21. On the External Characters of some Hystricomorph Rodents. By R. I. Pocock, F.R.S., F.Z.S.
[Receivel Februay 7, 1922 : Read Maclı 21, 1922.]
(Text-figtres 1-28.)
Conterts.
Page
Introduction.. 365
Rhmarium
Fucial Vibrisse371

Mouth mut Cheek-poudhes................................ 374
Har
Feat370

Feet ... ${ }_{40}^{38}$
Genital Organs of Female................................ 413
Anu
Notes on Families and Subfamilies 482

Introduction.

The classifioations of the Hystricomorpha in English text-books f Zoology are based upon the one proposed by Alstion in 1876 (P.Z.S. 1876, pp. 90-97), which was itself an amplification and in some particulars a modification of the arrangement suggested by Waterhouse in 1848. Alston added to the group the family Dinomyidæ, which, following Peters, he placed between the Dasyproctide and Caviida; and the Otenodactylinx, which he ranked as a subfamily of Octodontida. He also transferred Petronys from the Echymyina (Echinomyine), where it was placed by Waterhouse, to the Octolontine.
His system, adopted to the letter by Flower and Lydekker ('Mammals Living and Extinct,' pp. 484-491), was as follows:Hystricomorpha.

1. Octodontide

Ctenodactyline (Ctenoductylus, Pectinator).
Octodontine (Petronys, Clienomys, Schizodon, Spalacopus, Octodon, Abrocoma).
Echinomyine (Carterodon, Myopotamus, Cercomys, Loncheres, Mesomys, Lohinomys, Dactylomys, Plagiodontia, Capromys, Aulacodus).
2. Hystricidæ.

Sphingurine (Chotomys, Sphingurus, Lrythizon).
Hystricine (Atherura, Hystrix).
3. Chinchillide (Chinohilla, Lagidium, Lagostomus).
4. Dasyproctidæ (Dasyprocta, Cologenys).
5. Dinomyide (Dinomys)
6. Onviidre (Cuvia, Dolichotis, Hydrocharrus)

Proc. Zool. Soc. -1922 , No. XXV.

Winge (E Museo Lumdi, i. pt. iii. pp. 126-135, 1888) differed from Alston in some particulus. He referred all the Hystricomorphs to one family Hystricidre, which was divided into the following subfamilies:-
(1) Octodontini, equivalent to Alston's Octotontine + Echinomyina; (2) Capromyini, for Aulacodus, Capromys, Plagiodontia, and Myopotamus; (3) Ctenodactylini, for Ctenodactylus, Pectinator, and Petromys; (4) Hystricini and (5) Briomyini, equivalent to Alston's Hystricida and Ohinchillide respectively; and (6) Dasyproctini, embracing all the genera referred by Alston to the Dasyproctidat, Dinomyidæ, and Caviidæ.

Thomas (P. Z. S. 1896, pp. 1024-1025) made the following changes in Alston's system. Following Winge, he transferred Petronys from the Octodontine to the Ctenodactyline, and removed Capromys, Myocastor (Myopotamus), and Ihorymomys (Autacodus) from the Echinomyine to form the subfamily Capromyine. He also altered the name Echinomyine to Loncherime, gave full family-rank to the Old World and New World Porcupines respectively, calling the former Mystricidio and the latter Erethizontida and dividing this family into two subfamilies -Ohetomyine for Chetomys and Erethizontinæ for Rvethizon and Coendut (Splungurus).
Tullberg (Nova Acta Sci. Upsala, (3) xviii. pp. 82-149, 1900) introduced some innovations, notably the institution of two new families-the Aulacodide for Aulacodus (Thrynomys), previonsly associated with Capromys and Myocastor, and the Petromyida for Petromys alone, severing the latter both from the Echinomyide and the Ctenodnctylide. He refused, moreover, to admit the affinities of the Ctenodactyline with the Hystnicomorphs, chassifying them with his Myomorph + Sciuromorph division of Rodentia. He fused the two fomilies Dnsyproctido and Caviido. of Alston into one callel Caviidre, keeping Dinomys provisionally as the type of a special family till more is known about it. The family-name Octodontite he changed to Echinomyidx, and altered Capromyine to Myopotamini.

Beddurd's elassification ('Mammalia,' pp, 487-502, 1902) difered fyom Thomas's in restoring Petromys to a place in the Octodontine, where Alston put it, and in granting family-rank to the Otenotactyline genera, Ctenodactyhas, l'ectinator, and Massouteria.

- Weber (Die Säug. pp. 505-507, 1904) admitted no subfamilies, placing the genera in seven families as follows:-(1) Ctenodactylidæ (Otenodactylus, Petromys, Pectinator); (2) Octodontidæ (Ctenomys, Octorlon, Abrocoma, Loncheres, Echinomys); (3) Capromyidre (Oapromys, Myocastor, ? Thrymomys) ; (4) Ohinchillide (Chinchilla, Lagidium, Lagostomus); (5) Caviida (Costogenys, Dasyprocta, Cavia, Dolichotis, Mydrochorus) ; (6) Erethi-
zontidae (Ehethizon, Coendu, Chetomys); (7) Hystricidæ (Dystria,
Atherura, Thiohys). A therura, Triohys).
Of the above-quoted papers Tullberg's is by far the most compreheusive. He dealt as exhaustively as the material at his disposal permitted with the sknil, skeleton, and internal anatomy, and, in addition, described and figured the feet of several of the genern, but dismissed very briefly such external organs as the ears and rhinarium. I have been able to supplement his accorunt so far as the organs investigated are concerned, by the examination of some genera he did not see; and in a few particulars connected with the male external genitalia my results differ from his. Winge also figured the feet and the heads in profile view, showing the ears and vibrisse of some genera of Loncherine. Boas also ('Ohrknorpel der Stugthiere,' p. 119 et seq., 1912) lescribed the ears of some genern, figuring those of Cavia, Dasyprocta, Cologenys, Hydrochorus, Lagostomus, and Hystrix.
The observations set forth in the following pages have been triken mainly from fresh material examined immediately after death in the Society's Prosectorium. This has been supplemented by spacimens preserved in alcohol in the Society's collection, and by dried skins where soft material was unavailable.

The Rhinarium.

In Hystrix: and Atherurat the rhimarime is ill-defined. In Mystrie it is hairy to the edge of the nostrils. In Atherura there is an area of naked skin both above and below these orificas. In both genera the nostrils are transversely elongated slits, expanding anterionly and internally; and there is a very well-lefined smooth phittrum, completely dividing the upper lip into its right and left moieties, which are independently movable. (Text-fig. 1, A-C.)
The rhinarime of Thrynonzys is well defined, although the hair enoronches upon it above and benenth laterally, leaving only a narrow naked rim above and below the nostrils, which are tolerably widely separated. It extends, as in Hystaix, to the edge of the upper lip, forming a philtrum, wider above than below, and completely dividing the lip into a right and left portion. (Text-fig. 1, D.)
In Dinomys, according to Petors, the upper lip is deeply cleft-apparently very much as in Hystrix and Atherura; and above it there is a distinct triangular rhinarium, maked in front and round the nostrils, but hairy above owing to the forward extension of the hair of the muzzle well in advance of the posterior ends of the nostrils, which are described as S-shaped, a form these orifices assume in many of the Hystricomorphs*.
Dinomys is the only American genus of Hystricomorphs, so far

* Peters seems to have rogarded Dinomys as nkin to Cologenys. He appears to have been misld in this mater by the similurity in colour betwe
There is however, no obvious ceilence of kinslip letween then.
as my observations go, that has a complete philtrum continuous with the rhinarium above and cleaving the upper lip. The nearest appronch to it is seen in such forms as Cologenys and

Text-figure 1.

D

A. Side view of head of Aherura afticana to show the ear, rhinarium, and facial vibrisse, the latter drawn rolatively shorter than in the aimal. 13. Rhinarium and upper lip of the same. $\times \frac{1}{3}$.
C. " " Hystrin africe-australis. $\times \frac{1}{3}$.
D. " " $"$ Thrynomys swinderiants, from a dried skin.
D. Ear of Hystriv afriec-anstralis. $\times \frac{1}{3}$.

Dolichotis*, for example, in which there is a parting in the hairs in the middle line of the upper lip which, especially in dried skins, sometimes simulates a small philtrum; but, although this may be the remains of a true philtrum, it is very different from that stiucture in Mystria and Thrynonys.

The rhinaria of Coendu and Erethizon differ greatly from that of Hystrias. In Coendu it is hairy and the nostrils are quite small and vertical rather than transverse in direction, the postero-lateral slit being absent. In Erethizon the rhinarium is marked by shorter hairs than that of the area round it. The nostrils are larger and more transverse than in Coendr and are very close together, the spnce between them and their very narrow upper edge being sinooth. In neither genus is there a philtrum. (Text-fig. 2, D, E.)

In Capromys the rhinarium is large and naked, but not very well defined lnterally, where it passes into the short-haired area, surrounding it above as well as laterally and below. It is marked by a median groove in front, The nostrils are elongated and expanded anteriorly. (Text-fig. 2, A, B.) In Myocustor the rhinarium is wider as compared with its deptle than in Capromays, the areas above and below the nostrils being much narrower; there is no median groove, and the nostrils themselves are much smaller, forming crescentrically valvular slits. (Text-fig. 3, A.)

In Ctonomys, Octodon, and Cwia the rhinarium forms a naked area round the nostrils, the areas above and below these orifices being narrow. (Fext-fig. 4, C.) In Octodon it is mesially grooved and angled below. In Ctenomys it has the upper edge biconvex and mesially angled, the inferior edge transverse in the middle. (Text-fig. 4, A, B.) In Cavia the nostrils are wider than in the two Octorlonts above described, the upper edge of the whinarium is concave, the lower convex from side to side, and there is sometimes hair between the nostrils. (Text-fig. 4, F.)

In Dolichotis patagonica the entire nose is large, with a wide rhinarium concave in the middle and convex at the side above and below, the fimely hairy and tolerably deep areas bordering the large transversely extended nostrils above and below being thickened and muscular. In one example of this species the internarial area was hairy in the middle line, whereas in an example of D. sallinicola it was naked; but this character is possibly not constant. (Text-fig. 3, D.)
In Coelogenys the rpper rim of the nostril is swollen and muscular, but the rhinarium itself is scarcely defined, being covered with very fine short hairs, leaving only a narrow hairless area above and below the elongated narrow nostrils. Judging from dried skins the rhinarium of Dasyproctu is very similar. (Text-fig. 3, B.)

* I am not, sure abont the structure of the upper lip in Dasyprocta. The only spirit example available hide the rhinaxium destroyed; hut dried skius suggest the nosence of a complete philtrum. In hipigg exampies hers.
groove formad by a vertical fold in the skin of the upper lip.

In Chinchilla, Lagidiom, and Lagostomus the rhinarium is also covered with fine short hairs almost up to the level of the nostrils, but whereas in Lagostomas the nostrits are elongated and the short-haired area around them sharply defined by the coarse

Text-figure 2.

A, Sile view of hen of Capronys pilorides, showing the car, rhinarimm, ant facinl vibussas, the mystacinls shortenes in the drawiog.
13. Muzale and manth of the same from the front, the divided palatal flaps (p) shown above the tomgle (t). $\times \frac{1}{3}$.
C. Rhinrimm and uper lip of Erethizon Jorwatum. \times ?
D. Muazle mid month of Coond prehensilis, from the front, $\times \frac{1}{3}$.
hairs of the rest of the muzzle, in Chinchilla and Lagitium the nostrils are much smaller without any sharply defined sloothaired aren around them. (Text-fig. 3, $\mathrm{O} ; 4, \mathrm{D}$.)

In Wydrochorus the rhinarium is scarcely defined, although the skin between the nostrils is naked. The nostrils are very widely separated and small, without any postero-lateral slit The upper lip is exceedingly deep and naked or scantily hairy in the middle.

The rhinarium of Otenodactylus is continued to the edge of the upper lip by a nalsed area of skin, which; like the rhinarium itself, is capable of lateral compression, heing broad or narrow according to the degree of contraction of the muzzle. The upper end of this labial tract is continued on each side as a naked rim beneath the nostrils. The upper edge of the rhinarium is convex with a median angular emargination. The area above the nostrils is deep; the nostrils themselves when expanded are large orifices with very short posterior slits, and the narrow space between them is marked by a deep median groove extending from the top of the labial tract to the summit of the rhinarime. (Text-fig. 4, G.)

In view of the former associntion of Ctenodactylas with the Jerboas (Jaculide) it is interesting to note the close similarity between that genus and Jaculus in the rhinarium, not only in structural details but in its compressibility.

Facial Fibrissa.

In P. Z. S. 1914, pp. 903-905, I described briefly the facial vibrisste of several species of Hystricomorpha belouging to the genera Alherura, Coendu, Erethizon, Octodon, Chinchilla, Lagostomus, Dolichotis, C'ulogenys, Dasyprocta, Cavia, mil Hydrochuerus, and showed the general constancy of the presence of well-developed mystacial, superciliary, and genal tufts, the latter being usually set high up the face near or even behind the posterior angle of the eye. Since then I have extended my observations, and can add several more species to the list.

