational

dependency of the normal mode frequencies calculated with the two different ab initio

methods (Hessian matrix reconstruction and finite difference method) (see Fig. 2.16).

Mentioned difference has been explained by the artificial geometry restrictions needed for

the definition of the local modes used in the finite difference method. In other words the

observed difference indicates that the force constants significantly depend not only on the

dihedral angles φ and ψ but also on some other degrees of freedom which are involved in

the geometry restriction. The more detailed analysis described in this paper has shown

that to a large extent these degree of freedom are the local coordinates themself. For the

sake of simplicity one can imagine the local modes as CO stretching. Geometry restrictions

implies that for all configurations CO bond lengths will be the same. In the FD method the

second derivatives are calculated for such restricted geometry for mesh of φ and ψ angles.

However, in our present consideration before the calculation of the second derivatives we

have variated local coordinate in such a way to make CO bond length equal to the CO

bond lengths in the corresponding (the same φ and ψ) full optimized geometry. With

such modified finite difference method we were able to rather accurately reproduce the

conformational dependency of the normal mode frequencies of the full optimized geometry

with the usage of the restricted (but ”tuned”) geometry. In such way we have shown

that the disagreement between the two parameterization schemes can to a large extent be

explained by the dependency of the normal mode frequencies on the local coordinates.

Withing the above considered cubic approximation the force and coupling constant are

liner functions of the local coordinates. Let us find out whether the cubic approximation is

sufficient to treat the difference between the normal mode frequencies of the two geometries.

To do that we have used CO bond length as a measure of the local coordinate. From all

available full optimized geometries we have extracted CO bond length and calculated values

of the local coordinates corresponding to the extracted values. The obtained in such way set

of the local coordinates values are shown in the Fig. 2.15. As we can see, almost all points

are covered by the mesh with which the force and coupling constant has been calculated
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Figure 2.16: Average frequencies, frequency splitting and site energies obtained with the
usage of full optimized, restricted and restricted tuned geometries.
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and proven to be linear functions of the local coordinates. This fact indicates that it should

be possible to calculate the force constants of the full optimized geometry with the usage of

the force constants of the full optimized geometry (in the same conformation) and value of

the local coordinate corresponding to the given full optimized geometry. This means that

in oder to relate results of the two methods it is sufficient to consider potential energy as a

cubic function of the local coordinates. Moreover, with above calculated anharmonicities

we can explain why coupling being calculated with HMR and FD is almost the same. The

reason is the smallness of the third mixed derivatives. I. e. the first derivative of the

coupling over one of two local coordinates in nothing else as mixed third derivative which

is small and, as a consequence, the coupling itself slightly depends on the corresponding

local coordinate.

2.3.4 Effect of the Anharmonicities on the Transition Frequen-
cies

Finally, we have studies effect of the anharmonicities on the transition frequencies. For

different force constants, we have calculated the first three transition frequencies with and

without the usage of the above described cubic anharmonicity. During calculation we have

used basis set consisting of 20 functions. The transition frequencies obtained with the usage

of the cubic term were plotted as functions of those calculated without anharmonicity (Fig.

2.17). As one can see in the figure, the cubic anharmonicity causes overall shift down as

well as increase range of the variation of the transition frequencies. The latter is observed

as increase of the incidence of the obtained dependencies with respect to the bisector.

The both effect (shift and change of incidence) are the stronger the higher excitations are

considered.

2.4 Building Block Model

In this chapter we are concerned with the ab initio modeling of the conformational de-

pendence of εn and βnm for the isolated molecule. Because the accurate calculation of

vibrational properties in general requires a high theoretical level and large basis sets, di-

rect ab initio calculations of vibrational frequencies for the entire molecule are restricted to

small systems and/or only few conformations. As a remedy, various fragmentation schemes

have been suggested [24,68–72], whose idea is to perform an ab initio description of small

peptide (“building block”), which subsequently can be put together in order to describe
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larger systems. For example, Bour and Keiderling and their coworkers have developed a

property tensor transfer method [24, 70], in which ab initio-based atomic force fields and

polar and axial tensors are calculated for modest-size oligopeptide fragments and subse-

quently transferred to peptides of the same local secondary structure. Alternatively, it

has been suggested to calculate transferable vibrational parameters of single [71] and two

adjacent [72] peptide residues as a function of the (φ, ψ) dihedral angles of the peptide

backbone. The idea is similar to the exciton model, which has been widely employed to

describe electronic excitations of extended systems composed of many similar repeat units,

such as aggregates and molecular crystals. [44,73]

Here, we adopt blocked glycine peptides of the type H3C-CONH-(CH2-CONH)n-CH3

as a simple building-block model, see Fig. 2.18. The smallest system of this series (n =

0) is N-methylacetamide (NMA), which has been widely used as a minimal model of a

peptide [28, 29, 35–38, 74]. For n = 1 we obtain “glycine dipeptide” (GD), which is the

simplest model that describes the vibrational interaction between two peptide units. For

this system, various groups have calculated the matrix elements εn and βnm as functions

of the (φ, ψ) backbone dihedral angles [28,31–34,53,72]. Following the building block idea,

we wish to study to what extent the parameters derived for NMA and GD can be used
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Figure 2.18: Blocked glycine peptides under consideration: A N-methylacetamide (NMA),
B “glycine dipeptide” (GD), and C “glycine tripeptide” (GT).

to obtain accurate vibrational parameters for longer peptides (n ≥ 2). To this end, we

have performed extensive ab initio calculations of the case n = 2, henceforth referred to as

“glycine tripeptide” (GT), which serve as reference data for testing various approximate

schemes. We suggest and analyze various methods to calculate diagonal and off-diagonal

vibrational matrix elements and compare the ab initio results to the prediction of popular

electrostatic models [28,37,38,41,74].

In the building block model the values of the site energies are considered to be condi-

tioned by an additive influence of the neighboring peptide unit(s) on the considered one.

If the building block model is based on the usage of a dipeptide, only the first neighbor

influence can be taken into account. One of the possible ways to improve the values of the

site energies is to use the building block model in combination with electrostatic models

for the calculation of the non-first neighbor influence. In such models the conformational

changes of the local mode frequencies are related (in empirical way) with the electric field

generated by other peptide units and located around the considered one. In the similar

way, the usage of a dipeptide as the building block gives only the first neighbor coupling.

Analogously to the case of the site energies, the non-first neighbor coupling can be calcu-

lated within different electrostatic models. Assuming that the vibrational mode coupling
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among localized vibrations originates mostly from electrostatic interaction, various work-

ers have employed the transition dipole coupling model [4, 5] or multipole generalizations

thereof. [31,32,75] In the present work we test popular electrostatic models [28,37,38,41,74]

by comparison with the ab initio values. The same strategy is used to test the building

block model as well as combination of the last one with the electrostatic models for the site

energies. It has to be emphasized, that the mentioned electrostatic models, used for the

calculation of the coupling and site energies, can also be applied for the calculation of the

first neighbor coupling as well as the first neighbor effects on the site energies. However,

the results obtained is such way are rather inaccurate. This makes the building block

model indispensable for the construction of the polypeptides vibrational Hamiltonian.

2.4.1 Methods

Following previous work [53], we have performed DFT calculations of the isolated tripeptide

GT at the B3LYP/6-31+G(d) theoretical level [64], using the GAUSSIAN suite of program

[62]. Choosing a representative set of 360 conformations defined by the backbone dihedral

angles φ1, ψ1, φ2, and ψ2 (see Fig. 2.18), we performed geometry optimizations of GT with

fixed {φi, ψj} angles and subsequent normal mode analysis. A frequency scaling factor of

0.97 was used. Employing the C=O stretch modes of the peptide backbone as amide I local

modes, next the transformation between normal and local amide I modes is constructed

using the Hessian matrix reconstruction method [28, 29, 32]. When this transformation is

applied to the diagonal normal mode Hamiltonian, we obtain the desired exciton model.

In the same way, the (φ, ψ)-map of εn and βnm of the dipeptide GD was calculated [53].

2.4.2 First-Neighbor Couplings

Let us first consider the description of the vibrational couplings βnm of GT. An obvious

approximation of the next-neighbor couplings βn,n±1, depending in principle on all dihedral

angles {φi, ψj} of the peptide, is to use the dipeptide couplings βGD which depend only on

a single pair of dihedral angles. In the case of the tripeptide we thus assume that

βn,n+1(φ1, ψ1, φ2, ψ2) ≈ βGD(φn, ψn), (2.73)

where n = 1, 2, see Fig. 2.18. The comparison of the resulting next-neighbor couplings

β12 and β23 and their reference values from the direct calculations is shown in Fig. 2.19A.

Approximation (2.73) is found to yield almost quantitative agreement with the reference

calculations, although the additional residue of GT is expected to change the geometry
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Figure 2.19: Amide I local-mode frequencies εn (panels B and C) and associated vibrational
couplings βnm (panels A) of glycine tripeptide. Compared are results obtained directly
from DFT calculations (“Reference”) and from various approximate schemes (“Model”),
see text.
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and the electronic structure of the system and consequently also the relative orientation

of the two peptide units under consideration. The minor dependence of the next-neighbor

couplings on the remaining dihedral angles [say, of β12 on the angles (φ2, ψ2)] is reflected

in the “horizontal clustering” of some points, which refer to the same (φ1, ψ1) but different

(φ2, ψ2) values, respectively. Even in these cases, though, the accuracy of approximation

(2.73) is within a few wavenumbers, resulting in root mean squared deviations (RMSD) of

0.7 and 0.9 cm−1 for β12 and β23, respectively.

It is instructive to compare the above study to the results of the popular transition

dipole coupling (TDC) approximation [4, 76]

βTDC
nm =

1

4πε0

(

~µn · ~µm

r3
nm

− 3
(~µn · ~rnm)(~µm · ~rnm)

r5
nm

)

, (2.74)

where the vector ~rnm connects the two transition dipoles ~µn. The strength of the transition

dipole is 0.37 D, it points towards the nitrogen atom with an angle of 20◦ with respect to

the C=O bond, and its origin is located in between the carbon and oxygen atom with a

distance of 0.868 Å from the carbon. In agreement with previous studies [31,32], Fig. 2.19A

shows that the TDC approximation is not well suited to describe next-neighbor couplings.

