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Abstract of the thesis

We consider the theory of high temperature superconductivity from the view-
point of a strongly correlated electron system. In particular, we discuss
Gutzwiller projected wave functions, which incorporate strong correlations
by prohibiting double occupancy in orbitals with strong on-site repulsion.
After a general overview on high temperature superconductivity, we discuss
Anderson’s resonating valence bond (RVB) picture and its implementation
by renormalized mean field theory (RMFT) and variational Monte Carlo
(VMC) techniques. In the following, we present a detailed review on RMFT
and VMC results with emphasis on our recent contributions. Especially,
we are interested in spectral features of Gutzwiller-Bogoliubov quasiparti-
cles obtained by extending VMC and RMFT techniques to excited states.
We explicitly illustrate this method to determine the quasiparticle weight
and provide a comparison with angle resolved photoemission spectroscopy
(ARPES) and scanning tunneling microscopy (STM). We conclude by sum-
marizing recent successes and by discussing open questions, which must be
solved for a thorough understanding of high temperature superconductivity
by Gutzwiller projected wave functions.
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Chapter 1

Introduction

In this introduction we motivate this thesis on the Gutzwiller-RVB theory
of high temperature superconductivity. We also give an overview on experi-
mental observations in the high temperature superconductors (HTSC), where
we concentrate on angle resolved photoemission spectroscopy (ARPES) and
scanning tunneling microscopy (STM) due to their relevance for our theoret-
ical considerations. At the end of the chapter, we briefly discuss a selection
of alternative theories to illustrate the complexity and variety of the present
field.

1.1 Motivation

Twenty years ago Bednorz and Müller [1] discovered high temperature su-
perconductivity in Sr-doped La2CuO4. Subsequently high temperature su-
perconductivity was reported in many other Cuprates, which all share a
layered structure made up by one or more copper-oxygen planes (see figure
1.1). It was soon realized that the HTSC possess an insulating antiferro-
magnetic parent compound and become superconducting only if doped with
holes or electrons. Such a behavior is fundamental different from any previ-
ously reported superconductor and clearly indicates the presence of a novel
mechanism.

These unusual observations in the HTSC stimulated an enormous amount of
experimental as well a theoretical works, which brought about numerous new
insights into these fascinating compounds. The d-wave nature of the super-
conducting pairs [3] as well as the generic temperature-doping phase diagram
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Figure 1.1: Crystal structure of La2CuO4. Left panel shows the layer struc-
ture along the c-axis, the right panel the structure of the CuO2 plane. From
[2].

(figure 1.2) are nowadays experimentally well established. On the theoretical
side several approaches successfully describe at least some features of the
HTSC. In addition, new sophisticated numerical techniques provide us with
a better understanding of strong correlation effects present in the HTSC.
This experimental and theoretical progresses in the field of high tempera-
ture superconductivity have also influenced substantially many other fields
in condensed matter physics. Thus, the research on HTSC has a very fruitful
history, which considerably broadened our knowledge on strongly correlated
electron systems.

Despite above undeniable successes, there is still no generally agreement
about the mechanism responsible for superconductivity in the Cuprates.
However, as stated recently by D.J. Scalapino [4], the problem is not a lack
of proposals, but rather that we do not have a consensus on which proposed
mechanism contains the appropriate description. It is therefore of key im-
portance to carefully examine the weaknesses and strengths of theoretical
approaches and to check if calculable quantities match experimental obser-
vations. Only such thorough considerations can sort useful from inadequate
ideas and lead to an improved understanding of the origin of the supercon-
ducting pairing in the Cuprates.

To contribute to this ambitious task, we carefully consider the resonating
valence bond (RVB) concept from the perspective of Gutzwiller projected
wave functions. We discuss the vast number of theoretical calculations based
on this Gutzwiller-RVB picture in the context of our recent contributions
[5, 6, 7, 8, 9, 10]. These studies are in general agreement with experimental
observations, giving significant support for this approach. In this context,
we pay particular attention to quasiparticle features determined from renor-
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Figure 1.2: Generic phase diagram for the high temperature superconductors
(antiferromagnetic region AF, superconducting phase SC). The temperature
below which superconductivity (a pseudogap) is observed is denoted by Tc

(T ∗).

malized mean field theory (RMFT) and variational Monte Carlo (VMC) cal-
culations, which qualitatively match with photoemission as well as tunneling
experiments.