In Hystrix, Acanthion, Atherura, and Trichys the vibrisse are as originally described in Atherura, namely, exceedingly long and well developed, and there is always an interramal tuft. In Thrynomys, on the contrary, although its mode of life is tolerably similar to that of the Old World Porcupines, the mystacials are comparatively slender and short, and in two dried skins I can find no trace either of superciliary, genal, or interramal tufts in the coarse hairs clothing the head. Peters described the mystacials as long in Dinomys and the genals as set behind the eye, but says nothing about the interramal tuft.

In the genera of Loncherine figured by Winge, namely, Lonoheres, Echimys, Cannabateonys, Trichomys (Nelomys), Carterodon, and Mesomys, well-developed mystacial, superciliary, and genal vibrisser, the latter behind the eye, are shown, but no interamal tuft is indicated. The omission of the interramal tuft can hardly be taken as proof of its absence in these genera. Nevertheless, I failed to find it in examples of Ctenomys and

Octoclon, which have the other vibrissm well developed, although in Ctenomys the mystacials are shorter than in the other genera of Octodontida above quoted. In the exmples of Capromys,

Text-figure 3.

A. Muzzle and mouth of Myocastor coypu, from the front: p, palatal fhes fused hehind upper incisor tecth; l, liugual flap. $\times \frac{1}{3}$.
B. The same of Comogenys paca. Lettering as in A, with o, orifice of extermal cheek-ponch. $\times \frac{1}{3}$.
C. Whinarium and npper lip of Lagostomus trichodatylus, from dried skin. $\times \frac{1}{3}$. D. The same of Dolichotis patagonica. $\times \frac{1}{3}$.

Coendu*, and Erethizon examined the interramal is also absent, and the same is true of all the adult specimens of Myocastor.
" In C. prehensilis the fore and hind limhe and the lower portion of the sides of the body mre provided with a few long seattered tactile vibrisse reculling those on the body of Hyrav (Procavia).

A. Side viaw of hend of Ctenomys mendocinus*.
13. Rhinariam and upper lip of the same.
C. $\quad \% \quad \%$ Oetolon degus *.

1. " " " " $"$ "hinchilla lanigerc.
2. Muzole aud mouth of the same, with the fused palatal flups and the small cheok-pouches.
F. Rhinurium and wper lip of Cavia poveellus.
A. " " Clenodactylus gundi.
II. Side view of hend of the same.

* In this ant other illustrations in this paper, the figures labelled Ctenoms Iendocinus and Octodon degus were taken from speciumens that came respectively

The genal tuft, too, is generally indistinguishable in the lattergenus, although in a young specimen I have detected both geual and interramal tufts, the former consisting of two vibrissiu close to the hinder comer of the eye.

In Cologenys and Dasyprocta the ordinary vibrissm are long and numerons, especially those of the genal tuft in Cclogenys, and the interramal tuft is present. In Dolichotis the vibrisse generally resemble those of Dasyprocta; but in an example of D. salinicola the interramal vibrissie, present in a specimen of D. patagonica, were absent. In Hyduocharus all the vibrissw are short and slender, the interramal are absent and the genal are set below the level of the eye. In the typical species of Cavia (C. porcellus), the common guinea-pig, and in C. aperea, the mystacials, superciliaries, and genals are as in the Octodontidæ, Dolichotis, and others, although relatively somewhat shorter; and the interramals appear to be absent. But in an example of Gclea littoralis Thos.*, the intervamals are represented by four long bristles arranged along the posterior border of a nemply naked area behind the chin, an arrangement recalling that of the ruminant ungulate Tragulus.
In CTincoZilla and Lagidium the mystacial vibrissae are exceedingly fong and coarse, but the superciliaries are much finer and softer. The genals also, when present, are fine and soft, but I found them in only one example of Ohinchilla. In another example of that genus and in a specimen of Latidium I could not detect them. Tn Layostomas the mystacials, superciliaries, and genals are all long and coarse, and this genus in addibion has a long thick mat of bristles on the cheok below the eye. The interramals appear to be undeveloped in these three genera. Otenodactylus has long mystacials, superciliaries of medium length, but no discornible genals or interramals.

The Mouth and CheeT-pouches.

The mouth of the Hystricomorphs, as in other groups of Rodents, is provided with lobes of skin jutting into it from the cheek on each side and serving to shut off the anterior from the posterior part of the buccal cavity so as to prevent gnawed fragments of wood from passing into the throat. A pair of these, one on each side of the tongue, capable of meeting behind the lower incisor, may be called the lingual lobes, while an upper pair, capable of meeting across the palate behind the upper incisors, may be called the palatal lobes.
The lingual lobes, so far as my observations extend, always retain their distinctness and can be separated or brought together; but the palatal loles are more variable. Typically and in most

* For the genera of this gromp, see Thomas's mper, Am. \& Mag. Nat. Hist. (8)
 tho specios of Cavies recopled in this puper the specimen alove referver to as

genera, such as Ifystrix, Atherura, Hrethizon, Coondu, Capromys, Ccelogenys, Caviu, Dolichotis, and Otenodactylus, they are separated, although eapable of being made to meet in the midde

Text-figure 5.

A. Side view of head of Cologenys paca, the outline of the extemal cheek pouch dotted in ; o, its orfice.
13. Trasverse section of the head of the shme niterior to the molar teeth, the intermal cheek-pouch on the left of the figure disteuded; a, orifice of extermal cheel-pouch ; t, tongne; bony tissue dotted.
line, but in Clenomys, Myocastor; Chinchalla, and Lagostomus they are fused across the palate anteriorly, although putinlly separated postexiorly.

The only genus of the group which has genuine cheek-pouches is Coslogenys: but near the edge of the cheek, just inside the mouth, in Chinchilla I find a small integumental pocket on each side. These do not seem large enough for the stonage of food, and I am unable to surmise what their function may be." (Textfig. $4, \mathrm{E}$.)
The cheek-pouches in Ccelogenys lie on each side of the maxillary portions of the palate, mainly in front of the molar teeth, and are associated with the well-known and unique structural peculiarity of the skull from which the genus takes its name. The outer wall of each pouch is the original skin of the cheek, which inferiorly passes downwards on to the face behind the comer of the mouth. But this wall is entirely concenled from view externally by the skin-covered, arched, laminate outgrowth of the maxillary portion of the zygoma, which curves downwards below the level of the palate and the molar teetlr; and this lamina itself forms the outer wall of a hair-lined external cheekpouch the orifice of which lies on the face above and behind the angle of the mouth. Thus the original wall of the cheek, covered with hair externally and with moist mucous membrane internally, forms a partition between the internal and external cheek-pouches; and this partition, being pliable, can be thrust by pressure from insile the mouth so as to bulge into the cavity of the outer cheek-ponch so as to diminish its size and increase to a corresponding degree the size of the internal cheek-pouch. If the latter were packed full of food, the external pouch would be practically obliterated; but there would be no visible swelling on the face, such as is seen in the case of monkeys, hamsters; and other mammals provided with these foolnreceptacles, becanse of the presence of the secondary cheek formed by the bony outigrowth of the zygomatic arch. (Text-fig. 5, A, B.)

There can, I think, be no doubt that the internal cheok-ponches are used for storing food, although I have never fouml any food in them in dead specimens of Cooloyenys. I attach no importance, however, to this negative piece of eviclence, becanse the pouches of monkeys are usually empty when they die. That the extermal cheek-pouches are not used for storing food is also, in my opinion, beyond doubt, because the fore feet of Cologenys are, juclging from their structure, altogether unsuitable for thrusting food into them.

From the description above given, it will be evident that the laminate expansion of the maxilla acts as an extermal shield to the cheek-pouch when distended. But this affords no explanation of the equally remarkable expansion of the jugal portion of the zygomatic arch behind the cheek-pouch.

The Eur.

The ear in Hystrix and Atherura is comparatively small, but stands well up from the head with a tolerably evenly rounded
upper border. In both genera the tragus is distinctly developed, and there is a large antitragal thickening. In Hystrix the antero-internal ridge descends internally to the tragus; in Atherura it is a rounded lobate thickening above the tragus. The supratragus is a narrow ridge concealed in front by the anterointernal ridge and ending posteriorly in a ridge which descends into the cavity of the enr. Behind the antitragus there is a long deepish groove, and behind this the posterior edge of the ear forms a tlap capable of being folded forwards. (Text-fig. 1, A, E.)

The ear of Dinomys is simple, with a ridge-iike supratragus and a thick, but not prominent antitragus. (Text-fig. $\overline{6}, \mathrm{E}$.)

The enr in Hrethizon is covered thickly with woolly hair and surrounded with spines. It is quite simple in structure and has a tolerably evenly convex edge, which anterionly above is curled over and overlaps the anterior end of the simple supratragal ridge, which posteriorly curves downwards and runs into the tolerably large antitragal thickening. The lower margin of the enr beneath the "aditus inferior" is a simple shallow ridge, and the muditory orifice is not concealed by a tragal lobe, and there is no definitely developed antero-internal ridge. (Text-fig. 6, C.)
In Coenlut the ear is of a much more specialised type. Its outine is irregularly angular. The antitragal portion is excessively developed into a high valvular thickening, and the considerably overturned antero-superior edge is jointed at the level of the supratingal ridge, so that the upper portion of the ear can be fokled down upon the lower portion, reducing the size of the cavity, which can be similarly compressed from behind by the forward movement of the posterior portion. Modifed as the ear is, it is clearly derivable from the type seen in Erethizon; and, as in the latter, the anditory orifice is not protected by a tragal lobe. (Text-fig. 6, D.)
The ear of Capromys is tolerably similar to that of Hystrix, but not so expanded at the summit. The antero-internal ridge lescends to the auditory orifice and is continued superiony a little above the point of attachment of the pinna, but the overfolded portion of the edge of the ear is here much narrower than in Mystriv. There is a small tragus conceaing the orfice, an also narrow notch betwen to an $H y \operatorname{str} i x$, and above and behind the ess well developed than in Aystrio, much shorter and shallower
 than in the latter genus. is overlapped in front by antero-internal ridge. (Textis overlap
fig. 2, A.)
In Myocastor the ear is lower and rounder than in Capromys, and has a laminate bulge on its posterior border above and behind the antitragus. The antitragus is better developed whan in Capromys, and is provided with a large ture, which similarly serves to keep water out of the a it to serve the same purpose. has a crown of short hairs above it to sernding nearly vertically

Text-figure 6.

. Lar of Myocastor coypus, with hairs removect
Lower portion of the same with vertion ent through the intertragal noteh, and the tragus tumed formats to show the fringe of latirs above the

C. Ear of Thethizom dorsctum, with the hitwsus (a)."
 C. Ear of 7evethizon torsatum, with the hais removed.

D. " Coendu prehensilis.
F. " Dimomys branichit, copied from Peters
G. " Dasyprocta sp. ?
G. " Cavia aperea, with valvular flap uptumed below supratrarus.
H. " Galea hitboratis, witheut valvular flap below supratragus.
I. " Octodon degns.
K. , Loneheres aphatus, copted from Winge.
I. M. Wehimys adeanonsis, copied from Winge.
N. " Ctenomys mendocinus.
N. " Ctenodactylus gondi.
a, mititragus; s, supratragus.
to the auditory onifice as in Copromys and Hystrix, curves somewhat backwards beneath the supratragus and loses itself in a thickening occupying the cnviby of the ear above the orifice. (Iext-fig. 6, A, B.)

In the ear of Octodon the laminate portion is widely expanded, especially below behind the matitugal area, but the edge above this is distinctly emmeginate. The cavity is, however, capacious, although the suphatragus which borders it above and in front does not stand out as a definte shelf-like ridge. The extension of the nutero-juternal ridge curves backwards and then upwards, defining a deep pit as in Cologenys and Lagostomus. The tragus is rentuced to thittle excrescence, not concenling the orifice which lies behind the nidge forming the anterion border of the unusually elongated notch (aditus inferior). The antitragus is very large mul heshy, but has no troce of pouch, (Text-fig. 6, I.)

In the six genern of Lonchorine Octodontida higured by Winge, manely, Lonoheres, Hahimys, Cannabatcomys, Trichomys (Nelonys), Carterodon, and Mesomys, the ears are apparently simple in type, molerately lage or small in size, and stand away from the head inferionly from a point beneath the antitugus or the noteh in front of it, which is distinct in all of them. The antierior edge is folled over from a point below the anterior end of the sumparggus, its inferior end curving backwards not downwarls into the cavity of the ear, this curvature being especinlly stwongly manked and high up in Loncheres, where the rigge is curled so as to ciremmscribe a dennite pit as in Octodon. This peoulimity is not so well marked in the other genera. In Toncheres, too, the pinno is rektively smoller and the antitrugus harger. Ourterodon has relatively the smallest antitngus of all The thagus is small in Lehimys, Thiohonys, and Gamabateomys, and appurentily undeveloped in the others. The supratragis forms a simple, scarcely a shelf-like, ridge loofing the cavity of the en above anterionly. The posterior horder of the enr is slightly emarginate and angled abovo in Loncheres, Cannabateomys, Thichomys, nnd Mesomys, convex and magled in Corterodon, beaty staight and quite mangled in bchimys. The inferion porsion behind the antitragus is well developed in all, but shows no trace of a pouch (Text-fig. 6, K, L.)