In particular, we find a significant (about a factor of five) underestimation of the amplitude

of the coupling. This is because adjacent peptide units provide overlapping charge densities

which cause through-bond interactions that are not accounted for by electrostatic models

such as the TDC approximation or multipole generalization [32,72] thereof.

2.4.3 Second-Neighbor Coupling

As an example of a “long-distance” (i.e., not next-neighbor) interaction, we next consider

the calculation of the coupling β13. Obviously, long-distance interactions cannot be derived

from a dipeptide containing only a single next-neighbor coupling. In this case, however,

it should be safe to assume that through-bond interactions are negligible, which justifies

the use of the TDC approximation. Figure 2.19A reveals that the TDC model indeed

reproduces the long-distance coupling β13 quite well, resulting in an RMSD of 0.7 cm−1.

Furthermore, we note that long-distance interactions are typically much (about a factor

of five to ten) smaller than next-neighbor couplings and therefore provide only a minor

correction to the vibrational exciton model.
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2.4.4 Site Energies of the Terminal Residues

We turn to the calculation of the diagonal matrix elements of the model, that is, the

local-mode frequencies εn. As indicated in Fig. 2.18, the dipeptide calculations provide an

obvious approximation for the local-mode frequencies of the terminal residues, i.e.,

ε1(φ1, ψ1, φ2, ψ2) ≈ εGD
N (φ1, ψ1),

ε3(φ1, ψ1, φ2, ψ2) ≈ εGD
C (φ2, ψ2). (2.75)

Figure 2.19B reveals that this assumption results in a reasonable overall agreement of direct

and model calculations, giving a RMSD of 4.3 and 4.6 cm−1 for ε1 and ε3, respectively.

Similarly as found above for the vibrational couplings, however, the dependence of the

terminal local-mode frequencies on the remaining dihedral angles [say, of ε1 on the angles

(φ2, ψ2)] show up as horizontal clustering of points with the same (φ1, ψ1) but different

(φ2, ψ2) values, respectively.

Alternatively, the local-mode frequencies have been calculated from electrostatic mod-

els, which assume that the local amide I frequency shift δεn = εn − 〈εn〉 can be modeled

via

δεn =
∑

i

ciφin, (2.76)

where φin(t) is the electrostatic potential at the position of the atom i = C, O, N, and

H of the nth residue, produced by the partial charges of all other peptide atoms [28,

37, 38]. As an representative example, we chose the popular four-site model of Cho and

coworkers [28]. Figure 2.19B demonstrates that the electrostatic model only provides a

qualitative description of the local-mode frequencies. Caused by the neglect of through-

bond interactions, the RMSD is 11 and 18 cm−1 for ε1 and ε3, respectively.

The ab-initio-based approximation (2.75) takes into account the through-bond inter-

action between two local residues but neglects the effect of all other residues, while the

electrostatic model (2.76) accounts for the electrostatic interactions of all residues but ne-

glects through-bond effects. To combine the virtues of both approaches, one may use the

ab-initio model to treat the local interactions and the electrostatic model to account for

the effects of the remaining residues. As shown in Fig. 2.19C, this ansatz lifts the degen-

eracy of the ab-initio local-mode frequencies with different conformation of the additional

residue, and leads to a improved agreement with an RMSD of 3.5 and 3.9 cm−1 for ε1 and

ε3, respectively.
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2.4.5 Site Energies of the Inner Peptide Unit

Finally, we consider the calculation of the local-mode frequency ε2 of the inner peptide

unit. Considering longer peptides, all but the two terminal residues are inner peptide units,

meaning that the accurate modeling of these residues is essential. While it is straightfor-

ward to calculate ε2 using the electrostatic model (2.76), Fig. 2.19B shows that this ap-

proach only yields a qualitative description with a relatively large RMSD of 14 cm−1. On

the other hand, when we try to achieve an ab-initio approximation similar to Eq. (2.75),

we face the problem that ε2 clearly depends on both pairs of dihedral angles, (φ1, ψ1) and

(φ2, ψ2). A simple ansatz that accounts for both contributions in the same way is to

consider the average

ε2(φ1, ψ1, φ2, ψ2) = 1
2

(

εGD
C (φ1, ψ1) + εGD

N (φ2, ψ2)
)

. (2.77)

However, Fig. 2.19B reveals that the resulting local-mode frequencies systematically in-

crease too little compared to the reference calculations, giving a RMSD of 7.9 cm−1.

To motivate a more physical approximation, we consider various limiting cases in which

one of the two terminal residues is separated form the remaining dipeptide (and the missing

end groups CH3 or H are added). For example, by cutting off the left residue of GT, we

obtain NMA on the left side and the dipeptide GD on the right side (see Fig. 2.18) and we

find that ε2 = εGD
N (φ2, ψ2). In the same way, we obtain ε2 = εGD

C (φ1, ψ1) if the right-hand-

side residue is cut off, and ε2 = εNMA if both terminal residues are removed. The three

cases can be cast in the expression

ε2(φ1, ψ1, φ2, ψ2) = εNMA + γ1

(

εGD
C (φ1, ψ1) − εNMA

)

+ γ2

(

εGD
N (φ2, ψ2) − εNMA

)

, (2.78)

where the value of γ1 indicates if the left residue is removed (γ1 = 0) or not (γ1 = 1) and

the value of γ2 indicates if the right residue is removed. Interestingly, the interpolation

scheme (2.78) also covers the case of the tripeptide (by setting γ1 = γ2 = 1). This way we

obtain an approximation of the local-mode frequency ε2 of the inner peptide unit, which

exhibits the correct behavior in the limiting cases discussed above. Indeed, Fig. 2.19C

shows that the interpolation scheme represents a clear improvement (5.9 cm−1 RMSD) over

both the the electrostatic model (2.76) as well as the heuristic ansatz (2.77). Interpreting

(εGD
C (φ1, ψ1)− εNMA) and (εGD

N (φ2, ψ2)− εNMA) as the frequency shifts of the local mode ε2

due to the N and C sites, respectively, an equivalent expression has recently been suggested

by Jansen et al. [72].
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2.4.6 Concluding remarks

We have studied the virtues and limits of an ab initio-based building block model of amide

I vibrations in peptides. An accurate ab initio description has been found essential to

account for the effect of next-neighbor residues on the local-mode frequencies εn and the

vibrational couplings βnm, respectively, while the long-distance (i.e., not next-neighbor) in-

teractions can be well approximated by electrostatic models. Employing this combination,

we typically obtain an accuracy of a few wavenumbers for εn and less than wavenumber

for βnm. As the vibrational data are obtained for peptide conformations with arbitrary

backbone dihedral angles {φn, ψn}, the model is capable of describing large conformational

rearrangements occurring, e.g., in protein binding or folding processes.

We note that approximations (2.75) and (2.78) are in the spirit of systematic frag-

mentation schemes recently suggested by Zhang [68] and Collins [69] and their coworkers.

While we choose a dipeptide as smallest fragmentation unit, it is clear that the model in

principle can be converged to the exact result if larger molecular fragments are considered.

For example, one could use the above results for the tripeptide to calculate the vibrational

response of polypeptides using an analogous decomposition into tripeptide units [69].

2.5 Transferability of Maps

It is interesting to investigate to what extent the (φ, ψ)-maps calculated above for GD

(Ac-Gly-NHCH3) are transferable to peptides with other side chains or end groups.

2.5.1 Effect of Side Chains

We have considered the systems Ac-Asp-NHCH3 (as an example for a peptide with a hy-

drophilic side chain) and Ac-Phy-NHCH3 (as an example for a peptide with a hydrophobic

side chain). Plotted as a function of the dihedral angle ψ and φ = −60◦, Fig. 2.20 compares

the vibrational constants obtained for the three dipeptide analogs.

The intersite coupling β is almost identical in all three cases, showing again that this

quantity is quite insensitive. Moreover, the frequency splittings ∆ω are found to coincide

nicely for all three dipeptides. The site energies ε1 and ε2, on the other hand, are some-

what shifted depending on the side chain, but nevertheless show similar conformational

dependence.
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Figure 2.20: Transferability of the amide I vibrational constants for Ac-Gly-NHCH3 (GD)
to peptides with a hydrophilic side chain Ac-Asp-NHCH3 (Asp) and a hydrophobic side
chain Ac-Phy-NHCH3 (Phy), respectively. Shown are (in cm−1) the intersite coupling β,
the site energies ε1 and ε2, as well as the frequency gap ∆ω = ω+ − ω−.
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2.5.2 Effect of End Groups (Different Protonation States)

To study the effect of various end-groups, we have considered trialanine [which like GD

is described by a single pair of flexible backbone dihedral angles (φ, ψ)] in its zwitterionic

(A+−
3 ), cationic (A+

3 ), and anionic (A−
3 ) state. As shown in Fig. 2.21, the intersite cou-

pling β is hardly affected by the presence of the amino and carboxyl termini and by the

different protonation states of trialanine. As may be expected, however, the site energies

of trialanine only approximately match the results for GD. The frequency splitting ∆ω

again depends only weakly on the protonation state of trialanine. Assuming that triala-

nine occurs predominantly in the PII conformation at ψ = 140◦, [1] we obtain ∆ω ≈ 20

cm−1 for A+
3 and A+−

3 , as well as 15 cm−1 for A−
3 . This is in qualitative agreement with

the experimental results ∆ω ≈ 25 cm−1 for A+
3 and A+−

3 and 11 cm−1 for A−
3 . [6, 7]

2.5.3 Comparison of GD and AAA Maps

In order to better understand the origin of the difference between the vibrational properties

of different peptides we have compared the ab initio maps of GD and A+
3 in more details.

Figure 2.22 shows the (φ, ψ)-maps of mean frequency ω̄ = (ω1 + ω2)/2 = (ε1 + ε2)/2

and of the frequency splitting ∆ω of glycine dipeptide and A+
3 . Also indicated are the

three main conformational states αR, β, and PII. It is seen that both ω̄ and ∆ω may

significantly differ from glycine dipeptide to A+
3 . While these quantities look relatively

similar in the populated regions αR, β, and PII, the maps deviate considerably for the corner

regions around (−180,−180), (0,−180), and (0, 180). The latter is mainly a consequence

of intramolecular hydrogen bonds that are formed in A+
3 but not in glycine dipeptide.