Judging from the figures from which this description is taken, the ons of all these genera are of a simpler, more primitive type them those of Octodon depus.
Judging from bhe illustration of Petromys, published by A. Smith (Tllustr, Zool. S. Africa, Mammalia, 1849) the ear A. Sembles that of the typical Oetodontide in a general way, but details we not described or fgured.

The ear of Clenomys is greatly reduced and simplified in admptation to subtermean life. The apex is pointed; the posterior border is lightly concave above, but only stands freely away from the hend from a point n little helow the supratragus, whinh is not defined as a definite vilge, but is meroly represented by the
anterior part of the wall of the subcincular cavity of the ear containing the large exposed anditory orifice, the tragus, antitragus, and the intervening notch being obliterated. The antero-internal ridge, forming the continnation of the strongly overfolded anterior rim of the ear, gradually disappears inferiorly at about the level of the orifice and does not curve sharply backwards beneath the supratragus. (Text-fig. 6, M.)

In Cozogenys this ridge beneath the supatatagns is much more sharply defined and forms the lower edge of a well-defined depression, of which the supratragus, which has a definite thickening, is the upper border, and above the supatingus there is another weaker ridge. There is a small tragus, but the antitragus is very large and thick, and is marked above and posteriorly by a small shallow ponch. Above this poneh the antitragus is continuons with a ridge curving forwards above and forming the posterior rim of the cavity of the ear. The laminate portion of the en is small, but erect, with a slight emargination near the middle of its posterior border, a rombed smmmit, and an overturned anterior margin continnous below with the antero-internal ridge. ('Iextfig. 7,1 .)

The enr of Dasyprocta is wider as compared with its height, than in Cologenys. As in that genus the inferier end of the overturned anterior rim juts into the cavity, forming a horizontal shelf-like ridge beneath the supratagus, which is itself a long narrow ridge with it well-defined depression above it. There is a small tragus as in Ccelogenys, but the antitragus is mueh less developed than in that genus and has no ponch above it. Above the bragus there is a litifle curled thickening. (Text-fig. $6, \mathrm{~F}$.)

In Cavia and allied genera the ear resembles tolerably closely in shape that of Dasyprocta, although varying within the limits of the genus. But it always differs in having the supratmgns converted into a laminate valvular flap. In Galoct littoralis the ridge beneath the supratragus, which is also present in Dasyprocta and Crelogenys, is quite thin and of uniform width thronghout; the tragus is distinetly defined, and above it there is a thickening recalling that seen in Dasyprocta but larger; the antitiragus, too, is well developed, and the portion of the pima below and behind it is comparatively wide, wider than in Dasyprocta. But in Cavic aperea and the Common Guinea-pig (C. porcellus) the ridge beneath the supratragus is large and valvular, like the supintragus itself, there is scarcely a trace of tragal and ontitragal thickenings, and the pinna is narrower behind the antibragal ridge. When the ear of the Guinea-pig is folded the two valves close down over the orifice, the supratragal valve lying uppermost. The ear of Kerodon resembles that of the two lastmentioned species of Cavia, although the two valves are relatively a little smaller and the tragus and antitragus are a little botter developed. (Text-fig. 6, G, H.)

The ear of Thrynomys, like that of Cavia, has the supratragus valvular and the antero-internal ridge passing beneath it. There
is a small tragus and a moderately large antitragus. (Textfig. 7, A.)
The ear of Dolichotis is much longer than in Cawia or Cologenys, and is somewhat narrowed above by the tolerably deep and long emargination of its supero-posterior edge. The supratragus is a simple ridge without the thickening seen in Cologeneys. The continuation of the antero-internal ridge is very distinct and long, longer than in Cologenys, but equally simple in structure. Beneath it there is a similar ridge curving abruptly downwards to end in a thickening above the auditory orifice. The tragus is quite well developed and high, but the antitragus is not better developed than in Cavia. (Text-fig. 7, 0.)

In Hydrochocrus the ear is very much simplified, the only strongly developed ridge being the supratragus, which terminates somewhat abruptly near the middle of the cavity. The anterointernal ridge is not turned backwards beneath the supratragus, but grodually fades away inferiorly. There is no definite tragus or antitragal thickening, and the ridge representing the latter is not continued so high as the posterior end of the supratragus. The depression in which the orifice lies is thickly overgrown with hairs covered with waxy secretion, the two combining to exclude water. (Text-fig. 7, C.)

Ihe ear of Layostomus trichodaotylus is very specialised, but, seems to be an extreme modification of some such type as that seen in Celogenys. Its laminate portion is very much larger and is tolerably evenly oval. There is a well-developed tragus separated by a large notch from the antitragal portion, which, however, Hoes not form a thickened bulge as in Caelogenys, but is continued obliquely upwards and backwards as a long straightish sharp ridge defined behind by a shallow depression running inferiouly into a shallow pouch, doubtless homologous to the similarly placed pouch above and behind the antitragus in Ccelogenys. The backwardly eurved continuation of the anterointernal ridge is strong and forms the lower border of a deep. depression, bordered above by the thickening representing the supratragus, but this does not form an definite ridge as in most of the ears hitherto described. (Text-fig. 7, F.)

The ear of Chinchilla is tolerably similar in type to that of Lagostomus, but is much more expended, except at the base where it is narrower and more tubular, so that the orifice lies deeper in the ear at the bottom of the depression bordered above by the continuation of the antero-internal ridge. No trace of the supratragus remains. The tragus, too, has disappeared; but the antitragus is developed into a prominence relatively as inge as in Cologenys; and this is hollowed into a deep pocket, from the centre of which arises a straight ridge corresponding to the similar straight ridge in Lagostomus and to the curver ridge delining the convity of the ear posterionly in Cologenys. (I'extfig. T, E.)

Proc. Zool. Soo.-1922, No. XXVI

The ear of Ctenoductylus is tolerably small, projects but little, is sloped backwards, and is covered with hair behind and on the

Text-figure 7.

A. War of Theynomys swinderianns, from dred skin.
13. " Hydrochowns acpybaras.
C. "Dolichotis patagonica.
D. "Cologenys paca.

1. " Chinghilla lanigera, the position of the orifioe totted in.
F. " Lagostonaus trichodactylus.
edge of the cavity. The edge or rim is mised all round, defiuing a deep hollow divided into two by a large valvular supratragus, which separates the upper third from the lower two-thirds of the carity. There is no tragus; but the antitragus forms a long, narrow, infolded, naked ridge, from the upper eud of which a short ridge runs obliquely forwards, upwards, and inwards to terminate in the middle of the cavity beneath the supratragus A corresponding ridge occupies a similar position in the anterior half of the lower two-thirds of the cavity. The orifice of the mulitory meatus is a large hole situated just within the lower half of the antitragal ringe. (Text-fig. $6, N$.)

According to Dobson, the ear of Pectizutior resembles that of Ctonodactylus except that it retains the autitragal thickening which the latter, he alleges, has lost. Since, however, there is a long low antitragus in the examples of Clenodactylus I examinerl, this distinction does not hold. Dobson probably overlooked this structure in Ctenodustylus owing to itis being normally folded inwarts. Assuming that their cars are similar, these two genem difter markelly not only from all the Hystricomorphs, biti from all other Rotents knowis to me in the structure of this organ.

The Feet.

In Hystria, Aeanthion, and Atherwo the fore foot is short and brom. The four main digits are short, subequal, moderately widely separable, and united by raked integument up to the proximal end of the large sinooth digital pads. The claws are tolembly long, strong, and fossorial. The pollex, on the other hand, is greatly reduced and represented externally merely by its mail and small pad. It arises alongside the outer distal extremity of the radial or inner carpal pad, behind or above the inner lobe of the plantar pad. The plantar pad is smooth, about twice as wide as long, and three-lobed. The median loke projects in the middle line and is larger than the lateral lobes, of which the inner is smaller than the outer. The posterior border of the pad is almost straight from silde to side. Immediately behind it are two large smooth carpal pads, separated by a naked space, or nearly in contact, and behind the pads there is a short area of naked skin overlapped by the bristly haiss above it.
The digits and plantar pad of the hind foot are, in general features, tolerably similar to those of the fore foot, excepi that the hallux is better developed than the pollex and nuises just in front of the inner lateral lobe of the plantar pad. The sole of the foot bohind the plantar pad is smooth and naked back to the heel, and is occupied for the rost part by two large, but not welldefined, metatarsal pads. (Text-fig. 8.)
The feet of Dinomys, judging from the description and figures published by Peters;, appear to be more like those of II/strix

* Festsehr. Ges. Nut. Bemim, 1873, p. 228, pl. iii. figs. 2, 3 .
than of any other genus of Hystricomorpha, and are unlike the feet of Cologenys with which Peters compared them.
The pollex and hallux, which are quito short and practically functionless in Hystrio, have disappeared: but, as in Mystrix,

Text-figure 8.

A. Right fore foot of Alherma africana.
B. " hind ", the same.
C. " fore foot of Hysiris aftice-austratis.
D. " hind n " the sume.
digits 2-5 are shory, thiek, and strongly developed, 3 and 4 being subequal and a little longer than 2 and 5 , which are themselves
subequal, 2 being set a little more forwards than 5 . The interdigital webbing, however, does not perhaps extend so far distally us in Hystria, and the soles are-in part, at all events-covered with squamiform papillo instearl of being smooth. The plantar pad of the fore foot seems to be of much the same form as in H_{y} stria, and just behind it and in contact with th there is an immense carpal pad with Ω median depression indicating its division into the two normal elements. The plantar pad of the hind foot is reduced to three smooth isolated prominences rising from the papillate integument; and the metatarsal area shows no trace of the two pads, but is uniformly papillate in its distal portion, where it is searcely defined from the plantar portion, and smooth and swollen in its proximal portion up to the heel. (Text-fig. 19, A, B, p. 402.)

In Octodon degus the fore foot is artiodactyle, the third and fourth digits being paired and subequal and a little longer than the second and fifth, which are also subequal, the fifth, however, being a little the shorter of the two. These four digits are stout, shortish, with sharp moderately long claws; the pollex is quite short and represented externally by little more than its claw. The plantar pad is large, as wide as the foot, considerably wider than long aud markedly three-lobed; the median lobe being larger than either of the others. It is covered with papille, which spreen on to the base of the digits, and each lobe is provided with a single large papilla opposite the three interdigital spaces. The donble carpal pad of which the two elements are mesially in contact, the outer being a little the larger, is a little larger than the plantar pad and, like it, covered with papilla, with a single enlargod papilla at the antero-external corner of each. Behind this pad there is a naked triangular area of skin. (Text-fig. 9, B.)

In general featares the hind foot is like the fore foot, but the digits are much longer and the plantar pad narrower and the hallux is relatively much longer than the pollex. There is a single enlarged circular papilla opposite the four interdigital spaces, and two others on the metatarsal area, one set forwards on the ulnar side just behind the outer moiety of the plantar pad and the other farther back on the radial side some distance behind the papilla opposite the space in front of the hallux. The whole plantar surface is covered with small papillx, except the heel, which is naked: and there is a merlian groove defining the two elements of the metatarsil parls. I recard the feet of Octodon as the most generalised type found in the Hystricomorph Rodents. (Text-fig. 9, A.)

Winges figures of the feet of several genera of Loncherina (Loncheres, Echimys, Thichomys (Nelomys), Carterodon, Mesomys) show that, with variations in detail, they conform tolerably closely with those of Octodon degus. They are pentadactyle with greatly reduced pollex and short hallux; the primary interdigital elements of the plantar pads are separated, but they are relatively much larger than in Octodon, and the papillate areas of
integument between them are correspondingly reduced; and the same applies to the carpal ant metatarsal elements. Also the fifth digit both in the fore and hind foot is relatively shorter and set frother awny from the fonth in Rohimys, Gerterotom, and

Thext-fyure 9.

C
A. Wight lind foot of Octolon degus.
13. " fore $"$, the same.
C. " himd foot of Capmonys pilorides.
D. "fore n " the same, showing the smooth area of the cmpal pat behind the pollex.

Mesomys. In Mesomys the feet are move fossorial in type, being broader, and supplied with shorter digits nud longer stronger claws. Moreover, the fourth digit of the exceptionally wide fore foot is considerably shorter than the second and third.

The fore foot of Capromys is very like that of Ootodon, except that the four main digits are relatively considernbly longer,

Iext-figure 10.

A. Right fore foot of Erethizon dovsatum.
B. ", hind ", the sume (the sole is sometimes mose expanded behind the hallux).
C. \quad fove foot of Coondu prehensilis.
D. " hind " $\%$ the same.
h, hallux ; e, peliensile expmanion of sole.
there are no enlarged papilla on the plantar or carpal pads, and the external moiety of the carpal pud is relatively larger and
quite smooth on its postpolical portion. The hind foot is anso like that of Octodon, but is relatively broader and shorter, being actually broader, instead of narrower, than the fore foot. Moreover, the hallucal or inner element of the plantar pad is not fused with the metatarsal pad, but forms parti of the plintar pard itself, which is thus four-lobed instead of three-lobed as in Octodon, and there is no trace of divisional line on the metatarsal pads, and there are no enlarged papilhe either on the plantar or metatarsal pads. (Text-fig. 9, C, D.)