Using the atom labeling introduced in Fig. 1.2, these bonds are formed between the atoms

(i) O2-H3 at (−60<φ< 0,−180<ψ <−150), (ii) O3-H3 at (−75<φ< 0,−75<ψ <−30)

and (−75<φ<−60,−15<ψ <45), (iii) O3-H1 at (−180<φ<−135,−60<ψ <−30), and

(iv) O1-H2 at (−60<φ< 0, 0<ψ < 30), where only the latter hydrogen bond also occurs

in glycine dipeptide. While these intramolecular hydrogen bonds hardly exist in aqueous

solution, they only occur in the αR conformational state and do not affect the description

of the (mostly populated) states PII and β.
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Figure 2.21: Transferability of the amide I vibrational constants for Ac-Gly-NHCH3 (GD)
to trialanine in its zwitterionic (A+−

3 ), cationic (A+
3 ), and anionic (A−

3 ) state. Shown are
(in cm−1) the intersite coupling β, the site energies ε1 and ε2, as well as the frequency gap
∆ω = ω+ − ω−.
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Figure 2.22: (φ, ψ)-maps of the mean ω̄ (top) and the splitting ∆ω (bottom) of the two
amide I frequencies, as obtained for isolated glycine dipeptide (left), isolated trialanine
(middle), and trialanine in D2O (right).
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Chapter 3

Calculation of Infrared Spectra

3.1 Trialanine

In this section we apply the above developed vibrational Hamiltonian for calculation of

the vibrational spectra of cationic trialanine (A+
3 ). A+

3 is a small peptide with two peptide

bonds and one set of backbone dihedral angles (φ, ψ), see Fig. 1.2. Driven by a number of

experimental [1,6,13–15,49,54] and theoretical [20,50–53] studies, trialanine has emerged as

a paradigm to study conformational dynamics of a small peptide in aqueous solution. In a

seminal paper, Woutersen and Hamm [1] have presented a two-dimensional IR study, which

suggested that A+
3 mostly adopts a conformation around (φ, ψ) ≈ (−60◦, 140◦), known

as poly-L-proline II (PII) structure. A recent joint NMR/MD study [54] confirmed this

finding, showing that A+
3 is ≈ 90 % in PII, ≈ 10 % in the extended conformation β located at

≈ (−120◦, 130◦), but hardly (< 5 %) in the right-handed helix conformation αR located at

≈ (−80◦,−50◦). The availability of accurate experimental thermal population probabilities

is important, because it has been found [51,52,77] that different MD force fields may yield

quite different thermal populations for A+
3 . We adopt A+

3 to test the above constructed

vibrational Hamiltonian as well as a set of common spectroscopic approximations, which

is the main goal of the given chapter. In particular, the following aspects were analyzed.

First, we study a sensitivity of the amid I frequency distributions on the ab initio map of the

vibrational properties. For that we compare the frequency distributions calculated with the

maps of A+
3 and “glycine dipeptide” (Ac-Gly-NHCH3), which often is considered as generic

example in amide I spectroscopy. [28, 31–34] The influence of the gas phase contribution

was compared with the influence of the solvent. As there is no specific parametrization

of the solvent-induced frequency shift available for A+
3 , we adopt and compare various

ab initio-based models of solvated N-methylacetamide, which are found to yield different
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results for the solvent shift. [28, 29, 35–38] Finally, we present a detailed discussion of the

validity of the various approximations usually employed in the calculation of condensed-

phase vibrational spectra, including the adiabatic, the Franck-Condon, and the second-

order cumulant approximations, respectively.

3.1.1 Semiclassical Line Shape Theory

Following semiclassical line shape theory, [43] in the following we briefly derive explicit

expressions for the vibrational absorption spectrum. In particular, we introduce all ap-

proximations discussed below in the computational results. Adopting a local mode repre-

sentation with basis states |n〉, the exciton model Hamiltonian of trialanine can be written

as [1]

H =
∑

n=0,N,C

εn|n〉〈n| + β{|N〉〈C| + |C〉〈N |}, (3.1)

comprising the ground state |0〉 as well as the two excited vibrational local-mode states

|N〉 and |C〉 (see Fig. 1.2). Restricting ourselves to linear IR absorption, higher vibrational

excitations (e.g., two-exciton states) can be neglected. The vibrational dipole operator of

the system reads

µ̂ =
∑

n=N,C

µn{|0〉〈n| + |n〉〈0|}, (3.2)

where µn denote the transition dipole moment of the nth local mode.

Employing time-dependent perturbation theory, the linear IR absorption spectrum σ(ω)

is proportional to the Fourier transform of the dipole autocorrelation function [44]

σ(ω) =

∫ ∞

−∞

dte−iωte−|t|/2T1C(t), (3.3)

C(t) = 〈0|µ̂(t)µ̂(0)|0〉. (3.4)

Here the phenomenological decay term accounts for the finite life time T1 = 1 ps of the

excited amide I vibrations. [11] Furthermore we have introduced the Heisenberg dipole

operator µ̂(t) = U †(t)µ̂U(t) with time evolution operator U(t), and we have assumed that

the amide I system is initially in its ground state |0〉.
Within semiclassical line shape theory, [43] the fluctuations of the peptide and the

surrounding solvent molecules result in a classical time-dependence of the Hamiltonian

H(t) via its matrix elements β(t) and εn(t) (n = N,C; we set ε0 = 0 without loss of

generality). We then obtain for the dipole autocorrelation function (~ ≡ 1)

C(t) =
∑

n,m=N,C

〈

µn(t)〈n| exp+

{

−i

∫ t

0

H(τ)dτ

}

|m〉µm(0)

〉

, (3.5)
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where 〈. . .〉 denotes a statistical average over the classical fluctuations. Note that also the

transition dipole moments µn(t) may explicitly depend on time due to the fluctuations of

the peptide. Solving numerically the time-dependent Schrödinger equation with respect

to H(t), the dipole autocorrelation function C(t) can be obtained from Eq. (3.5) without

further approximations. Hereafter, this will therefore be referred to as “direct calculation.”

As the averaging over the rapidly oscillating exponential function may be rather cumber-

some, it is convenient invoke further simplifications. With this end in mind, we introduce

the instantaneous eigenstates |ψk(t)〉 of the time-dependent Hamiltonian which satisfy

H(t)|ψk(t)〉 = ωk(t)|ψk(t)〉 (3.6)

with k = 1, 2, where ωk = 1
2(εN +εC) + 1

2
(−1)k

√

(εN−εC)2 + 4β2. Inserting Eq. (3.6) into

the propagator exp+

{

−i
∫ t

0
H(τ)dτ

}

, we obtain

exp+

{

−i
∑

k

∫ t

0

|ψk(τ)〉〈ψk(τ)| ωk(τ)dτ

}

≈ exp+

{

−i
∑

k

|ψk(t)〉〈ψk(t)|
∫ t

0

ωk(τ)dτ

}

=
∑

k

|ψk(t)〉〈ψk(t)| exp

{

−i

∫ t

0

ωk(τ)dτ

}

, (3.7)

where in the second line the explicit time dependence of the eigenstates was neglected,

which corresponds to the adiabatic (or “vibrational Born-Oppenheimer”) approximation.

[20, 34, 48] The adiabatic approximation is usually justified if the eigenenergies ωk(t) do

not come close to each other during their time evolution. The approximation reduces the

time-ordered exponential operator in Eq. (3.5) to a simple exponential function. Insertion

of Eq. (3.7) in Eq. (3.5) then yields

C(t) =
∑

k=1,2

e−i〈ωk〉t 〈Mk(t)φk(t)〉 , (3.8)

Mk(t) =
∑

n,m=N,C

µn(t)µm(0)〈n|ψk(t)〉〈ψk(t)|m〉, (3.9)

φk(t) = exp

{

−i

∫ t

0

δωk(τ)dτ

}

, (3.10)

where δωk(t) = ωk(t) − 〈ωk〉, Mk(t) describes the autocorrelation function of the transi-

tion dipole moments, and the function φk(t) accounts for the quantum-mechanical time

evolution of the system. Eqs. (3.8)-(3.10) will be referred to as “adiabatic approximation.”
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As Eq. (3.10) still requires to average over a rapidly oscillating function, we next intro-

duce the following two approximations:

C(t) =
∑

k=1,2

e−i〈ωk〉t 〈Mk(t)〉 〈φk(t)〉 , (3.11)

〈φk(t)〉 = exp

{∫ t

0

dτ(t − τ)〈δωk(τ)δωk(0)〉
}

. (3.12)

In Eq. (3.11), the classical average over Mk(t) and φk(t) has been factorized in two sep-

arate averages. This approximation allows us to introduce in Eq. (3.12) a second-order

cumulant expansion, [44] which advantageously shifts the average to the exponent, thus

introducing the mean 〈ωk〉 and the autocorrelation function 〈δωk(τ)δωk(0)〉 of the normal

mode frequency ωk. For brevity, we will refer to Eq. (3.12) as “cumulant approximation.”

Furthermore, one may introduce various approximations to evaluate the function 〈Mk(t)〉
which contains the time-dependent overlap between local-mode and normal-mode basis

functions as well as the autocorrelation function of the transition dipole moments. The

latter contains (i) the absolute value of the transition dipole moments |µn(t)| and (ii) the

time-dependent relative orientation of the two transition dipoles [via µ1(t) · µ2(t)]. As

suggested by recent ab initio studies [23], we assume that |µn(t)| = const., which appears

to be a reasonable assumption for the local-mode representation. Neglecting furthermore

the time dependence of overlap functions and of the dipoles’ relative orientation, we obtain

〈Mk(t)〉 = 〈Mk(0)〉 (3.13)

which in the following will be referred to as Franck-Condon approximation.

For interpretative purposes, it is often instructive to consider all quantities for each

conformational state αR, β, and PII of the peptide separately. For example, we may

decompose the absorption spectrum as

σ(ω) =
∑

s=α,β,PII

∑

k=1,2

σks(ω) (3.14)

and calculate the state-specific absorption bands σks(ω) via the Fourier transform in Eq.

(3.3) of the dipole correlation functions

Cks(t) = e−i〈ωk〉st 〈Mk(t)〉s 〈φk(t)〉s , (3.15)

where 〈. . .〉s denotes the average over all molecular geometries pertaining to the conforma-

tional state s.
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Finally, as the simplest means to estimate the IR absorption spectrum, we may assume

that the fluctuations of the peptide and the solvent occur on a very slow time scale. In this

inhomogeneous limit, the state-specific absorption bands defined in Eq. (3.14) are given by

σsk(ω) ≈ 〈Mk(0)〉s ρsk(ω), where

ρsk(ω) =
1/2T1

(ω − 〈ωk〉s)2 + (1/2T1)2
(3.16)

represents the (life-time broadened) frequency distribution of the kth normal mode.

To summarize, we have introduced a series of approximations to calculate the IR ab-

sorption spectrum of coupled fluctuating IR dipoles. Starting from semiclassical line shape

theory [Eq. (3.5)], we have first invoked the adiabatic approximation [Eq. (3.8)]. Assuming

that the classical average factorizes [Eq. (3.11)], we introduced a second-order cumulant

expansion [Eq. (3.12)]. Furthermore, the Franck-Condon approximation [Eq. (3.13)] and

the inhomogeneous limit [Eq. (3.14)] may be employed.

3.1.2 Solvent-Induced Frequency Shift

To estimate the amide I frequency shift due to aqueous solvation, various groups have

performed extensive ab initio calculations of N-methylacetamide (NMA) and several sur-

rounding D2O molecules. [28,35–38] Generating an ensemble of representative structures of

solvated NMA from MD calculations, geometry optimizations of NMA with fixed solvent

and subsequent normal mode analysis were performed. It was found that the resulting

solvent-induced frequency shift δε correlates well with the electrostatic potential (or the

electrostatic field) of the solvent molecules. This finding can be cast into the expansion

δε(t) =
∑

i

ciφi(t), (3.17)

where φi(t) is the electrostatic potential produced by the partial charges of all water

molecules at the position of the ith atom of NMA, i.e., i = CH3(C), C, O, N, H, and

CH3(N). Depending on the details of the ab initio calculations (e.g., number of MD snap-

shots and the number of water molecules considered in the fit), various parametrizations

of the coefficients ci in Eq. (3.17) have been suggested. [28, 35–38] In this work we have

adopted the six-site model of Skinner and coworkers, [38] because its parametrization in-

cludes a large number of MD snapshots as well as a large number of water molecules.

[Six-site means that all six atoms are considered in Eq. (3.17), whereas four-site models

only account for the C, O, N, and H atoms.] The electrostatic potential was calculated
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by using either a simple cut-off scheme or the particle mesh Ewald method, [78] which

virtually gave the same results.

First we study the effect of the solvent-induced frequency shift on the amide I response of

trialanine. We begin by comparing (φ, ψ)-maps of the mean frequency ω̄ and the frequency

splitting ∆ω in the gas phase and in aqueous solution. Figure 2.22 shows these maps which

were obtained by averaging all values of εn = εgas
n + δεn for a given (φ, ψ) along the 100 ns

MD trajectory. First, it is noted that large regions of the Ramachandran plot (drawn in

white) are not sampled at all by the MD trajectory. As a consequence, the above discussed

intramolecular hydrogen bonds (which in the gas phase occur mostly in these regions) are

not formed in aqueous solution. The mean amide I frequencies of trialanine undergo an

overall redshift and the frequency splitting is increased compared to the gas phase. The

latter effect is also seen from the distribution of the frequency splittings ∆ω shown in Fig.

3.2, which exhibit a substantial broadening in solution.

Finally, we consider the effect of the solvent on the distributions ρks(ω) (s = αR, β,

PII) of the two amide I normal-mode frequencies shown in Fig. 3.1. Again, we find a

significant red-shift and a large broadening of the spectral densities. In fact, the resulting

overall density of Eq. (3.14) is much broader than the experimental amide I spectrum (see

Fig. 3.5), which indicates that motional narrowing effect are important for the amide I

spectrum of trialanine.

3.1.3 Distributions of Vibrational Frequencies

The first and maybe most difficult task of the theoretical description is to obtain the

correct distributions of vibrational frequencies. In the present work, this was done in three

steps. In order to sample all relevant conformations of the peptide and the surrounding

solvent molecules, first a classical all-atom MD simulation was performed (100 ns NTP,

GROMOS96 [79] and SPC [80] force fields). In the spirit of the adiabatic approximation

explained above and within the harmonic approximation, the vibrational frequencies of the

isolated peptide are then obtained from a normal mode calculation following a geometry

optimization at fixed (φ, ψ) dihedral angles (at B3LYP/6-31+G(d) level [64]). Third,

the solvent-induced frequency shift was calculated using a DFT-based model [38] that

correlates the frequency shift with the electrostatic potential of the solvent molecules. Put

together, we obtain a trajectory of normal mode states {|ψks(t)〉} and frequencies {ωks(t)}
for the conformations s = αR, β, and PII. Finally the thermal weights of the peptide

conformations were obtained from accurate NMR experiments. [54]
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Figure 3.1: Distribution of the amide I normal-mode frequencies obtained for the three
conformational states of trialanine (a) in the gas phase and (b) in solution. Panel (c)
shows the corresponding absorption bands calculated within the cumulant approximation.
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Figure 3.2: Distribution of the frequency splitting ∆ω without (left) and with (right) the
inclusion the solvent contribution, as obtained for the three conformational states of glycine
dipeptide (top) and trialanine (bottom).

First, it is instructive to study how the different ab initio maps are reflected in the

frequency distributions obtained by sampling the (φ, ψ)-maps along a MD trajectory in a

specific conformational state (for more details about the MD simulations see [81]). As an

example, Fig. 3.2 shows the gas-phase distributions of the frequency splitting ∆ω corre-

sponding to the states PII, β, and αR. As may be expected from Fig. 2.22, the distributions

for A+
3 and glycine dipeptide are quite similar for the PII state and differ mostly in the

αR-helical state. Furthermore, the ∆ω distributions of A+
3 suggest that the gas-phase

frequency splittings in principle facilitate a straightforward discrimination of the three

conformational states. The latter is confirmed by considering the corresponding distri-

butions ρks(ω) [k = 1, 2, s = αR, β, PII, see Eq. (3.14)] of the amide I normal-mode

frequencies shown in Fig. 3.1. Although the distributions of all three conformational states

of trialanine overlap around ω ≈ 1750 cm−1, they clearly differ at the red and blue ends

of the spectrum.

Let us now consider the frequency distributions shown in Fig. 3.1. The obtained

dependencies reveal that intramolecular and solvent-induced frequency shifts result in a

conformation-dependent frequency splitting and broadening of the normal-mode lines. In

76



Trialanine 77

both cases, the contribution of the solvent was more important than the intramolecular

contribution. A comparison of various models for the solvent-induced frequency shift re-

vealed significantly different results [81], which suggest that further improvements of the

theoretical description of solvent-induced frequency shifts is desirable. Furthermore, we

found various problems associated with the separate calculation of intramolecular and sol-

vent contributions. First, the gas-phase calculations yielded intramolecular hydrogen bonds

that would not occur in aqueous solvent (see Fig. 2.22). Moreover, we neglect fluctuations

caused by the correlated motion of peptide and solvent, which presumably is at least partly

responsible for the missing line width of the calculated spectrum (see Fig. 3.5).

3.1.4 Calculation of the Absorption Spectrum

In the following, we wish to go beyond the static picture of inhomogeneous averaging [Eq.

(3.14)] and consider the effect of molecular dynamics on the IR spectrum. Hereby we

proceed from simple to more exact formulations. At the next higher level of semiclas-

sical line-shape theory, the line broadening is described in cumulant approximation [Eq.

(3.12)]. To facilitate the direct comparison with the distributions ρks(ω), we calculated the

state-specific absorption bands σks(ω) [Eq. (3.14)] by setting 〈Mk(t)〉s = 1 and using the

functions 〈φk(t)〉s as given by Eq. (3.12). Comparing the results for σks(ω) to the corre-

sponding results for the frequency distributions ρks(ω), Fig. 3.1 reveals that the frequency

fluctuations affect a narrowing of the spectra by about a factor of two. The reason for this

considerable effect is obtained from an analysis of the corresponding frequency autocorre-

lation functions 〈δωk(t)δωk(0)〉s. A biexponential fit of these functions yields decay times

of 70 fs (75 %) and 1.3 ps (25 %), thus conforming the existence of a significant sub-100 fs

component, which causes the motional narrowing of the spectra.

The validity of the Franck-Condon approximation is studied in Fig. 3.3, which shows

the time evolution of the correlation function 〈Mk(t)〉s of the transition dipole moment.

According to its definition in Eq. (3.9), this function contains the time-dependent autocor-

relation function of the transition dipole moments as well as the overlap matrix elements

between local-mode and normal-mode basis functions. The latter define the initial value

〈Mk(0)〉s, which clearly depends on the conformational state (s = αR, β, PII) and on the

vibrational eigenstate (k = 1, 2). The time evolution of the local-mode dipole-moment

autocorrelation functions 〈µn(t)µm(0)〉, on the other hand, has only a minor effect on

〈Mk(t)〉s. Following a weak initial decay, the functions are almost constant on the time

scale of interest. Combining 〈Mk(t)〉s and the cumulant approximation of the propaga-
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Figure 3.3: Correlation functions 〈Mk(t)〉s of the total transition dipole moment, shown
for both amide I normal modes (k = 1, 2) and the conformations s = αR, β, and PII.

tor, Fig. 3.4 shows the resulting eigenstate-averaged absorption bands σs(ω) =
∑

k σsk(ω)

for the three conformational states s = αR, β, and PII. Compared to Fig. 3.1(c) where

〈Mk(t)〉s = 1, it is found that the function 〈Mk(t)〉s essentially causes a relative weighting

of the eigenstate peaks (e.g., an enhancement of the low-frequency peak of σβ(ω)). Hence,

although the values of the transition dipole moments are roughly constant in local-mode

representation (i.e., the Franck-Condon approximation holds there), this not the case in

the normal-mode representation.