A. Right hind foot of Erethizon dorsatum.
B. Right fore foot of Coendu prehensilis.
C. Right hind s "the seme.
h, hallux; c, heel; e, prehensile expansion of sole.
Except that they are broader and shorter, with shorter digits, partially webber basally, much longer claws, and the component elements of the plantar and carpal pads less clearly defined, the feet of Erethizon are like those of Capromys. The abovementioned differences, togetber with the suppression of the pollex, externally attest higher specialisation of the feet, in accordance probably with greater adaptation to arborenl life.

Specialisation of the feet on the lines indiented in Arethizon is carried a stage further in Coendu, where an excrescence on the inner side of the plantar area, giving greater width to the sole, takes the place of the poliex, while a very much larger, nearly semicircular expansion, occupying the whole length of the sole of the hind foot, takes the functional place of the hallux". This expansion is movable up and down to a certain extert, and enormously increases the supporting area and gripping power of the foot. As in Erethizon, the plantar, carpal and metatarsal, and the digital pads are covered with squamous papillae. (Textfigs. 10, 11.)
In the disposition and proportionate length of its digits the fore foot of Myocastor resembles that of Capromys, bat the four main digits are relatively shorter and stouter, and have thicker blunter claws. The pads are better developed, being relatively larger and more cushion-like. The median lobe of the plantar is approximately twice the size of either of the laterals, and there is a deep or shallow division between the two elements of the corpal pad. The radial moiety of the latter is also covered, like the rest of the carpal pad, the plantar, and the digits, with squamiform papille. I found no trace of carpal vibrisse. (Textfig. 12, B.)

The hind foot is very much larger than the fore foot \dagger, mainly owing to the elongation of the digits, of which the third is the longest, the second and fourth a little shorter and subequal, the fifth considerably shorter than the fourth and the first than the fifth. The first, second, third, and fourth are united by swimming-webs extending up to the digital pads; but the only trace of web between the fourth and fifth is a flap of skin running along the imner edge of the fifth digit, which is thus left free for the purpose, I believe, of acting more efficaciously as a skin-scraper. The pluntar pad is indistinctly defined, being represented by lobes of skin at the base of the first, second, third, and fifth digits. The comparatively short metatarsus is naked back to the heel. Its anterior portion, like the plantar area and the digits, is covered with squamous papille, but a varying amount of the heel is smooth, especially on the outer side. (Text-fig. 12, A.)
The feet of Dactylomys and Cannabateomys are very different from those of the typical genera of Loncherince. In C. amblyonyr, as figured by Winge and Tullberg, the lower sides of the digits and soles are uniformly and closely covered, except on the heel, with squamous papilla, lineally arranged on the digits, but show no trace of definite pads apart from the integumental grooves resnlting from the folding of the digits on the soles. The fore foot has a minute functionless pollex close to the base of the second digit, which rises nearly on the same level as the fifth,

* In a young example of C. pretiossizis there was a larger external hallux occupying the same position as tho hallux in Brethizon.
\dagger Precisely as in the Otters and for similar reasons.
but exceeds it in leagth, although much shonter than the thind The third and fourth are long, thiek, and smbenual. The fifth Only reaches the distal end of the tirst phatage of the fourth. fhe endes of the digits are thick and bluntly mombed, aml fumished with mathike olaws, which awe conceated from the inferior aspect. The sole is marked with : Y solapued groove, the branches of which rum to the margin at thes spreas hetweon the second and thim and fourth and filth digits, the uright

Text-figure 12.

presumably marking the origiual line between the bwo elements of the carpal pad. The hind foot has the sole short, only a little and narrowed behind. The socons in that genns, bromd in front bear much the sam. The second, third, fourth, and fifth digits the fore foot, but the lation to each other in length as those of the fore foot, but the hallux is well developed as compared with the pollex and stands well away from the sole. The nails are as in the fore foot, except that on the second digit the nail is clawlike, according to Winge, and projects begond the tip of the
digit, acting, no donbt, as a seratcher.

In Celograys the fore foot is five-toed and artiodnctyle. The pollex is greatly reducer and represented externally merely by its small nail, which is set some distance above the second digit. The thind :and fourth digits are thick and subequal, and united by webbing haltway between the plantar and cligital pads. The seoond is as thick as the thind and considerably shorter; but it is stouter and longer thin the fifth, and set a little more forvards. The wel between the seomel and thind and fouth and fifth is less extensive than that between the thind and fourth. These four digits have powerful chas and well-developed smooth parts. The carpal pal is large, three-lobed, and projects in the midde in front, this portion having a truncated anterior margin. It is roughened with pupilh, if not all over, at least in the middle line aml haterally ath the base of the second and fitth digits. Soparated from the phatar pad by a space of maked wrinkled skin are the two well-developerd nearly smooth carpal pads which are in contart in the midtle line. The whole of the inner side of the wrist as far forward as the base of the second digit is covered with very short hair as in Dasyproeta and Keroclon. (Textfig. 13, A.)
The himil foot is also five-toed, but is perissodactyle. The first and lifth ligits are short and slender, the first being a little smaller than the fifth; and they arise nenrly opposite one anothor fur up the sides of the foot, only a little in front of the metataras puds and a long way behind the main mnss of the $\mathrm{p}^{\text {limbar }}$ pal. The serom, thind, and fouth thigits are thick and strong, tho second aml fouth leing shorter than the third which lies hetween them. There is a shatlow web between them at the base. The claws tud digital pats are similar to those of the fore foot. The main portion of the plantar pad is an irregularly shapen cushion-like mass with two especially strongly papillate areis conrojumbling to the interdigital spaces and attesting the origin of this pal from two plentar interdigital elements. The remaining tiwo interdigital elements, seen in Octodon, for example, have tinvellenl awny from the main portion of the pad, and are reprosented by small puls at the base of the first and fifth digits, allhough the ono at the base of the first digit (pollex) is not always distinguishable. The metatarsal area is covered by a hage hown shield, distinctly donble at its distal end, but only indistinctly diviled in two elsewhere. (Text-fig. 13, B.)
The feet of Dosmpocta are in many respects very different from those of Cologenys, but seem to be clerived from that type. They are mow thimer and longer. The fore foot is perissodactyle; the pollex is even more reduced than in Culogenys. The fifth digit anso is relatively smaller; it is, moreover, set high up the foot, ammest on a level with the pollex, some distance behind the phatare pal and slightily in advance of the carpal pad. The second, thinl, wat fourth digits are well developed, the second is slightily shomer thom the fouth, and both are shorter than the slighty shonter thon the fouth, and both are shorter than the
thim which lies between them. There is no visible basal webbing.

The chaws and pads on these three digits amd on the fifth are well developed, the pads being smooth. The phantar pad is very different from that of Cexlogenys, consisting of two elements opposite the interdigital spaces of the three main digits. The third, or onter, element of this pal is small and circular, and has accompanied the backwarl migration of the fitth digit. The carpal pads, two in number, are narrow, indistinct behind, and in contact mesially, the imer parl being larger than the outer and projecting further distally. They nee sepmated by a longish area of naked skin from the plantar par. The imer site of the wrist is covered with short hair, sometimes amost maked, as in Cologenys. (Text-fig. 13, O.)

The hind foot is like that of Cologenys, except, that the first and fifth digits have entirely disapperved, the three main digits are longer, thinner, and mowebbed, the plantar pad is much smaller, consisting of two larger but small pals at tho base of the imner and mediau digits, tund of a very small ciroular pad the the base of the fowth or onter digit, Assmming this pad to be the homologue of the small padat, the base of the inth digit in Cologenys, it occupies a very different position. The motatarsal pad is a long way behind the plantar pad, and shows at most indistinct signs of a divisional line on its imer side. (Textifig. 13, D.)
The feet of Oluneflitha are derivable from the type seen in Oalogenys, with the basal webling eliminaten. In the fore foot the digits are thinner, with relatively larger compressed pads and shorter claws adapted to a life anongst rocks, but their number, relative length, and disposition we similar. 'There is a distinctly three-lobed plantar pad and a large two-lobed carpal pad, which, however, is larger than the plantar pad and not smaller as in Gologenys. The wist, however, is miformly covered above and laterally with long hais. The hind foot is longer and thinner, and the hallux bas entirely distppeared; but the remaining four digits are similarly placed, althougl, as in the front foot, they have relatively broader pads and munh shorter claws. The phatar pad is two-lobel, its extermal element, larger than in Cologenys, has travelled up the foot in company with the fitth digit and lies laterally nearly midway between the plantar and metatarsal pads, the latter being defined by a suleus which expands into a moteh distally. A specialisation is the development of fringes of longer hairs on the inner sides of the second and thirid digits, those on the second forming a stiff comb. (Text-fig. 14, A, B.)
In general features the feet of Lagidiam are like those of Chinchillce, except that the under sides of all the digita, apart from the digital pads, are thickly covered with hairs and the digital pads themselves are compressed and furmished, as in Cerodon, with a rounded median keel. The three elements of the plantar pad of the fore foot are very laxge and in contact. Behind these
are two very large carpal pads which are also in contact. In the hind foot there is a very large bilobed plantar pad; the third or Text-figure 13.

outer lobe, which is also very large, has separated itself from the main mass of this pad and travelled up the foot in company with the fith digit, as in Ohinchilla; ant, as in the case of the front foot, the hirs of the sides encronch laterally more over the sole than in Chinchilla. (Text-fig. 15, C, D.)
In Lagostomus the fore foot difters from that of Chinchalla and Celogenys in the suppression of the pollex, but is ohherwise

Text-figure 14.

A. Riglt hinh foot of Chinohilla laniyera.
B. " fore
C. " hind foot of Lagostomus triohotaetylus.
D. $\%$ fore $\% \quad "$
tolerably similar in type, with adaptations for a life in the open plains as opposed to a rocky or forest habitat. The digits are shortish with well-developed pads and claws; the third and tourth are subequal and longer than the second and fifth: the seeond also is longer than the fifth, but not quite to the same extent as in Chinchilla and Cologenys. They are thus
more symmetrically artiodactyl. The plantar pad is wider as compared with its length than in Cologenys, and its three component elements are less woll defined than even in that genus, and mankedly less so than in Chinchilla. As in. Chinohillat, the carpal pad is larger than the plantar pad and closer to it than in Cologenys, but is is not so distinctly divided into two as in thase genern, and, as in Chinchilla, the outer side of the wrist is normally hairy.

The hind foot differs from that of Chinohillea and Celogenys in the complete suppression of the fifth digit and of the corresponding element of the plantar pad. The second digit, moreover, is very markedly shorter than the fourth*, and the latter, too, although long, is shorter: in comparison with the long third digit than in Chinchilla and Cologenys. The claws of these three digits are as powerful relatively as in Celogenys. The plantar pad, as in those genera, is composed of two elements, but they are very indistinctly defined, and the whole pad is three-lobed with emarginate antero-lateral and posterior borders. The metatarsal pad is large and horny, but undivided. A peculiarity of the foot is the encrondment of the hairs of the outer side nearly up to the middle line, overlapping, with those of the opposite side, the area between the plantar and metatarsal pads; and a further difference from Chinchilla is the development of a thick bunch of stiff bristles on the inner side of the third digit. Chinchilla has long hair in this position, but the brush, or comb, is specially developed upon the second digit. The feet of this genus are interesting, because they connect those of the Chinchilline with those of the trpical Caviine section of the group of Rodents. The hind foot is also modified on muoh the same lines as that of Dusyproota, although the fore foot is very different. (Textfig. 14, 0, D.)
The feeb of Cwnia porcellus, the domesticated Guinea-pig, have been figured and described by Mivart and Murie (P.Z.S. 1866, $\mathrm{pp} .383-417$), and by Tullberg. In the artiodactyle fore foot the pollex is suppressed and the four remaining digits are moderately long and subsymmetrically arranged, the third and fourth being subequal and longer than the second and fifth, which are also subequal. The claws project well beyoud the normally shaped digital pads. The plantar pad is well defined and three-lobed, the median lobe being the largest. Behind the plantar pad there is a single carpal pad, separated from it by an aren of maked skin. The hind foot is perissodactyle, with only three toes, whereof the median (the third) is the longest. The claws are longer than in the fore foot. The plantar pad is moderately well defned and two-lobed, the inner lobe being much smaller than the outer. The metatarsal area has no large homy plate representing the pads, which are merely indicated by a single

* It must be remembered that the numerien terms applied to the digits through gut this paper are used in a homological sense, as if the limbs were nommilly pentadatylo.
medtion semiciroular par near the contre of tho area some distance behind the plantal pul. In a wild cuught; example of Cavia aperoa, the feet agree in all essentials with those of O. poneellus; as also do those of Galea.

Text-figure 15.