To go beyond the cumulant approximation, the IR absorption spectrum was also calcu-

lated via Eq. (3.5), i.e., directly from semiclassical line shape theory, and via Eq. (3.8), i.e.,

by invoking the adiabatic approximation only. Figure 3.4 compares the resulting absorp-

tion bands σs(ω) obtained for the three levels of line shape theory. The spectra calculated

with and without the cumulant approximation are found to be quite similar. This finding

reflects the fact that the underlying frequency distributions ρsk(ω) shown in Fig. 3.1 resem-

ble Gaussian functions. Going beyond the adiabatic approximation, on the other hand, is

found to have a significant effect on the overall line shape of the spectra. In all three cases

the overall line width of the absorption band becomes smaller. In the case of the αR and
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Figure 3.4: Amide I absorption bands σs(ω) of trialanine obtained for the conformations
s = αR, β, and PII. Compared are results calculated directly from semiclassical line shape
theory (via Eq. (3.5), thick black lines), by invoking only the adiabatic approximation (via
Eq. (3.8, thin red lines), and by invoking adiabatic and cumulant approximations (via Eq.
(3.8), blue dashed lines).
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the β spectrum, moreover, the position of the peaks is shifted. The largest change is found

for the absorption band of the αR conformation, whose low-frequent peak is suppressed

almost completely. The findings are in line with an approximate treatment of the nonadi-

abatic vibrational dynamics via a stochastic Liouville equation. [20] Significant changes of

spectral features due to nonadiabatic couplings are well also known from vibronic coupling

theory, see, e.g., Ref. [82].

While the direct and adiabatic results are quite similar for the PII state, they differ

considerably for the αR and the β conformations. To explain this finding, we reconsider

Fig. 3.2 which shows the frequency splitting ∆ω of the two amide I normal modes. The

adiabatic approximation is expected to break down when the two amide I modes become

(nearly) degenerate, thus giving rise to nonadiabatic curve crossings. Indeed, we find that

a considerable part of the αR and the β trajectories samples frequency splittings close to

zero, while this is less the case in the PII conformation.

We are finally in a position to compare our calculations to the experimental results

of Ref. [1]. Apart from the two amide I peaks of interest, the experimental spectrum of

trialanine exhibits a blue-shifted third peak, which corresponds to the terminal CO group

of the molecule. To facilitate the interpretation, we have fitted the experimental spectrum

by a sum of three peaks, each represented by sum of a Gaussian and a Lorentzian function.

By subtracting the blue-shifted peak, we then obtain an estimate of the absorption band

of only the two amide I modes. Figure 3.5 compares the resulting experimental spectrum

to our simulated spectrum obtained from the direct calculation of the absorption bands

σs(ω), weighted by the correct thermal populations of the conformational states PII (≈
90 %) and β (≈ 10 %). [54] Also shown is a calculation which uses the adiabatic and

the cumulant approximations which, by chance, appears to agree better with experiment.

Apparently, the approximate calculation benefits from a fortunate cancellation of the er-

rors stemming from the adiabatic approximation and (most likely) of the solvent-induced

frequency calculations.

To explain the above described break-down of the adiabatic approximation, it is helpful

to recall the Born-Oppenheimer approach to solve the molecular Schrödinger equation

comprising electronic (r) and nuclear (R) coordinates. Exploiting the time scale separation

between the electronic and nuclear motions, one first solves the electronic Schrödinger

equation for fixed nuclei, thus obtaining the adiabatic potential-energy surfaces Wn(R)

(the eigenvalues) and the adiabatic electronic wave functions ψn(r; R) (the eigenstates)

of the problem. In a second step, the total wave function is expanded in the {ψn} basis
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Figure 3.5: Comparison of experimental (Ref. [1], green dashed line) and calculated amide
I absorption spectra of trialanine. The latter were obtained directly from semiclassical
line shape theory (via Eq. (3.5), thick black line) and by invoking adiabatic and cumulant
approximations (via Eq. (3.8), thin red line).

and inserted in the molecular Schrödinger equation, which yields coupled equations for the

vibrational wave functions of the system. Assuming that the adiabatic electronic states

are well separated in energy, these couplings can be neglected (the Born-Oppenheimer

approximation), and the vibrational dynamics of the system can be considered in a single

electronic state.

Essentially the same strategy has been employed above to calculate vibrational line

shapes of a flexible molecule in solution (and is commonplace in various areas of chem-

ical physics, see e.g., Refs. [83–85]). Assuming that the period of the amide I mode is

short compared to the motion of the solvent and the conformational rearrangement of

the peptide, we have calculated the vibrational frequencies of the molecule for fixed sol-

vent coordinates s and fixed dihedral angles (φ, ψ). In harmonic approximation, this is

done through a geometry optimization at fixed x = {s, φ, ψ}, followed by a normal mode

calculation. The resulting normal-mode states |ψk(x)〉 with vibrational frequencies ωk(x)

correspond to excited vibrational states of the molecule, which (after a transformation to

a local-mode basis) build up the vibrational Hamiltonian (3.1) used above. Similar as

in the vibronic problem, the resulting Schrödinger equation represents a nonadiabatically
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coupled problem. Unlike to the former case, however, the time scale separation between

the period of the amide I mode (≈ 20 fs) and the solvent and conformational degrees of

freedom is only weakly satisfied, since the latter also show a subpicosecond component in

their dynamics. As a consequence, it should not come as a surprise that the “vibrational

Born-Oppenheimer” or adiabatic approximation (that is, the neglect of the vibrational

nonadiabatic coupling) is in general not applicable to the calculation of the amide I spec-

trum of peptides. As a qualitative indication of the validity of the adiabatic approximation,

one may consider the distribution of the frequency splittings of the normal modes, since

nonadiabatic curve crossings occur mostly for (nearly) degenerated vibrational modes.

In this section we have introduced a sequence of approximations that is usually em-

ployed to calculate condensed-phase IR spectra. That is, (i) the semiclassical line shape

theory [Eq. (3.5)], (ii) the adiabatic approximation [Eq. (3.8)], the cumulant approxima-

tion [Eq. (3.11)], and the inhomogeneous limit [Eq. (3.14)]. Sequence means that the order

of the approximation is important, e.g., it is difficult to perform the cumulant expansion

without previously making the adiabatic approximation. At any point of the theory one

may furthermore employ the Franck-Condon approximation [Eq. (3.13)].

As starting point, we have chosen semiclassical line shape theory, [43] which assumes

that the fluctuations of the peptide and the surrounding solvent molecules result in a

classical time-dependence of the vibrational Hamiltonian. While the formulation describes

well the dephasing of the vibrational transitions, it is not capable to account for the finite

life time (1 ps) of the excited amide I states, which therefore had to be included in a

phenomenological manner. Reduced density matrix formulations that include MD-based

spectral densities appear to be a promising approach to go beyond the semiclassical level

of theory. [44,86]

Proceeding from simple to more exact formulation, it has been shown in Fig. 3.1 that

the sub-100 fs component of the frequency autocorrelation functions 〈δωk(t)δωk(0)〉s affects

a significant (a factor of two) motional narrowing of the spectra. The effect was found to

be well described in cumulant approximation, because the distributions of the frequencies

shown in Fig. 3.1 are well approximated by Gaussians. We note that the latter assumption

may deteriorate, [46, 47] e.g., if the classical average is performed over several conforma-

tional states instead of separately for each state as in Eq. (3.14). The Franck-Condon

approximation was found to hold well in the local-mode representation but not so in the

normal-mode representation. This is reassuring, considering the dramatic breakdown of

the approximation found in the description of the OH stretch spectrum of water. [45] How-
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ever, as explained above, the adiabatic approximation cannot be expected valid in the case

of closely lying amide I normal modes and may therefore lead to significant deviations.

3.1.5 Summary

As a first attempt to establish a model system for the simulation of IR spectra of flexible

peptides in aqueous solution, we have outlined a quantum-classical description of the amide

I vibrational spectrum of trialanine cation in D2O. Heading towards a quantitative theo-

retical prediction of time- and frequency-resolved IR spectra of biomolecules, the following

main challenges are to be met:

• Sampling of the true conformational distribution of the system by a state-of-the-art

MD simulation. If several conformational states coexist, their thermal population

probability need to be determined, usually via comparison to experiment.

• Modeling of the solvent-induced frequency fluctuations by exhaustive quantum-chemical

calculations. In particular, the coupling of solvent and conformational motions needs

to be accounted for.

• Description of nonadiabatic transitions between vibrational eigenstates. Although

the direct propagation of the time-dependent Schrödinger equation in principle is a

straightforward matter, it requires the averaging over rapidly oscillating functions,

which results in an considerably larger sampling effort as it is case for the standard

cumulant approximation.

Considering the achieved agreement between simulated and experimental IR absorption

spectra, we clearly did not yet succeed in a quantitative first principle prediction. Further-

more, it is clear that only the simulation of the much more detailed multidimensional IR

spectra will truly asses the quality of the theoretical model. However, we think that —for

the system considered— two out of the three challenges have been met. That is, the ap-

propriate description of the conformational distribution and the correct calculation of the

dynamic absorption spectrum. What is missing is an accurate enough quantum-chemical

modeling of the vibrational frequencies of a solvated peptide — a topic that represents

a quite active field of research. Nevertheless, our study underlines that the amide I re-

sponse of peptides depends on a number of aspects. While time-resolved IR spectroscopy

hold the promise to resolve conformational dynamics in real time, [87] it certainly requires

substantial theoretical support.
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Figure 3.6: Structure and amino acid labeling of the bicyclic azobenzene peptide bcAMPB.

3.2 Photoswitchable Bicyclic Azobenzene Octapeptide

In this section we apply the above constructed vibrational Hamiltonian of solvated polypep-

tides to explain the experimentally observed time dependency of vibrational spectra of pho-

toswitchable bicyclic azobenzene octapeptide. The considered system is octapeptide frag-

ment H-Ala-Cys-Ala-Thr-Cys-Asp-Gly-Phe-OH connected head to tail via (4-aminomethyl)-

phenylazobenzoic acid as well as a disulfide bridge, see Fig. 3.6. A small blue-shift of the

vibrational spectra happening during transition from cis to trans conformation is observed

experimentally [58]. The considered system is interesting from different aspects. First, its

description gives as an example of a practical implementation of the building block model.