A. Right tore foot of Kerodon mposiris, from tried skin.

The feet of Kerodon differ from those of Curia in some respects. The number and disposition of the digits is the same, but the claws are much shorter and blunter, especially on the fore foot. The digital pads are larger, compressed, and somewhat pointed at their distal ends. The plantar pads are very large, well-defined, cushion-like thickenings, separated by a shot, strip of wrinkled integument from the carpal and metatarsal pads. The carpal pads are very well developed and two in number, a larger outer and a smaller inner, the two together
approximately equalling the plantar pad in size. On the imner side of the fore foot there is an area covered with short hairs, as in Dtasyprocla and Cologenys. In the hind foot the greater part of the metatarsal area is covered with n large horny shield, like that of Dusyprocta. (Text-fig. 15, A, B.)
In Dolichotis patagonica the fore foot is symmetrically artiodactyle, the second and third digits boing subequal and longer than the fourth and fifth, which are likewise subequal. The pollex is absent. The claws are moderately long but blunt, and the digital pads are very well defined. The plantar pad is a large, thick, irregularly hexagonal cushion set far forwards beneath the digits. Its edges are emarginate opposite the interdigital spaces, and its posterior border is mesially notched. It is exceedingly deep, sud the gait of this gonus is markedly digitigrade. The metacarpal area behind the plantar pad is remarkably long, and there is a single very small carpal pad remote from the plantar pad. The hind foot, as in Cavia, Dusyprocte, and Hydrochocrus, is perissodactyle and furnished with three digits, which resemble those of the fore foot in essential particulars. The plantar pad is relatively as large and high as in the fore foot, but differently shaped; its edges are more evenly convex, and there is a single mectian process in front corresponding to the median or third digit. It is composed of two indistinctly defined elements. This foot, like the fore foot, is mankedly digitigrade, the posterior portion of the plantar pad projecting like a heel. The metatarsal area is very long, and its posterior half is covered with a single horny shield, upon which the animal squats, like Hydrochorrus, Dasyprocta, Kerodon, and others. In both the fore and the hind foot the naked lower side of the digits and of the area behind the plantar pads is overlapped by the hairs of the sides of those parts. (Text-fig. 16.)
Dolichotis salinicola has feet closely resembling those of patagonica, except that, judging from the single example examined, the metacarpal area of the fore foot is shorter and the carpal paid a littile larger and closer to the plantar pad.
If the habits of Dolichotis were unknown, it would not be difficult to infer from the structure of its feet that the animal is adapted for swift running over hard ground. The differences the feet present from those of Cavio may be ascribed to adaptation to that mode of life.
The feet of Hydrocharrus differ in several important respects from those of Cavic. This is particularly the case with the fore foot, which, as in Cavia, has no pollex, but is perissodnctyle, the third digit being the largest and situated in the middle line, with the second and fourth, which are subequal, flanking it laterally; and these three digits are united by narrow webbing up to the digital pads. The latter, however, are scarcely recognisable as such, being represented by a softish thickening of integument blending without line of demarcation with the skin of the digit behind and with the claw in front and forming a Proc. Zool. Soc.-1922, No. XXVII.
kind of heel to the claw, which, although narroweil distally, is broad and hoof-like, and horny below as well as nbove. The phantar pad forms a cushion provided with two flat horny phates. Hence it is derived from two elements, not from three as in Oavit, and it is set fur forwards benenth the three digits, which

Text-figure 16.

A
A. Right himl foot of Dolichotis patagonioc. $\times 3$.
B. Side view of extremity of the same.
O. Right fore foot of the same,
D. Sile view of the same.
thus appear to be very short when viewed from the under side. The fifth digit, on the other hand, arises considerably behind the fourth, approximately on a level with the posterior line of the plantar pad, and the element of the plantar pad corresponding to this digit is a comparatively smanl horny pad entirely separated
from the main mass of the plantar pad, as in the hind foot of Coblotenys, Chinchille, and Lagostonats. Owing to the backward position of the fifth digit and the forward position of the plantar pad, the Capybara walks on hard soil upon that padand upon the second, thind, and fourth digits, the fifth scarcely renching the ground. There is, as in Cavia, a single conical or semicireular.

Text-figure 17.

A. Righlt hind foot of Galea lititoratis.
B. \because fore $\%$ "
C. " hind foot of Hyitrochorrus capybara.
D. "fore "
" "
In'some cxauples of Hyitrocherus, the horny plates on the phantar pats are
carpal pad, which is set well on the outer or ulnar side of the limb above the base of the external border of the fiftil digit. The above between the carpal and plantar pads is covered with wrinkled area between the carpal and planty growing long hairs of the sides of the foot. (Text-fig. 17, D.)

The hind foot difters from that of Cavia in the webbing of the digits and the hoof-like claws, which are like those of the fore foot, except that the webs are wider and, owing to the more backward position of the plantry par with its two homy phates,

Text-figure 18.

In Chenomys the fore feet we fossonial. The fom man digits are shom and thick, and armed with long and strong claws. The digital pads are not well defined from the thickened transverselygrooved skin on the moder side of the digits. Digits 2, 3 , and 4 are not markedly unequal in length, but 5 is considendly shonter. The pollex is abbreviated, but armed with a strong, shap, curved claw. The plantar pat is irregularly three-lobed and not well defined, but the two carpal pads close behind it are well developed and conical, especially the inner, which projects as an exereseence immedintely behind the base of the pollex. (Text-fig, 18, D.)

The hind foot is short and wide, and narows behind to the heel, which like the rest of the lover surface is naked. The four main digits nre subequal in length, but thimer thm on the fore foot, but otherwise similn, except that the claws are relatively ant netunlly smaller, althongh that of the 4 th is elongated and omved. Digits 2,3 , and 4 are set mearly in a stmight line and evenly spaced, but digit 5 is set further back and much more wilely separated from 4 than the later is from 3. Digits 2 and θ are thickened above for the nccommodation of the two supenimposed combs of stiff buistles which overhang the claws. Similar bristles, but thimner and less modified, are fomd on digits 1 and 4 , and in the case of the latter the function of combing the fur is no doubt performed by the long curved claw, the point of which reaches as far as the distal end of the bristle-combs on the 2nd and. 3nd digits. The plantar pad is almost suppressd, being moinly represented by four mall hemispherieal tuboreles, two in front just behind digits 2,3 , and 4 and one at the brse of digits 1 nud 5 respectively. The nen between these tubereles is wrinkled and irregulary papillate; but the area behind them is smooth and mosily corered by a large callous extermal metatursel pad, which terminates anteriorly in a tuberole, and posteriorly falls short of the heel, which, like the imer site of the foot, is covered with thinner skin, the intermal motatarsal pad being represented by a tubercle belind the pollical tuberole of the plantrr pad. (Text-fig. 18, E, T.)
The feet of Thronomys are not like those of any other monera of the group; both fore and hind are perissodactyle. In the fore foot the pollex is minute. The second, third, and fourth digits are short, thick, and ammed with long strong claws, the second and fourth being subequal and shorter than the thind, which lies between them. They are free from webbing. The fifth digit is much smaller than the fourth, but set close belind it a little in front of the level of the pollex. The plantar pad is wide, three-lobed, convex in front. and concave behmel. The carpal pad, which is separated mesially, ab all events, from the plantar pad by a moderately long membranous space, is large and indistinctly divided by a groove and notch in front. (Textfig. 19, O.)

The hind foot has lost all trace of the hallux extermally. Otherwise the digits are similar to those of the fore foot in
number, shape, and disposibion, although longer. The plantar pad is well developer and supplied with three sumoth, suboval

Text-figure 19.

C

A. Right hind foot of Dinomys hranichit, eopied from Beters.
C. "fore foot of thymomys swinderianus, "tron dried skin. $\times_{i \frac{1}{y}}$. isolated, interdigita I arens, the innermost, toleralby large, at the
base of the seond digit, the medinn equalling it in size behind
the space between the third and fourth, and the outer smaller, rounder, and set further back behind the base of the fitth. The metatursal area is mostly covered with a smooth horny plate, with bilobed anterior border separated from the plantar pad by a shortish naked area of skin. (Text-fig. 19, D.)

The fore foot of Ctenodactylaus gundi has only fom tolerably long and slender digits, which are subequal in length, subequally spaced, and widely separable. The pollex is absent. The skin of the lower side of the digits is smooth, the digital pads are well developed, and marked in their posterior half by two transverse grooves. The claws are short, sharp, and curved. The plantar poil is very large, markedly three-lobed, and very coarsely areolate. Immediately behind it there are two large smooth carpal pads in contact in the middle line, or nearly so, ench longer than wide and the two together as wide as the plantar pad. (Text-fig. 18, A.)

The hind foot has digits similar in number and shape to those of the fore foot, except that they are relatively much longer with reference to the plantar pal, which is in a general way like that of the fore foot in shape and sculpturing. The daws are short, sharp, and curved; and the two inner digits, the 2 nd and 3 rd , nre provided with combs of bristles similar to those of Ctenomys, but there are three of them on each digit instead of two. The tips of the remaining digits also have long bristles, but these are mnch thinner than those of digits 2 and 3 . There are two elongated smooth metatarsal pads, separated by a defnite area of transversely winkled skin from the plantar pad. They are in contact throughout their length, and the outer of the two extends hack to the heel. (Text-fig. 18, B, C.)

Genital Organs of the Male.

A peculianity of the penis of the Hystricomorphs is the presence at the tip of the gland, behind and below the orifice, of a wide slit leading into a sac, with laminated or corrugated walls, which can be evaginated and withdrawn again by the action of a pair of tendons. In some genera, ns recorded below, this sac is provided with a pair of horny spikes arising from its hoor, as was recorded long ago in the case of Cawia, Cabogenys, and Dasyprocta. Tullberg's omolusion as to the generic incidence of these spikes does not tally at all with mine. He says they are distinctive of the family Gaviide, which for him included the genera Dasyprocta, Cologenys, Gavia, Dolichotis, and Hyblrochornus. He cloes not, however, appear to have seen the penis of Dolichofis. Hence his generalization with respect to it must have been merely inferential. The spikes were not present in the example of Dolichotis examined by me; they were also absent in two specimens of $H y$ drochorus, althongh, accouding to Tullberg, the penis of this animal resembles that of Oavia in essentials. I have also fount these spikes well flevoloped in genera which fall

Text-figure 20.

A. Tlans penis of Aoanthion lomgicanda, from henenth.
C. The same with the orifice of the gimadular poweh difeterd,
C. The same with the ghtudular ponch evaginated.
D. Ano same aren of them the side.
II. Amalaren viow the same, with ams dinted to show ghome.
σ. The samo of Coend nea of young Hystrie af iece-australis.
H. Posterior view of the same with
I. Lower view of of the same with glans retmeted.
I. Lower view of glans of the stme.
spikes at the bottom. aper
a, auns $a g$, and gland; $g l$, glanduar pouch; gu, gento-ntinury orifice: p_{3} penis.
ontside the limits of the Dasyproctite and Cavidia, namely, in Octodon and Ctenomys, where they are of large size, and in Acanthion and Erethizen, where they are short. I do not know what the explanation of these differences may be. Probably, however, these spikes are only fully developed in mature males; but, simee my examples of Dolichotis and Hydhochoems were fully mature, it also occurs to me as a possibility that they may be broken off during copulation ame reproduced subsequently. Also I do nob know what their function may be, umless it is to penetmate the onifices of the Pallopian tubes, either to make a passage for the semen or, if shed, to block the orifices after the introduction of the semen. However that may le, one thing is clear, namely, that the presence of these spikes in such widely sepanted genera as -4 canthion, Dreihizon, and Octodon does away with their importance as evidence of kinship between such genera as Dusypmocta, Coeloyenys, and Cavia.

One other point to note is that the testes never pass into a serotum in the Hystricomorpha.

The penis of İystriat and Acanthion is retrospective, when at rest, being bent bnckwarls on itself so that the prepuce forms a swelling a littlo beneath the anns. When erected the penis protrudes a long way from the prepuce and projects formards. It is furnished with an apical baculum. The orifice, when dilated, revenc two apertures, an upper and smalier one immediately beneath the tip of the haculum and a lower one forming a trasverse slit which leads into a tolerably deep glandular pouch, with puckered walls and a pair of smonl spikes at the bottom. This ponch can be evnginated, and in this condition it projects well beyont the nommal tip of the penis. It can be withdrawn by the action of a couple of tendons mumning backwayds along the lower half of the penis benenth the urethral canal. The epithelium of this glandular pouch and of the penis itself is beset with minute spicules, but the epithelium at the bottom of the pouch round the tooth-like spikes is smooth. (Text-fig. 20, A-T.)

According to Parsons (P. Z. S. 1894, pp. 251-296) the male genitalia of Atherura resemble those of Hystria.

In the male of Coondu nove-hisponice the penis opens at the lower extremity of the naked area of skin common to it and the anus, as describer below (p .417). When at rest the penis is retrospective and completely withdraw within a short naked prepuce. The structure of the penis is almost exactly the same as in Acanthion longicanda. The orifices of the urethra and of the glandular sac are normally concealed by the epithelium at the tip of the glans pemis, but when this is spread the onfice of the urethra is exposed just benenth the tip of the baculum, with that of the glandular pouch behiud it. This pouch has longitudinally corrugated walls and a pair of small spikes ati the bottom. (Text-fig. 20, G-K.)

In Myocastor the penis opens retrospectively a little distance below and in front of the anus and is normally entinely
withdrawn, the prepuce being a mere low rim of naked skin. The apex of the penis is attenuated and pointed, with the genitourinary orifice just behind the tip. The orifice of the ghandular pouch is a slit with puckered lips, and the walls of the pouch are longitudinally corvugated, but there is no trace of spikes at

Text-figure 21.

E

H
A. Anal and genital area of Capronys pilorides.
B. Lateral view of glans penis, projecting hackwards, of the same.
C. Lower wiew of tip of glans penis, with glandular pouch cut open.
D. Tip of clans penis of Jryocastor coypus, in same position as in R.
B. Lower view of tip of glaus panis of the same, with pouch ent open.
F. Amul orifice of the sume dilated to show glaud beneath.
G. The same from belind with glandular pouch protruded.
H. The same from the side.
a, auns; ag, aun ghand; $y p$, glandular pouch; $g u$, genito-urinary orifice.
the bottom of it. Round the region of the pouch the penis is expanded, becoming gradually attenuated to the apex distally and narrowed proximally, the expanded portion being eovered with minute recurved spicules. (Text-fig. 21, D, E.)
In Cupronys the prepree is long and pendnlous and somo little distance from the anus. The penis itself is finely spicular,
characters or som furnished with a distinct lappet truncrted at the apex, and furnished with a distinct lappet beneath the genito-urinary orifice, between the apex of the glans is projects as in Octodon and Citenom the inferior aspect, but not at truncater, a little attenuated from the infar pouch is moderately all from the lateral view. The glanduar pore extending from deep, with laminate walls, two ort-figure 22.

C

A
3
F

B

E
ons of Octodon degus, with glandular pouch cut open Thp of the glans penis of Octodone degus, with g. In the normal position and the spikes turned to show
one prong lies behind the other.
B. Side viev of anal and genital region of showing median glamd.
C. Vertical section of anus of the same, showing medrs meadocints.
D. Side view of anal and gental region of the same.
E. Auns and penis, with gians protrude
T. Side view of glans penis of the same. .

Lettering as in text-fig. 24.
the tip of the glans being thick and ridge-like. There (Tertthe tip of horny spikes seen in Octodon and Ctenomys. (Noxt fig. 21, A-C.)

The prepuce of Octodon projects backwards a liftle way below he anus. The penis is cylindrical with a conical apex, Between mooth, the rest being closely covered with spicules. Bebween the labia of the orifice there is a smathe pouch has corrugated the labia of the orifice there is a small she pouch has comgated
underlying the genito-umary orifice. The
walls aud is armel at the boitom with two long spikes, but each of these instead of heing simple is divided into a pair of subequal branches rising from a common base. There are thas four spikes, a peculiarity not recorded elsewhere in the Hystricomorpha. (Text-fig. 22, A, B.)

The prepuce of Clenomys is closer to the anus than in Octodon and the penis itself is thimncr, and when viewed from behind or below is seen to be tolerably evenly attenmated to the narowed apex, but from the side its distal end is a little expmaled behind the pointed tip. It is beset with spicules, man the ponch is corrugated and armed with atsingle pain of long spikes, as in Dasyprocta. (Text-fig. 22, D-T:)

In Dasyprocte the glans of the penis, fogured by Tulluerg, is subeylindrical, with a bluntly romded apex, and is beset, especially heneath, with minute recurvel shap papille; hut on ench side of it there is a long lastrous horny blate-like lanina, athached by one edge to the epithelium of the glans, the other cige being free and finely serrate. This plate is capable of eroetion, and in this stade the free edge stands away from the ghans like a ridge. Presumably its function is to fix temporatily the penis in the vagina during copulation. (Text-fig. 23, T.)

The penis of Cologenys, described by Owen ani others, tolerably closely resembles that of Dersprocta, oxcept that, the horny phate is representel by a short, hard, erectile phate, the free edge of which is amed with about five compantively large, widely-spacen, thom-like teeth. Tn hoth genem there is a pair of long spikes in the glantular pouch. (Iext-fig. 23, T, K.)

In Cania porcellus and Geleca bittoralis the prepuce is at the lower extremity of the naked subcandal tract. Tho glans penis is suboylindrical and apically rounder. On each sido of it towards the apex there is a long navow flap of opithelim, the elge of which is sermlate with soft papilla, and above this there are a few shorter smaller flaps. The longer larger flap, no donht, represents the homy lustrous plate on the penis of Dasyprocta, but it is quite soft and pliable, not rigid mod homy as in that yenus. The glandular pouch is deep and provided with a pair of long spikes lying between two strongly developet ridges on the upper or anterior wall of the ponch. (Text-fig. 23, F-H, M.)

The penis of Dolichotis projects backwards from the lower portion of the naked area of skin extending up to the root of the tail. The prepuce is moderately long, buti naked. The glans penis is slightly narrowed apically, its surface is reticulated and pitted, and the genito-minary orifice, just benenth the tip of the bacultm, is large. The deep, proximally narrowed, glandular pouch is lined with rows of elongater papillze representing the laminate ridges of other genera, but there is a pair of low thickened ridges, corresponding to the large ridges of Cavicu and Galea, passing down the anterior or upper wall. No spikes are present and no trace of the erectile papillate latemal ridge seen in Cavia and Dasyprocta was detected. (Text-fig. 23, A.-D.)

A. Anal region of Dolichotis patagonia
B. Section of mal gland of the same.
C. Side view of and region of the side.
D. Glans penis of the same from the side.
D. Tip of glans of the same, with gla
F. And region of Galea littoratis. G. The same of Cavia porcent area dilated.
H. The same with glandular area dilated.
I. Site view of gluns penis of Celogents paca,
K. Tip of glans penis of tho same, with glandula
L. Side view of glans penis of Dasyproota sp. gladular ponch eut epen.

In Hydrochurus the tip of the penis when contracted is retrospective and close below the anus, in contact with the perineal integument between the orifices of the pouches of the anal glands. When distended the base of the penis is seen to arise just below

Text-figure 24.

A. Anal and genial region of Hydroohemes capybara, with penis retracted.
B. The same showing the base of the penis extended and the orifices of the al pouches partially opened.
C. The same with penis omitted and the rna pouches distended.
D. Secreting area at the bottom of neal pooh.
E. Transverse section through one of the pores of the ghandiar area
T. Lower view of glans penis.
G. The same with glandular pouch cent open,
a, tums; $a g$, anal gland; $g u$, genito-winary orifice; $g p$, glandular pouch ; p_{2} penis
those orifices in a position similar to that of the vulva (p, 418). The penis is large, smooth, and cylindrien, with a narrowed apex, beneath which lis the large genito-mrinary orifice in the form of a longitudinal slit when undiluted. Behind this is the wide,
transverse slit-like aperture of the glandular pouch, which is masers show, narrowed at the bottom with weakly ridged or

Text-figure 25.

A, Posterior region of body of Chinchilla lamenting forwards.
B. Lateral view of glans penis of the goth glandular pouch cut open.
C. Tip of glans penis of the same, withe
D. The same with glandular pond ane. triblodactyhts.

Ir. Posterior region of bod
14. Posterior area of the same.

1. Ana slender glans.
slender glans.
H. Penis of the same, dissected the
sheath.
a, anus; $a g$, al gland; $g p$, glandular pout
orifice; p, penis.
wrinkled lateral and inferior walls, but without the spikes wrinkled lateral and inferior wall, but without the spike fig. $24, \mathrm{~A}, \mathrm{G}, \mathrm{F}$.

In Chinchilla the penis lies some distance in front of and below the anus on the pubic nea betweon the himd legs, and is represented exteranlly by a long hairy prepuce projecting townwards and slightly backwads. When extended from the prepuce it is seen to bo stibeylindrionl, with a slightly expmoled, trumated extremity and with the epithelimen heset with minntos spieulos. The genito-minary orifiee is terminal, and immediately benenth it is the larger orifice of the ghatular ponch, which has longitwhimlly hminate walls but no spikes at the holtom. Thas, aparb from its elongaterl prepuce, projecting freely from the pulvic integument, the penis of chinchilla struchumly resembles that of typical Hystricomorph Rodents. (Text-fig. 25, A-D.)
The penis of Iafostonats, however, differs in one very improtant point, and is unique so far as my observations go. As in Ohinchille, it is represented externally by a long, pentulons, hairy prepace, which, however, is abolominal in pasition, being set; moch further forwads than in Chinobilla. Bab the pronis itself, sheathed in the prepuce, is an exceotingly long and slenter rof, apically attenunted so as to be almost filiform at the tip amb mueh thinner than the lumen of the proputial shemth, Thes pouch at the tip of the penis appeas to have aborted. (Textfonch at the
Th. 2 , E-H. . . as "diimn und stark zugespitz, fast hazetienfiomig."

The following tabolation, seting forth the priucipal variations in the strocture of the penis, is hased entively upon my own observations. In many respects it would differ materially from a table based upon the recorded olservations of Thulberg:--
a. Ghas of ponis excedingly long and slender, without, ghombur ponch ; olongated prepuce situnted far forwads on the
a^{\prime}. Glaus of yentis comparatively short muid stout, with rimbular ponch; prepuce loug or short, but polvic in position nut Gompratively near the turs.
3. Glandular poneh with a pair of spikes at the bottom.
a. Spikes very siont
a. Spikes very short

Spikes very long.
d^{\prime}. Spikes limumous
Simple, un
Aeanthion, Trobhizni.
..... Octoilm.
e. Spiniforn phadivided.

Sows; a sufte on ponis not artanged in definita rows; a soft pointed mpet below urimogenital
e^{\prime}. At lenst one long row of spinifom papilio on nim orectile ridge on side of penis; no lappet below oriftee of penis.
f. The oreetlo ridge with its papillo guite soft amh
f^{\prime}. The ereetile ridge amd its papilize forming in hard
horny plate.
a. Homy plite long with sermlate free elleg on its free edge ...
b^{\prime}. No spikes at bettrm of poneh.
h. Prepuce, when penis is contracted, withdrum into sute, involing the sums Cetoyenys.

```
l'.}\mathrm{ . Prepuce not withdrawn into common integumental sac
    with anus, but remote from that orifice.
    j. A small pointed soft lappet in the middle line below the
        urimo-genital orifice and projecting between its labin,
        as in Oetodon mad Ctemomys
\mp@subsup{j}{}{*}. No lappet below tho wimogenitalocifice.
        Walls of glandular pouch spigular, not distinctly
        lummated, with meroly two low romuled ridges
        kt. Walls of glandular pouch with numerous compressed
        ridge-like lamine.
        l. Ajue of glans broad and truucated
                .................
    Doliehotis.
    Ohindhilla.
        7, Ayex of claus attwured
```

 the Fremale.
 The genital apparatus in the female Hystrix and Acconthion appears externally as a large trinugular prominence, marked on its posterior surface by a longitudinal slit. Separation of the labia of the slit reveals the orifice of the valva above, and just beneath the latter the orifice of the urethral canal. Some distance beneath the urethra and near the apex of the integumental prominence is a trilobed clitoris, with a shallow glandular depression above or in front of its apex. The lateral lobes can be folded over so as to meet each other in the middle line and form a partial tube for the passage of the urine. In the unpaired female only one orifice is superficially detectable above the clitoris. The condition is very similar in Athervora, except that the clitoris has a simple conical apex with the orifice of the urethra near its tip, and therefore farther from the vulva than in $H_{y s t r i x}$. (Text-fig. 26, A. D, I.)

In Erethizon and Coendu the aual and genital area of the female is bordered on each side by a ridge of integument running from the root of the tail to the clitoris. The vulva is a tolerably . large orifice situated a little below the anus, and the urethra is a smaller orifice beneath the vulva and above the tip of the clitoris, which has a glandular pouch just below and in front of it, and the clitoris is protected by a short projection of hairy intecument corresponding to the prepuce of the male. The condition is thus very much the same as that of Hystrix and Atherura. In Coondut the integument round the urino-genital orifices is naked, whereas in Evethizon there is a considerable quantity of hair round the orifices. (Text-fig. 26, F, G.)
In Myocastor the vulva is an arched transverse orifice close beneath the anus in the middle of the naked area above described. A little way beneath it is the short, conical, slightly hairy clitoris, which is perforated at the tip by the orifice of the urethra. (Text-fig. 27, A, B.)
In Capromys the vulva is a little way beneath the anus, and below it the prepuce of the clitoris, which is long in the adult. projects downwards and backwards. It has a few hairs at the tip, which bears a large bilabiate orifice. (Text-fig. 27, O, D.)

In Octodon the vulva is a large transverse orifice close beneath Proc. Zoon. Soc.-1922, No. XXVIII.
the anas, and the prepuce is a short conical projection, perfornted at the tip, beneath it. (Text-fig. 27, E.)

Text-figure 26.

4. Amal and genital area of Acanthion longieauda, o (mpnired), with the orifues of the uretlma and vagina, doted in, covered with integument.
3. Section of nual gland of the same.
C. Orifice of the amal gland of the same, distended.

1. Genital aren of Hystriv af icem-australis, if ad,
F. Anal and genital area of Atherura africana, ㅇ id.
. . The sme of Coendw prolensilis, 9 ad.
G. The same of Drethizon dorsatum.

$$
a, \text { anus ; } a g \text {, mal gland; } c \text {, clitoris; } p, \text { prepuce ; } u \text {, urethra; } v, \text { vulyn. }
$$

The vulva of Cologenys and Dasyprocta is a large wide orifice a little beneath the anus. From it a wide inferionly narrowing
groove extends downwards to the apex of the short, but projecting, hairy prepuce, just above the tip of which posteriorly may be seen the urinary orifice. (Text-fig. 28, D.)