Second, the transition from the cis to trans conformation is a non-equilibrium process, so

we can can develop and test a strategy for its description. Third, the mentioned changes of

the vibrational properties are rather small and it is a challenge to reproduce them within

our vibrational model. And finally, we can demonstrate a concrete example of how the

time-dependent changes of the vibrational spectra can be treated in terms of the confor-

mational changes.

3.2.1 Methods

The vibrational Hamiltonian of the polypeptide was constructed with the usage of the

building block model based on the ab initio maps of glycine dipeptide. The non-first

neighbor effects, usually treated within electrostatic models, were neglected. This simpli-

fies the relation between the vibrational properties and conformational structure of the

polypeptide. Since the non-first neighbor effects play only a minor role and we are aimed
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to a qualitative description of the effect, the simplification of the Hamiltonian seams to be

reasonable.

Because of the same reason we did not include the solvent contribution into account.

As we have shown in the consideration of A+
3 , the solvent contribution significantly changes

the shape of the total spectrum (with respect to its gas phase shape). However, in the

considered case, the number of the contributions to the total spectra is larger (9 instead

of 2) and, as a consequence, the shape of the total spectra is mostly conditioned by the

position and intensity of these contributions (and not by their form). Therefore, the solvent

correction, changing shape of the contributions to the total spectra, should influence on

the shape of the total spectra not so significantly like in the case of A+
3 . Moreover, since

the considered molecule is not solvable in watter we have used DMSO as solution. In this

case the influence of solvent is expected to be smaller. First, the overlap of the amide

I normal mode frequencies of the peptide with the normal mode frequencies of DMSO is

smaller and, as a consequence, the interaction of amide I modes with the solvent vibrations

is expected to be smaller. Moreover, the number of hydrogen bonding in the case of DMSO

is smaller than in the case of watter. The latter also makes the influence of solvent smaller.

Moreover, the solvent correction is an additive quantity. This allows for an independent

consideration of the ab initio and solvent contribution to the considered effect. However,

we have to emphasize that the solvent effects are expected to be much more important

than the not next neighbor influence on the site energies and they have to by included in

a model dedicated to a qualitative treatment of the system.

Like in the case of A+
3 , we start from a MD simulation to get the dihedral angles φj and

ψj as functions of time. The angles are then substituted into the vibrational Hamiltonian

of the system which explicitly depends on the dihedral angles. The obtained in such way

time-dependent Hamiltonian is diagonalized, which gives the normal mode frequencies ωj

as functions of time. In turn, the normal mode frequencies ωj (t) are used as the input for

the spectra calculation.

About 300 MD trajectories of the considered system have been generated. Each trajec-

tory is 1050 ps long. The first 50 ps, the MD simulations were performed in microcanonical

ensemble. To keep the energy constant the time step was set to be equal to 0.2 ps. After

50 ps, the MD simulations were performed in canonical ensemble with the time step of

2 ps. For more technical details of the MD simulations see Ref. [88].
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3.2.2 frequencies Distributions

We start our consideration from the distributions of the vibrational frequencies, which can

be considered as a rough approximation to the vibrational spectra. In order to calculate the

time dependent frequency distribution we count for the number of vibrational modes which

in a fixed time interval have frequencies from a given frequency range. In this section we

discuss selection of appropriate steps for frequency and time. On one hand, the frequency

step has to be sufficiently large to get enough point for the averaging and, as a consequence,

to get rid of fluctuations and obtain smooth dependencies. On the other hand, the step

has to be sufficiently small to save small features in the dependency on frequency. At fixed

time we have about 300*9 values of the normal mode frequencies, whre 300 comes from the

number of the MD trajectories and 9 is the number of the normal modes. This number of

points is not sufficient to get a reasonable statistical averaging. The possible solution is an

additional averaging over the time. However, we consider a nonequilibrium process and, as

a consequence, points corresponding to different times are not equivalent. It means that

the time step should be sufficiently small to neglect systematic time dependency within

the selected interval. Keeping this in mind we divided the whole frequency range (from

1704 cm−1 to 1837 cm−1) into 150 segments. That corresponds to the frequency step of

about 0.89 cm−1. The time step was taken to be equal to 30 ps (the whole range was from

0 to 1050 ps). In such way we got 35 points on the time scale. The above described way

to calculate the frequency distribution can be summarized by the following mathematical

expression

ρ (ω, t) = lim
∆ω→0
∆τ→0
N→∞

1

∆ω∆τN

N
∑

n=1

9
∑

k=1

∫ ω+∆ω
2

ω−∆ω
2

dω
′

∫ t+∆t
2

t−∆t
2

dt
′

δ
(

ω
′ − ω

(n)
k

(

t
′

))

, (3.18)

where ∆ω and ∆t are the frequency and time steps, respectively. Indexes k and n are used

to numerate normal modes and MD trajectories, respectively and ω
(n)
k (t) are normal mode

frequencies.

In the Fig. 3.7 we have plotted the frequency distributions calculated for the beginning

and end of the time evolution of the system (the first and last time intervals). As we can

see in the figure, the above selected time and frequency steps give rather smooth frequency

distributions. At the same time the small features remain. Another important observation

is that we have a clear and qualitatively correct dependency of the frequency distributions

on time.

Let us fix frequency and consider the frequency distribution as function of time. In the
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Figure 3.7: Frequency distributions corresponding to the beginning and end of the time
evolution of the system.

Fig. 3.8 we have plotted such dependency for the frequency equal to about 1695.26 cm−1

as well as for the two neighboring frequencies. As we can see in the above figure, the

time dependency is much weaker than dependence on frequency and, as a consequence,

the fluctuations become more significant. However, the selected time and frequency steps

allow us to observe the clear systematic dependency on time.

In order to get rid of the fluctuations and describe the time dependency in a quantitative

way, it has been fitted by cubic polynomial for all frequencies on the considered frequency

grid. In other words the frequency distribution has been fitted by the following function.

ρ (ω, t) = c0 (ω) + c1 (ω) t + c2 (ω) t2 + c3 (ω) t3. (3.19)

The examples of the fitting functions are also shown in the Fig. 3.8.

In the Fig. 3.9 we have plotted the obtained fitting coefficient cj as functions of fre-

quency. In the figure we see the obvious correlation between the parameters of the fitting.

This effect is shown in other representation in the Fig. 3.10, where c2 and c3 are plotted as

functions of c1. The shown dependencies can be accurately fitted by the linear function of

the form f (x) = k x. The fitting functions are shown on the same figure. Since the fitting

parameters are strongly related with each other, we can conclude that time dependence
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has lees degree of freedom than the fitting function do and is, to large extent, determined

by initial value of the frequency distribution and one additional parameter. Moreover, in

spite on the fact that for different frequencies the time dependencies of the distribution

is qualitatively different, we can say that it is described by the same function and, as a

consequence, has the same physical origin.

In the Fig. 3.11 the frequency distribution is shown as function of two variables (fre-

quency and time). In order to see the time dependency on the background of much stronger

frequency dependency we have extracted the initial frequency distribution

ρpl (ω, t) = ρ (ω, t) − ρ (ω, 0) , (3.20)

where ρpl is the shown in the figure function and ρ (ω, t) is the considered frequency dis-

tribution. As we can see in the figure, the main changes occur at first 50 ps and then the

distribution remains qualitatively unchanged. In the Fig. 3.12 we show the same function

obtained with the above considered cubic fitting polynomial. As we can see the fitting

reproduces the general behavior quit accurately.
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Figure 3.11: Time dependent changes of the frequency distribution.

3.2.3 Frequencies Correlation Functions

The above considered frequency distribution is only a rough approximation to the vibra-

tional spectra. More realistic representation can be obtained within the above considered

cumulant expansion. The second order cumulant expansion has been chosen since it sig-

nificantly improves convergence. The latter is critical because of the lack of points for

the statistical averaging [since the process is non-equilibrium, the averaging over time is

restricted by small time intervals]. Moreover, the shape of the total spectra is only slightly

depends on the shape of the contributions and mostly conditioned by their width and

positions, which can be rather accurately reproduced within the cumulant approximation.

Another factor, conditioning the shape of the total spectra, is intensity of the contributions,

which is not affected by the cumulant expansion.

The above consideration of the distributions has shown that the system shows a fast

processes in the beginning of the time evolution. To get a more detailed description at

the short-times we decreased the time step from 30 to 10 ps. For each time interval and

each normal mode the corresponding correlation function is calculated. In more details, in

each time interval the average frequency has been calculated and extracted from the initial
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frequency

δωj (t, τ) = ωj (t, τ) − ωj (τ) , (3.21)

where index j indicates normal mode number, τ is time corresponding to the middle of

the segment, over which the averaging has been performed, and t is time parameterizing

points within the segment. The obtained in such way frequencies δω (t, τ) were used in the

calculation of the correlation functions

Cj (∆t, τ) =
1

∆τ

∫ τ+∆τ
2

τ−∆τ
2

〈δωj (t + ∆t, τ) δωj (t, τ)〉dt. (3.22)

As it is indicated in the above expression, for different time intervals (indicated by τ) we

perform the averaging over time t within the interval (which corresponds to the integration).

As a result, for different time segments, we obtain different correlation functions. The

latter is explicitly indicated by the τ in the list of argument of the correlation function.

Additionally to this averaging we perform also average over different MD trajectories.

The average frequencies and correlation functions give position and shape of the peaks,

respectively.

σ(ω, τ) =
9

∑

k=1

∫ ∞

−∞

dte−iωt

∫ t

0

dt
′

(

t − t
′

)

Cj(t
′

, τ). (3.23)

Let us first focus on the dependency of the peaks position ωj (τ) on time τ . The

averaged normal mode frequencies as functions of time are shown in the Fig. 3.13. On the

upper panel we have plotted the averaged time dependent normal mode frequencies with

subtracted initial value. This facilitates comparison of different normal modes as well as

makes changes within a single normal mode more pronounced. The following features can

be noticed in the considered figure. All normal mode frequencies quickly increase the first

200 ps. The 1, 2, 3, and 4 modes as well as 6 and 7 ones show very similar time evolution.