In a female Dolichotis there is a single small genito-urinary orifice in the lower half of the naked subeaudal area, and there is no extemmal sign of clitoris or projecting preputial integument. This is the normal condition presented by immature or unpaired female Hystricomorphs. Possibly the vulva is closed by membrane out of the breeding season. In the present instance its orifice lay, no doubt, beneath the skin between the mus above and the genito-urinary aperture mentioned above. (Textfig. 28, O.)

In Cevia porcellats and aperec the valva in near the centre of the maked glandular anal area and separated from the anus by the lepression of the glandula sac. The very short prepuce of the chitoris is situtted some distance below the vulva. Before paining takes place, or out of the breeding season, the rulva is covered with thin nembrane, which easily ruptures when shretched. (Text-fig. 28, B.)

In the female IIydrochoerts, as stated below (p. 419), the rulva is sibuated thort way beneath the anus, near the lower border of the mo-genital area. It is a large, transversely extended, dilatable orifice, containing and concealing a large, soft, fleshy, linguiform clitoris on its ventral or anterior wall, and the onfice of the urethm is some little distance nony from the tip of this clitonis. (Text-fig. 28, A.)
In Clenollaciylus the vulva is situated a little below the anus, and the prepuce is elongated and perforated at the top. (Textfig. 28, E.) (See also pp. 419-420.)
a. Orifices of genita and urinary organs visible externally as separate apertares; tho prepuce aud clitoris not involved in a
sphincter embracing also tho amos.
within a tubular prepuce.
c. Orifice close beneath the vilva, remote from the tip of the
prepuee …................................... Hystrix, Brethizon, Coentat
a^{\prime}. Orifice not close beneath vilva, but nearer to the tip of
the prepuce... Athertua.
b^{\prime}. Urinary orifee at apex of closed Mapluee. Ostodon, Capronys, Dasypweta,
a^{\prime}. Orifices of genital and wrinary orghis involved in a common
integumental fold, so that externally there is a single large
urino-genital aperture, and this is involved in a sphincter
ombracing the anus
Hydrochertas.
According to I'ullberg, Fhayomys by this table falls under b°.

The Anus.

The anus in Mystrix and Alherura opens in the middle of a naked area, survounded laterally and above by hairs and spines, and inferiorly reaching to the genital orifice. There is a pair of large, solid, amal glands opening by a slit-like orifice just within the anal aperture, but below the termination of the rectum. The 28^{*}
orifice, which has puckered lips, lends into a short marrow duct into which the secretion of the gland is poured. These glands (Text-figs. $20, \mathbf{E}, \mathrm{~F}$. 26 , developed in the male and the female. (Text-figs. 20, E, T; 26, A-C, E.)
The anns in the female of Coendu and Frethizon opens nens the centre of an arem, common to it and the genito-urinary

Text-figure 27.

A. Anal mid genital aren of Myocastor coypus, q ad.
13. The same from the side.
C. Amal and genital area of Capromys pilorides, of ad.
D. The same from the side.
13. Aunl and genital aven of Octodon degus, 9 ad.

$$
a \text {, mus; } p \text {, prepuce: } u \text {, urethra; } n \text {, volva. }
$$

orifices and defined on each side by a ridge of integument. The area above the anus is naked in Coendu, but latemally hairy in hairs just above the orifice there is in addition a half-circle of for the anal glands ; but fide. I did not examine fresh specimens for the anal glands; but failed to distinguish them, if present,
in spirit-preserved material. In a male of Coondr nowe-hispanice, however, in which the anus opens near the centre of a very large naked area, without integumental vidges, and with the penis at its lower extremity, there appeared to be a median longitudinal mass of glandular tissuo, without definite orifice showing through the skin of the longish perineal area between the anus and the penis. Possibly this represents the coalesced and partially aborted paired giands of $H y$ strix. (Text-figs. 20; C, H; 26, G. F.)
In Ay jocastor the anus, with a few hairs round the orifice, forms a projection in the centre of a naked area a little distance below the root of the tail. In the female this naked area is continued round the genito-urinary region; but in the male the long perineal area is hairy. The anal glands in both sexes form a solid median mass, opening by four pairs of small papillate orifices into a sac which can be extruded by evagination just beneath the anus. (Text-figs. 21, F-H; 27, A, B.)

In Capromys the anas is on an eminence a little way below the bnse of the tail in the upper half of a naked area of skin which extends downwards to the prepuce of the penis or clitoris. When it is dilated the single orifice of the anal gland may be seen immeriately beneath it within the sphincter: This orifice leads into a small pocket filled with the secretion of the gland which lies mainly behind the pocket. The gland seems to resemble in all respects that of Octodon, and differs from that of Myocastor in being much smaller, apparently umprovided with papille and also incipable of evagination. (Text-ligs. 21, A; 27, O, D.)
In Octodon the mus also opens on a prominence a little way below the base of the tail and about the same distance above the prepuce in both sexes, the perineal region and the area round the prepuce being naked. The anal gland is a median mass with a small sac opening just beneath the anus by a median orifice, but concealed from view unless the latter is distended. (Textfigs. 22, B, C; 27, E.)
In Ctenomys the anus is more dilated than in Octodon, and its walls inside are symmetrically wrinkled; but in the single male example examined I was unable to satisfy myself as to the presence of a gland such as is seen in Octolon. According to Tullberg, however, a ghand similar in position and structure to that of Octodon is found in Ctenomys, Echinys, Nelomys, Cannabaleomys, and Abrocoma. (Text-fig. 22, E, D.)

In Lafostomus the anus lies just beneath a hairy excrescence some distance below the root of the tail. Just within the sphincter may be seen the apertures of the anal glands opening just below the orifice. From each side of the subcircular anus a ridge of skin runs downwards, forwards, and obliquely inwards to meet its fellow of the opposite side in a point, the two forming the lateral margins of an acutely angled glandular area covered with short hair. (Text-fig. 25, ‥ F.)
In Chinahilla the anus also forms marked projection some

Histance below the tail, but it is not overlapped by a projecting
flap of interument flap of integument. The anal grands were not detecter in the

Text-figure 28.

A. Anal region of Hydrocherrus capybara, 9 , with the arifieses of tho anus, amal glauds, and genital organs pulled apart.
B. The same of Cavia porcellus, of.
C. The sane of Dolichatis patagonica, 多(? immature nad unpared)
D. The same of Cologenys paca, of nd.
E. The same of Otenodaotylus yundi, if mul.
a, mus; $a g$, anal gland; g, common genits-urinary oritice ; p, propuce with urinary orifice: t, tail; v, vilua.
single spirit-preserved example examined; but, according to Tullberg, the gland resembles that of Octodon. but, fecording to T
(Hext-fig. $25, A$. .)

In Cologenys the anus forms a large prominence near the middle of a naked area of skin which extends in front of the tail above and of the penis or clitoris below. The anal glands are represented externally by a pair of small ponches opening one on each side of the termination of the rectum within the sphincter of the cunns. (Text-fig. 28, D.)
Dasyprocta seems to resemble Cologenys in having paired lateral anal glands.

The anus in both sexes of Dolichotis is in the upper half of an area of naked skin which extends inferiorly beneath the genitourinary organs, and is separated from the tail above by a fringe of hairs. When the anus is opened the orifices of the anal glands aqpear as a pair of oblique slits set one on ench side above the termination of the rectum. The orifice leads into a shallow hair-lined pouch. (l'ext-figs. 23, A, B; 28, C.)
In Cavia porcellus the anus is situated near the summit of a large naked area which extends downwards to the prepnce in both sexes; but it is normally concealed from view by being folded into a depression common to it and the anal glands. This depression appenrs superGcially as a median groove. When this is cilated it resolves itself in the female into a pair of pits separated by a low partition, and situated between the anus and the vulva. In the male the pits are much larger and longer nud when distended to the fullest extent appear as a single capacions ponch owing to the depression of the partition between them. When partially closed the floor of the ponch rises to form a low partition between the pouches. A female C. aperea resembles C. porcellus in the features mentioned above. But a male example of Galea littmalis differs very considerably from the male of O. poreellus. The anus is at the summit of a large naked or nenty noked area extending down to the penis; but this aren, overlying the testes, shows no trace of glandular depression, the anus being exposed, as in Dasyprocta and other genera. I failed to find the anal glands in a spirit-preserved specimen. Korodon apparently resembles Cavia in the structure of the anal region, but I have seen no fresh material. (Textfigs. $23, \mathrm{~F}-\mathrm{H} ; 28, \mathrm{~B}$.)

In both sexes of Hydrochocrus the anus and external genitalia are packed closely together, as if contained by a common sphincter, upon a nearly naked prominence, some distance beneath the tail. Between the anus and the penis or vulva there is a short perineal area, hairier in the male than in the female, and on each side of this lies a long vertical slit which leads into a large pouch, lined with hair, which projects from the orifice, and filled with secretion. At the bottom of each of these pouches there is a strip of naked skin with a row of four or five little pits, and beneath this strip the dermis is thickened and glandular. (Text-figs. 24, A, $\mathbb{E} ; 28$, A.)
In Ctenodactylus the anus opens just beneath the root of the short, tapering, uniformly hairy tail, at the summit of an
elongated aren of naked skin, from the lower half of which the clitoris projects: The clitoris is a closed tube perforated by the urethra. When cut open in an ummated female the orifice of the vagina may be seen to lie a little below the anus, and a little lower down is the urinary orifice. (Text-fig. 28, E.)
The following table shows the variation in position of the apertures of the anal glands, and other points comnected with them, in the genera in which I have detected them:-
a. Apertures or aporture of anal grands concened within the
splinoter of the anus.
b. A pair of moderately widely separated apertures akove the am
b. Apertares bot, above the anas.

Dolichotis,
c. A perture on eath sido or the
σ^{\prime}. Aperture or apertures beneath the anus
d. Two aperetres, one on eneh sido of midul ling d^{\prime}. A singlo medim aperture.
, Amar ghad smal, mequble of evagimation Oetodon, Capmomys. four pairs of papille

- Aportures of ame grands forming a pair of elongated slits outside
the sphincter of the anos and extending down the porinen aren.
Cavia, Kerodon, THylrooherrus.
The interesting point to note in connection with this table is the difference between Dolichotis and Cawia $+I_{i / f}$ drocharuts with respect to the glands.
According to 'Tullberg's descriptions, Thy ${ }^{\text {monnys falls by this }}$ table with Cavia and Iydrochcerus under a' and Ctenoductylts with Dasyproota and Cotogenys under c.

The Tail.
The tail supplies useful systematic chanacters. If, as is probable, a long cylindrical tapering tail covered with scales and short hairs is the primitive type, that, type is prevalent in the Octodontida, occurring in many of the mouse-like genera. Within the family, however, variations in the longth of the tail, in adaptation to habit, and in growth of the hais are numerons. In Octodon, for example, although the organ is longish, the hairs in the distal portion are developed to form an elongated tuft. In Ctenomys it is shorter, but thioker and somewhat compressed with a very distinct crest of short hairs extending along the posterior two-thirds of the upper edge,

In Thrynomys the tail is of the primitive type, but compantively short, and the same applies to Capromys, but in this scansorial genus the hairs on the underside are stiffened to aid in chmbing, a variation foreshadowing that which is seen in a much more manked degree in Coendu and Chatomys deseribed below. In one species (O. prehensilis) the tip of the organ is said to be prehensile, but I am not aware whether the tip is culed downwards over a branch or upwards as in the socalled arboreal Porcupines. In Myocastor the tail is moderately long, cylindrical, and rather stout, but shows no modifications
subservient to aquatic life. It is used mainly as a rudder, hardiy as a propeller, in swimming.
In the Eystricide the tail is always provided with a soundingorgan formed of modified hairs. In the most primitive type Mrichys, in which the armature of the body-skin consists of a Triohy, of very coarse sharp bristles, nearly uniform in length, the coating of very coasindrical, and covered, except at the root and tip, with scales mad short hairs; and the somding-organ or rattle at the tip consists of a brush of long flattened hairs or spines somewhat resombling dried blades of grass. In Atherupa the tril, although still scaly and hairy, is much shorter, and each of the constituent parts of the terminal brush consists of a filiform axis expanding along its course into a series of compressed but hollow fusiform swellings, from two to seven or eight in number, according to the length of the blade. These swellings vary in size but the one at the end is always much larger than the next of the series.

In Thecurus, Acanthion, and Hystrix, in which the spinemomature reaches its maximum of development, the tail is quite short and thick and withont scales and hairs; but twenty or more of its terminal quills are expanded into hollow flattened lamina or cylinders, for the most part open at the end. This is the most highly specialised rattle in the group.
Ther America (Erethizontidæ)
The so-chled arply defined groups by their tails. In the North fall into two sharply definen this organ is quite short and armed Americun geuus throughout winging it to right and left, the animal uses it as a weapon of defonce. In the tropical American genern Coendu and Chetomys derence. is long, subeylindrical, tapering, and covered with spines the tail is long: subcyndh cales, although the extremity, which is and marsun prehenile, is noled above. The underside at the base is thickly covered with close-set, stiff, sharp bristles, the function of which, as Waterhouse rightly supposed, is to help in the ascent of vertical or steeply sloping branches, and to give. support to the body when the animal is at rest. They are funcsupport to the bable to the coudal scales of the Anomaluridx.
tionally comparable to the caudars to the Chinchillide, namely
In the three genera assigned to the the tail is also characChinchilla, Lagidium, and Lagostonus, the with hairs, which are teristic. It is moderately long, covered with unders, but on comparatively short and soft all angg the unding, as it were, the uppe
In the Dasyproctide and Ceriide the tail is rednced. In In the Dasyproctidn and few inches long, but quite slender, Myoprocta it is at mosly about an inch or less. In Caelogenys it is about the same. In Doliehotis it is also quite short, but constricted at the base and oval in outline from above or below. In IIydrocherus it is at most a short conical excrescence as it is in Hybrochourus it is Kerodon, and is sometimes absent,

Notes on the Fomilies and Subfamilies.

Fumily Hystmeridn.

Since Lyon (Proc. U.S. Nat. Mus. xxxii. p. 576, 1907) has comparatively recently classified the Hystricidte into the two subfamilies Atherurine (Atherurus, Iriehys) and Hystricine (Thecurus, Aconthion, Mystrix), mainly by the structure of the tail, I need not refer to these animals further beyond expressing my complete concurrence with his opinion as to the systematie value of the characters he uses as a basis for the separation of the two subfamilies.

Family Eremimoniman.

By their extomal chamcters the three genera (Chatomys, Coendhe, Itrethizon) composing this well-maked family full into two groups, the first represented by Erethizon, the second by Coendu and Chetomys. By craninl and dental characters, however, Mr. Thomas separated Chatomys from the others as representing a special subfamily Ohetomyine, and assigued Coendu and Lhethizon to the Erethizontine. Atopting the separation of Chetonys from Coendu, I think the latter should be similarly separated from Erethizon and the frmily divided into three subfamilies, which may be diagnosed as follows *:-
a. Tail long, cylindical, comprotively slentor, med prohensilo; hind teet with a large movable lobo on the inmer site mas mind feet with a large movablo fobo on the moner sile mast nostrils widely separated; mar specialised, with durge antityans.
a^{\prime}. Body covered with flexible spinc-like wavod bristles; skull with small orbit circumseribed by frontal and jugal postorbital processes; jugal neh very deep; palate, tonth-rows, and symphysis of mantible lons
b' Body umed with comparatively stont unwnved spines; obit large, no postorbital processes; jugal areh nod teep; shorter tonthrows, mad mandibuhar symphysis muen
Thil short, thick, not prohonsile; hind foot with at most a small inner lobe, lat with wall-doveloped hallux ; fore feet without
expansion on inner side; nostrils with marow soptum ; enr

At present each of these subfamilies contains a single genus but it seems to me to be probable that the first modern systematist who has adequate material of Coondu, and the time to devote to the study, will find characters justifying the separation of that genus into two or more generu, There appear to me to be no good reasons for thinking the Erethizontide especially related to the Hystricide-a conclusion to which other suthors have come. The Erethizontide are, I think, probably very

* The external characters, aphet from the ear, here made use of were long ago pointed ont by Watenhuse, It is, howover, merely a guess on my part thit th ostrils and ears of Chetomys ave like those of Coendu.
specialised descendants of forms akin, or belonging, to the Octodontide, whereas the Hystricide do not seem to be specially related to any of the South-American groups. In thati case the resemblances between the Porcupines of the Old and New Worlds which have led to their affiliation must be due to convergence or to the common inheritance of ancestral characters. In their spine-armature, for instance, it may be noted that in the two genera which appear to me to be the most primitive of the two families respectively-namely, Ohctomys and Trichys-the spines are little more than very stiff bristles. It must be rememberec however, that there is one character, not previously recorded apparently, in which the two families are alike and aner fom other Hystricomorphs-the prepuce in the female does not form closed tube, the orifice of the urethra being exposed beneath the genital aperture.

Families Ogronontide, Perromydde, and Crenodactylides.
I have seen too few examples of the Octodontide to offer any opinion as to its subdivision into subfamilies. Petromys, too, have not seen, and I do not know whether it should be referred to the Octodontidæ, where it was origivally placed, or, in accordance with Tullberg's views, made the type of a special family. Probably the latter is the better way of regarding it for the present, in view of the differences of opinion that prevail concerning its status. The structure of the enr alone seems to me to justify its separation from Clenodactylus, with which Thomas associated it. The claims of Ctenoductylus, indeed, to a place in the Eystricomorphs seem to me to be more than questionable.

Fumilies Capromyda and Myocastomda, nov.
The family-name Capromyida may be restricted to Capromys and pelated geners, like Procapromys, Geocapromys, and, I presume, Plagiodontia.

Myooastor, formely associated with these genera, may, I think, be regarded as yepresenting a family by itself, Myoastoridæ. This course, however, merely amounts to giving greater systematic value to the characters used by Tullberg when he established the subfamily Myopotamini.

Fumily Titryonyide, nom. nov.
 ($=$ Aulacodidæ of Tullberg).

The genus Thry/nomys, formerly classified with the Octodoutide, and later with the Capromyidse, was separated as the represenative of a special family Aulacodide by Tulberg, who employed ts old name Aubacodus. Agreeing with this decision, I adopt Thrynomyide as the family-title.

Judging from dried skins, the genus is distinguished by the cleavage of the upper lip by the rhinarium, the rivular supra-tragus-a character repented in the Cavines,-and the structme of the feet. The aftinities of the family appear to me to be quite doubtful.

Pamily Dinonyide.

I can give no opiniou about Dinomys beyond expressing my conviction that it is not in any way nearly related, as Peters thought, to the Dasyproctide, Chinchillida, or Caviide in the sense in which he understood those terms. It must remain as the sole representative of a well-marked family.

Tomilies Dasyphocman and Cologenfida, nov,
So far as I am aware, no suggestion has been made to break no the family Dasyproctide as understood by endier authons. The tendency rather has been to merge it with the Cavidee, as was done by Winge, Tullberg, and Weber. Three genera are now admittel -Dasyprocta, Myoprocta, nul Coloyonys. The first two are closely related; but itiappears to me that the value of the well-known distinctive features of Celogenys have been greatly undermated. I propose to erect it to the rank of a family, which may be distinguished from the Dasyproctido (s.s.) as follows :-
a. Autemolar portion of palate brond and naury flat; prowhital forn-
 compmatively houg and norrow; occipital owst imregulnily semielliptical. No chreb-pouches. Feet long amd slewder ; fire foot
 indicaled merely by a small cireular seale at the base of the fifth digit and remote from the rest of tho pal. Hime foot with only three toes add a smal phantar pad Dasmpoctions.
a^{\prime}. Antemolar portion of pulate strongly compressed, foming a melian rilge deeply grooved mad bicarmate almast to the meisars; the whole gygomatic arch profomady modified mainly hy the outgrowth from its maxilhary and malur portion of a great hong limina forning a eleck-phite exteming rownureds to overling and the arel is deeply hollowed lenentla and is contimed formards as far as the premasillary suture, the roof of the hollow forming the floor of the preorbital formen which is converted into a long deep chamel in from of the onit, and the orlit itself is reduced in dinensions by the upgrowth of its inferion cedere and leoks ohliquely ontwards and apwards; masals much shorter than frontals, postcircular, Large ohonk-pouches present. Peef short and robust, fore foot wearly artiodactyle, with forr main digits evenly smeet, the whantar pad large with onter lobe well developel and confluent with median ; hind foot with five digits Comroammrman
So far as the feet are concerned, Cologenys is a much mone primitive type than Dusyprocta, and might le regarded as
ancestral to the latter genus; but with respect to the modifications of the skull Calogenys is extmordinarily specialised and absolutely isolated, nothing appronching an intermediate type between it and Dasyprocte being known.

Family Chinchillides.

In all the chassifications quoted above this family contains the three genera Chinchilla, Lagidium, nud Lagostonus. Of these Chinchilla and Lagostomus are the only ones I have been able to examine in a fresh state, Lagidium being known to me solely from a dried skin, a skull, and the descriptions of other authors, which possibly from want of material do not contain the paints I waut. But, judging from the cranium and the teeth and more external characters revealed by the is to Lagostomus-that is to nearly related to Chinolutla thed into two groups or subfamilies, say, the fumily may be divided moo the ther Chinchilla and one containing Lagostomus alone, the other chunchulat as Lagidium. In using the external genitalia of the mamiles, perhops the most important difine will be found to agree with I assume provisiontlly that Lagidiun mablated as follows :-
Chinchilla. The characters may be tabans stout and mede-
a. Penis numal in position and structure, glans stout mand Fore feet rately lang, with welt-reviloced carpal pals, and conpressal wigital pals; himl toot with ifthe digit rethined, with a large pud on the sole of tha toot ath on the fecond digit. Rook pressel ; principht digrtas sated oxtermaly so to stand high above nuditory. of ear raisel externilly so ns mo melicek. Molar teeth tri-aperturo-. Postorbital area of skull sloping backwaw so that the wouk necipital rille is approximaty region not downthe middlo of the orbit ; maso-prenaxinary cegin "Steno's foracureed; " prepahative forimers
men" not remote from incisors h.........................iminal
a^{\prime}. Penis very uhnormally phaced, the propte slender, with pouch in position; glans exceedingy rong with indistinetly lobed apparently undevelopend and digital pads not compressec ; hind foot without fifth digit mat hot trace on the third digit. the sole. An immense so sis to concen mulitory orifice. A Root of are not raisec so as to chelk; normal genal viurissam mat of conrse vinath bilaminate. Postorbital area of skul stout, Modar teenth the very strong oceipitan crest as heng as the summit of the orbit ; maso-premascomparifyly short as the sarls: "prepalatine foramina comparan........... and "Steno's toranen" remete from the incisors

Tamilies Cayidea and Hydrochorides, nov.
In the current text-books the Caviidæ contain the three genera Covia, Dolichotis, and IIydrochcerus; but the comparatively recent severance of Cavia into some half-dozen genera-Cavia, Caviella, severuce of Cavia into somerodon-enhances the value of the severnce of Gavia and Kerodon-enhances the value of the
characters which distinguish Dolichotis from Cavia in the old sense, and Hydrochoerus from both. In the first place, Hydrocharus clearly differs from Doliohotis and Caviu much more than these two differ from each other. As set forth in the table that follows, Dolichotis also in certain well-defined purticulars stands aside from all the genera into which Ctevico has heen split up. I propose to express these differences by severing Fydrochorrus as the representative of a distinct family * from the Caviidre, and to divide the latter into two subfamilies Dolichotine and Onvinue. The distinguishing characters of these groups may be brielly stated as follows:-
a. Last upper molar longer than the thee others taken together; palate long, its median line alout twice its width, the palatine bones
not deeply excised by short mesopterygoid fossu. Hect welloel not deeply excised by short masoptery goid fassa. Het welled
up to ill-definel digital pads, which with the clair form a hoof like termination to the digits: digits of fore foot mueveuly spacel, the fifth sot ligho novo the fourth und carying a redued and sepmate interdigital olement of the phatir pad;
the third digit markelly larger than the seent or fuurth tumd

b. Last upper molar much shorter than the combinul length of the others; phlatine bonas so deaply occived ly the mesopterygoid

 of fore foot tolerably evenly spmest; thirut mund forvth digits nearly evenly paired, sulncequl, the thim not matkedly larger than seomi wad forth; phatar pad with external lohe confluent with median lobe; a strong ridye bencath the suypatragnes in tho ear
(${ }^{2}$. Skulh with masts marowed and strongly convex in front, the distal elge deeply exesced; thy interotbitul verion very wido owing to ane expansion, notelod antoriongy and hefined by :
 sumpatraras. Nostrils expanded. \hat{A}. surgle miv of widely separated mal glends alowe the anus. Digits short, legs lomg. with area belind plantar pats overiapped by hairs; phatar pands very larre, projecting belind; carpal pad very small;
akull with masals nearly parallol-sided, mot strongly conver in front, and distal ellge with shallow excision; no nupreciable long grovth rooting the orbit, upper elge of malar not geuicuinte ; procecipital processes comparatively short. Sar shopt,
with valvular sumpatragus. Nostrils not expaimed. Anal
 elongated, legs short, mikeel bencenth, plantur pads not mojeet. ing belink; carpal pad large; no tuil Caviunce.
Other differentiating characters might have been added to those given above. But these must suffice.

* I suhmit that the characters upon which Hydrochoorw may be separated as tumily from the Cavide are of higher systenatie vilue thm those upon which Castor has heen scparated as a distinct fanily from the Sciuride (see Miller, Mamm of Western Europe, p. 047, 1912).

Mainly by characters suppliod by the skulls and teeth, Thomas, in the paper quoted alove, showed how the genen of Caviine might be distinguished. The three of which I know the external characters may be differentiated as follows:-
a. Rilge of ear benenth supratugus simple, not valvalar ; intermana vibrissay consisting of two pars of long sete set on the posterion berder of alarge nemply naked mea behind the chin; tuns exposed at the summit of a naked or nearly maked ara of skin wheli lies over the tectes and shows no trace of glanding depression ; penis projecting from lower ent of this area
a^{\prime}. Above-mentioned ridge valyular; interramal vibrissen nhsent or at
all events typeally indistingrishabla; ane concealed in the sub jucent glaudular area
3. Chws elongatel ; digital pads flat or lightly eonves; a singl carpal pal
b^{\prime}. Claws guite short; digital pads compressed; carpal pad louble... Kerodon.