Moreover, we can even see correlation between the normal modes frequencies from different

groups mention before. The higher is number of the normal mode the smaller is difference

between the initial and final value. And the last observation is that the distance between

the normal mode frequencies is larger for the edge normal modes and smaller for the central

ones.

Among all mentioned properties of the time dependent normal mode frequencies we will

focus on the systematic increase of their frequencies. This effect is one of the contributions

to the blue shift of the vibrational spectra which is a sum of peaks corresponding to all

normal modes. Another possible origin of the total blue shift is time dependent changes of
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Figure 3.13: Averaged [over time-segments and MD trajectories] normal mode frequencies
as functions of time.
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the peaks intensities. This effect, conditioned by the time dependency of the transitional

dipole moments, is not considered in the present work. The found blue shift of the normal

modes frequencies has a universal character (it is observed for all normal modes and has

similar form). In order to simplify interpretation of this effect in terms of the conforma-

tional changes we will consider the sum of all normal modes frequencies. In this case we can

make use of the fact that trace of any matrix is invariant with respect to arbitrary unitary

transformation. In the considered case this property means that sum of all normal mode

frequencies is equal to the sum of all local modes frequencies (site energies). In this way

we can replace the consideration of the normal mode frequencies by the consideration of

the local frequencies. This facilitate the considered problem since the site energies depend

in the simple way on the local conformational structure.

In the Fig. 3.14 we show the site energies as functions of time. As before, in order to

facilitate the comparison of the site energies we have also shown time dependencies from

which the initial value is subtracted. In the figure we can see that first three site energies

give the main contribution to the blue shift.

Let us relate the observed behavior of the three site energies with the conformational

changes. According to the used building block model, the considered site energies depend

on the dihedral anglers in the following way.

ε1 (φ1, ψ1) = εGD
N (φ1, ψ1) , (3.24)

ε2 (φ1, ψ1, φ2, ψ2) = εGD
C (φ1, ψ1) + εGD

N (φ2, ψ2) − εNMA,

ε3 (φ2, ψ2.φ3, ψ3) = εGD
C (φ2, ψ2) + εGD

N (φ3, ψ3) − εNMA,

where εGD
N and εGD

C are site energies of the GD molecule on the N and C sites, respectively.

εNMA is amide I normal mode frequency of the NMA molecule. In the Fig. 3.15 we have

shown the time dependency of the five contributions to the considered site energies. We

can see that the changes of the first and second pare of the dihedral angles is the main

reason of the blue shift of the three site energies. In order to relate the changes of the εNMA
N

and εNMA
C with the time dependency of the dihedral angles φj and ψj we have combined

the time dependent distributions over dihedral angles with the maps of the site energies

(see Figs.3.16 and 3.17). In the given figures, we can see as peaks of the distributions shift

to the region where the site energies have large values.

Above we have considered the shifts of peaks corresponding to 9 normal modes and

making contribution to the total spectra. Let us now consider the shape of the peaks,

which is given by the shape of corresponding frequency autocorrelation function (3.22).
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Figure 3.14: Averaged [over time-segments and MD trajectories] site energies as functions
of time.
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In order to get rid of the fluctuations present in the correlation functions (conditioned

by insufficient convergence) as well as to quantitatively describe shape of the correlation

functions we have performed their fitting by the biexponential function of the following

form:

fj (t, τ) = δω2
j (τ)

[

ν1j (τ) e−α1j(τ)t + (1 − ν1j (τ)) e−α2j(τ)t
]

, (3.25)

where the index j is used to indicate of the normal mode number. The parameters of the

fitting are constant within a fixed time-segment (they do not depend on t) and depend

on time τ which is used for the indication of the time-segments. It has to be mentioned

that fitting parameters are time dependent in the sense that they are different for different

time segments but still constant within fixed segment. As we have already mentioned, the

length of the time segments, for which the correlation functions were calculated, was taken

to be equal to 10 ps. The averaging has been performed over all 300 MD trajectories as

well as over time within the segments. The calculated in such way correlation functions are

defined on the time range from 0 to 10 ps. During the fitting we have used the correlation

functions in the time range from 0 ps to 4 ps. Restricting the time range we have increased

portion of the fast component of the correlation function and truncated the part (at large

times) with worser convergence.
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Figure 3.16: Ab initio maps of the εn combined with the distributions of the dihedral angles
φ and ψ for the beginning and end of the time evolution.

97



98 Photoswitchable Bicyclic Azobenzene Octapeptide

Figure 3.17: Ab initio maps of the εc combined with the distributions of the dihedral angles
φ and ψ for the beginning and end of the time evolution.
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First, we have studied dependence of the fitting parameters (which define shape of the

corresponding vibrational spectra) on time. In the Fig. 3.18 the fitting parameters of the

8 normal modes are shown as functions of time. We can see that systematic time depen-

dence either does not exist or essentially small in comparison with the amplitude of the

fluctuations. Moreover, the possible systematic time dependencies of the fitting parameters

are rather small in comparison with their absolute values. We have also studied how the

fitting parameters of the correlation functions depend on the normal mode number. In the

same figure we can see that dependence of the fitting parameters δωj on the normal mode

number is much more significant than their dependence on time. We can also easily notice

dependency of the parameter νj on normal mode number j. For the fitting parameters τ1j

and τ2j there is no obvious dependency on the normal mode number.

However, dependence of τ1j and τ2j on the normal mode number can be found by

calculation of the average over time of the considered parameters. The last ones (together

with averaged over time δωj and νj) are shown in the Fig. 3.19 (red curve). The dependence

of the averaged α1j and α2j on the normal mode number is rather regular what likely

shows that it should not be treated as a coincidence. In order to extract a possible time

dependency of the fitting parameters of the correlation functions we fitted them by linear

over time function (f (t) = c+kt). The results of this fitting is also shown in the considered

figure (blue curves). The right panel corresponds to the parameter c and the left one to

the k. As we can see, the the parameter k is also rather regularly depends on the normal

mode number. The last indicates that its values are conditioned by some regular effects

(not by random fluctuations) and, as a consequence, we found an evidence of a slight time

dependency of the coefficients of the correlation functions.

3.2.4 Spectra

In order to calculate the resulting spectra as well as difference between the initial and

final spectra we assumed that shape of the contribution is constant in time. For better

agreement with the experimental spectra we have used scaling factor for frequencies equal

to 0.948. The spectra obtained in such way is shown on the Fig. 3.20. On the Fig. 3.21 we

show time dependent changes of the vibrational spectra calculated as difference between

the spectra corresponding to the considered time and the initial spectrum.

These results together with the earlier considered dependency of the average frequency

on time and on normal mode number can be formulated in terms of the vibrational spectra

in the following way. Shapes and positions of peaks are different for different normal
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Figure 3.18: Fitting parameter of the correlation functions of the 8 normal mode frequencies
as functions of time.
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Figure 3.19: Fitting parameter of the correlation functions of the normal modes frequen-
cies obtained by the averaging over time (red curves) as well as by linear fit of the time
dependencies (blue curves).
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modes. However, for the fixed peak the form is almost constant in time. Moreover, the

most significant changes in the positions of peaks occur at first 200 ps. All peaks shift to

the higher frequency region. In the central region difference between positions and forms

of the neighboring peaks are smaller.

In such way we have demonstrated how our vibrational Hamiltonian can be used to

interpreter small time dependent changes of the vibrational spectra in terms of conforma-

tional changes.

103



104 Photoswitchable Bicyclic Azobenzene Octapeptide

104



Conclusions

The presented work can be divided into two main parts. In the first one we have discussed

various aspects of the ab initio-based parameterization of an exciton model of amide I

vibrations in peptides. In the second part the constructed vibrational Hamiltonian has

been used for the calculation of peptide vibrational spectra. As a first attempt to establish

a model system for the simulation of IR spectra of flexible peptides in aqueous solution,

we have performed a quantum-classical description of the amide I vibrational spectrum

of trialanine cation in D2O. The vibrational Hamiltonian has also been applied to the

modeling of time dependent spectrum of a photoswitchable peptide.

The first part of the ab initio-based parameterization of the Hamiltonian was dedicated

to the detailed consideration of a small peptide which can be used as the building block

for the construction of polypeptide Hamiltonians. Adopting glycine dipeptide as a simple

building-block model that describes the vibrational interaction between two peptide units,

we have performed comprehensive DFT calculations to investigate the effect and impor-

tance of the level of theory, choice of local modes, and parameterization schemes. The

main results of this study can be summarized as follows:

• DFT calculations using a 6-31G+(d) basis set and the B3LYP functional are a good

compromise between high accuracy and low computational effort. This level of theory

allows for a qualitatively correct characterization of the amide I vibrations in peptides.

• Different aspects of the ab initio-based parameterization have been considered. In

particular we have compared different parameterizations schemes, local modes and

types of geometry optimization. The Hessian matrix reconstruction in combination

with the full geometry optimization and C=O based local modes was found to be the

best choice.

• The main effects of a solvent continuum model on the amide I vibrations are an

overall redshift of ≈ 80 cm−1 of the frequencies as well as an overall reduction of
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the conformational fluctuations of the vibrational constants. Furthermore, several

details of the (φ, ψ)-maps change upon solvation.

• Performing conformational averages of the (φ, ψ)-maps with respect to the most im-

portant conformational states in solution (that is, α, β, PII, and C5), the site energies

and the intersite coupling do reflect the conformation of the peptide, although there

is a large overlap of the state-specific distributions.

• Generally speaking, the vibrational coupling is found to be quite robust with respect

to most modifications under consideration. In contrast, the vibrational frequencies

depend sensitively on many details of the calculation.

• We have considered higher oder anharmonicities of the amide I potential energy in

mono- and di-peptides. In particular we have found that cubic anharmonicities in

dipeptides do not depend on conformation within a good approximation.

• The (φ, ψ)-maps of the vibrational coupling β as well as of the frequency splitting

∆ω obtained for GD were found to be transferable to dipeptides with hydrophilic

and hydrophobic side chains as well as to tripeptides with charged end-groups. How-

ever, the corresponding maps for the site energies match the results for GD only

approximately.

The second part of the ab initio-based parameterization is the the usage of the building

block model in combination with different electrostatic models. In this work we have

also studied the virtues and limits of an ab initio-based building block model of amide

I vibrations in peptides. It has been tested on the tripeptide for which the vibrational

properties have been obtained directly. An accurate ab initio description has been found

essential to account for the effect of next-neighbor residues on the local-mode frequencies

εn and the vibrational couplings βnm, respectively, while the long-distance (i.e., not next-

neighbor) interactions can be well approximated by electrostatic models. Employing this

combination, we typically obtain an accuracy of a few wavenumbers for εn and less than

wavenumber for βnm. As the vibrational data are obtained for peptide conformations

with arbitrary backbone dihedral angles {φn, ψn}, the model is capable of describing large

conformational rearrangements occurring, e.g., in protein binding or folding processes.

We note that the considered building block model is in the spirit of systematic frag-

mentation schemes recently suggested by Zhang [68] and Collins [69] and their coworkers.

While we choose a dipeptide as smallest fragmentation unit, it is clear that the model in
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principle can be converged to the exact result if larger molecular fragments are considered.

For example, one could use the above results for the tripeptide to calculate the vibrational

response of polypeptides using an analogous decomposition into tripeptide units [69].

In the second part of the work we apply the obtained vibrational Hamiltonians to cal-

culate vibrational spectra of different solvated peptides. In such way we test accuracy of

different spectroscopic approximations. The first considered system is trialanine molecule.

Driven by a number of theoretical and experimental studies this molecule has emerged as

a paradigm to study conformational dynamics of a small peptide in aqueous solution. The

consideration of trialanine was a first attempt to establish simple yet nontrivial model sys-

tem, for which most parts of the modeling can be achieved accurately enough to be trusted.

On the basis of the obtained results we can conclude that the appropriate description of the

conformational distribution and the correct calculation of the dynamic absorption spec-

trum has been reached. What is missing is an accurate enough quantum-chemical modeling

of the vibrational frequencies of a solvated peptide — a topic that represents a quite active

field of research.

Concerning the accuracy of spectroscopic approximations the following conclusions have

been drawn. The cumulant expansion is accurate enough if the state-specific spectra are

calculated. In the case of the total spectra, consisting of peaks coming from different con-

formations and shifted with respect to each other, we have clearly asymmetric spectra and,

as a consequence, the second-order cumulant expansion, giving symmetric spectra, cannot

be applied. Similarly to the second-order cumulant expansion the Condon approximations

seams to perform well if the state-specific spectra are calculated. The latter means that

within a specific conformation the transition dipole moment of the system can be consid-

ered as a constant within a good approximation. We have also found that the total spectra

can, within a good approximation, be presented as a weighted sum of the state-specific

spectra. This gives us a possibility to treat the total spectra in terms of the contributions

coming from different conformations. And finally, nonadiabatic transitions were found to

give a significant effect on the vibrational spectra.

The second system, for which the vibrational spectra have been calculated, was a photo-

switchable peptide. With this consideration we have demonstrated a practical procedure of

how the time dependent spectra can be treated in terms of conformational changes. More-

over, we have shown that even small spectroscopic effects can, in principle, be obtained

within the considered model. And finally, we have developed a strategy of consideration

of nonequilibrium processes.
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Our study underlines that the amide I response of peptides depends on a number of

aspects. While time-resolved IR spectroscopy hold the promise to resolve conformational

dynamics in real time, [87] it certainly requires substantial theoretical support.
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Zusammenfassung

Die vorliegende Arbeit behandelt die Entwicklung und Überprüfung von Modellen zur

Berechnung von Schwingungspektren von Peptiden und Proteinen. Solche Modelle verbinden

die Konformationsstruktur eines Moleküls mit seinen Schwingungseigenschaften und sind

demzufolge wichtig für die Interpretation der Schwingungspektren. Die im Rahmen dieser

Arbeit durchgeführte theoretische Erforschung dieses Gebietes beschränkt sich auf die Be-

trachtung der Amide-I-Moden, welche aufgrund ihrer physikalischen Eigenschaften sich

zur Untersuchung der Peptidkonformationen eignen. Die Arbeit kann prinzipiell in zwei

Teile separiert werden. In dem ersten Teil werden Fragen betrachtet, die mit der Entwick-

lung des Schwingungshamiltonian verbunden sind. Im zweiten Teil wurden die erhaltenen

Hamiltonian für die Berechnung der Schwingungspektren verwendet. Bei der Berechnung

der Schwingungspektren wurden verschiedene spektroskopische Näherungen verwendet und

erforscht.

Die Entwicklung des Schwingungshamiltonian beinhaltet zwei Aufgaben. Die ab initio

Parametrisierung des Schwingungshamiltonian von Dipeptiden, sowie die Analyse der En-

twicklungsmethoden für Schwingungshamiltonian von Polypeptiden. Die Entwicklungsmeth-

oden stützen sich auf ab initio berecheten Schwingungseigenschaften von Dipeptiden und/oder

elektrostatische Modelle. Die ab initio Parametrisierung basiert auf einer Geometrieopti-

mierung und anschließender Berechnung von Normalmoden. Hierbei wurde die Abhängigkeit

der Ergebnisse vom theoretischen Niveau und dem verwendeten Basissatz untersucht.

Die Transformation der errechneten Normalmoden lieferte die Schwingungseigenschaften

der lokale Amide-I-Mode. Die Lokalisierung der Normalmode folgt diversen Kriterien.

Sie ist von der Wahl der Lokalmoden und somit implizit auch von der Art der Geome-

trieoptimierung abhängig. Mit dieser Arbeit konnte die Abhängigkeit der Ergebnisse

von der Parameterwahl weitgehend aufgeklärt und eine für das Amide-I-System geeignet

Parametrisierung gefunden werden.

Im nächsten Arbeitsschritt wurde die Abhängigkeit der Amide-I-Schwingungseigenschaften

von den Peptidseitenketten und terminalen Gruppen untersucht. Desweiteren wurden
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Methoden zur Formulierung der Hamiltonian für Polypeptide konzeptionell entwickelt.

Diese Untersuchung ist außerordentlich wichtig, da direkte quantenmechanische Berech-

nungen von Polypeptiden zu zeitaufwendig sind. Solche Methoden beruhen auf dem

sogenannten “Building-Block”-Ansatz und verschiedenen elektrostatischen Modellen. In

dieser Arbeit wurden sowohl die einzelnen Methoden als auch ihre Kombination für die

Entwicklung des Hamiltonians verwendet. Zur Abschätzung der Genauigkeit der verwen-

deten Methoden wurden Vergleichsrechnungen durchgeführt. Weiterhin wurden nichtlin-

eare Terme der Amide-I-Potenzialenergie von Mono- und Dipeptiden analysiert. Es stellte

sich heraus, dass in guter Näherung die ungemischten kubischen Terme konformationsun-

abhängig sind und die gemischten Terme Null sind. Ausschließend wurde die Konvergenz

der ersten zwei Energieniveaus der Amide-I-Schwingung in dem Monopeptid mit größer

werdender Gradzahl der nichtlinearen Terme in der Potenzialenergie untersucht.

Im zweiten Teil dieser Arbeit wurden die erhaltenen Schwingungshamiltonian zur Berech-

nung von Schwingungsspektren diverser gelöster Peptide angewandt. In diesem Zusammen-

hang konnte die Genauigkeit unterschiedlicher spektroskopischer Approximationen überprüft

werden. Das erste behandelte System ist das Trialanin Molekül. Aufgrund der Vielzahl der

theoretischen und experimentellen Untersuchungen ist dieses Molekül eine gute Referenz,

um konformationelle Dynamik eines kleinen Peptids in wässriger Lösung zu studieren. Die

Betrachtung von Trialanin war ein erster Versuch um ein einfaches aber nicht triviales

Modellsystem zu erhalten, bei dem die Modellierung größtenteils genau genug ist. Auf

Grundlage der erhaltenen Ergebnisse können wir sagen, dass eine angemessene Beschrei-

bung der konformationellen Verteilung und eine korrekte Berechnung des dynamischen

Absorptionsspektrum gewährleistet ist. Was noch fehlt, ist ein hinreichend genaues quan-

tenchemisches Modell für die Schwingungsfrequenzen eines gelösten Peptids. Diese Aufgabe

stellt zur Zeit ein aktives Forschungsgebiet dar.

Bezüglich der untersuchten spektroskopischen Näherungen wurden die folgenden Schlüsse

gezogen: Die Kumulantentwicklung ist hinreichend genau, um das Spektrum eines spezi-

fischen Zustandes wiederzugeben. Hinsichtlich des gesamten Spektrums kann die Kumu-

lantenäherung zweiter Ordnung nicht angewandt werden, da diese nur für symmetrische

Spektren geeignet ist. Aufgrund der verschiedenen Peptid Konformationen und der gegen-

seitigen Verschiebung der Peaks, ist jedoch ein asymmetrisches Spektrum zu erwarten.

Entsprechend zuverlässig erweist sich die Condon Näherung im Falle eines spezifischen Zu-

stands. Bezüglich einer spezifische Konformation können die Übergangsdipolmomente als

konstant angenommen werden. Ferner kann das gesamte Spektrum in guter Näherung als
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gewichtete Summe der zustandsspezifischen Spektren dargestellt werden. Darüberhinaus

zeigte sich, dass nichtadiabatische Übergänge sich signifikant auf das Schwingungsspektrum

auswirken.

Zuletzt wurde das Schwingungsspektrum eines sogenanten “Photoschaltbaren”-Peptids

simuliert. Mit Hilfe des dafür aufgestellten Hamiltonians ist man in der Lage spektroskopi-

sche Beobachtungen auf Konformationsänderungen direkt zu übertragen. Im Rahmen

dieser Arbeit wurde eine Strategie für die Beschreibung von Nichtgleichgewichtsprozessen

entwickelt.

Zusammenfassend kann man sagen, dass die spektroskopische amide-I-Antwort der Pep-

tide von zahlreichen Aspekten abhängt. Auf experimentieller Seite bietet die zeitaufgelöste

IR-Spektroskopie die Möglichkeit Konformationsdynamiken von Peptiden zu betrachten.

Umso mehr müssen neue theoretische Modellierungen gefunden werden, um die Beobach-

tungen richtig interpretieren zu könen.
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