We are aware that the calculations presented within this thesis cannot cover
all aspects of the HTSC problem. Thus we are not able to rule out other the-
ories on the basis of current knowledge. To obtain a more complete picture
today’s Gutzwiller-RVB calculations should be extended and combined with
useful concept of other theories, especially with regard to finite-temperature
extensions of the T = 0 Gutzwiller-RVB results. In this spirit, the present
work should provide a starting point for further studies clarifying if the
Gutzwiller-RVB picture is indeed an appropriately description for the HTSC.

1.2 Experiments

The discovery of high temperature superconductivity presented a great chal-
lenge for condensed matter physicists and stimulated the development of nu-
merous new experimental techniques. However, apart from some details on
ARPES and STM experiments, we will only briefly mention major achieve-
ments. For a more detailed overview we refer to review articles with more
general introductions [2, 3, 11, 12, 13, 14].



CHAPTER 1. INTRODUCTION 8

π π

(0,0)

(0,  ) (  ,  )π

Figure 1.3: A schematic picture of the 2D Fermi surface (thick black line) of
HTSC in the first quadrant of the first Brillouin zone. The lattice constant
a is set to unity. The φ defines the Fermi surface angle.

One major experimental result was the unveiling of the generic temperature-
doping phase diagram (see figure 1.2). It shows the antiferromagnetic phase
in the undoped (half-filled1) compound with a Neel temperature of about
TN ≈ 300K. Upon doping antiferromagnetism is suppressed and supercon-
ductivity with a characteristic dome like transition temperature (Tc) emerges.
Electron- and hole-doped HTSC share many common features, however, they
also exhibit some significant differences, e.g., the antiferromagnetic region
persists to much higher doping levels for electron-doped Cuprates.

For hole-doped compounds, on which we will concentrate since they are char-
acterized experimentally better, a so-called pseudogap phase with a partially
gapped excitation spectrum is clearly present above the superconducting
dome. The onset temperature of the pseudogap linearly decreases with dop-
ing and disappears in the overdoped2 regime. The origin of this pseudogap
is one of the most controversial topics in the high-Tc debate, and it is not
clear how it connects with other important features such as the presence of a
Nernst phase [16, 17], charge inhomogeneities [18], the famous neutron scat-
tering resonance [19], marginal Fermi liquid behavior [20], or disorder [21].
For a detailed and sound discussion of the pseudogap problem we refer to a
recent article by Norman, Pines, and Kallin [12].

1The copper ion is in a d9 configuration, so that there is a single hole in the d-shell
per unit cell. According to Zhang and Rice [15] this situation corresponds to a half-filled
band in an effective single-band model.

2The superconducting phase is often divided into an optimal doped (doping level with
highest Tc), an overdoped (doping level higher than optimal doped), and an underdoped
(doping level lower than optimal doped) regime.
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Figure 1.4: Energy distribution curve (EDC) at fixed momentum k = (π, 0)
for an overdoped (87K) Bi2Sr2CaCu2O8+δ (Bi2212) sample in the normal
state (NS) and superconducting state (SC). From [2].

Above cited articles summarize well the vast number of findings in the
HTSC. In the following, we therefore explicitly discuss only results from
angle resolved photoemission spectroscopy (ARPES) and scanning tunnel-
ing microscopy (STM), due to their particular importance for the theoretical
considerations presented in the later chapters. These two methods have been
significantly improved within recent years and provide new insights in the na-
ture of quasiparticles within the superconducting state. As we will show in
the following chapters, many features reported by these experiments can be
well understood within the framework of the Gutzwiller-RVB theory.

1.2.1 Angle resolved photoemission spectroscopy

By measuring energy and momentum of photon-emitted electrons ARPES
provides information about the single particle spectral function, A(k, ω),
which is related to the electron Green’s function by A(k, ω) = − 1

π
Im G(k, ω)

(momentum k, energy ω). Here, we present some key results for A(k, ω) but
omit discussions about technical details. Such information can be found in
the extensive ARPES reviews by Damascelli, et al. [13] and Campuzano, et
al. [14].

In figure 1.3 we illustrate a schematic picture of the two-dimensional (2D)
Fermi surface (FS) of HTSC in the first quadrant of the first Brillouin zone.
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Figure 1.5: Momentum dependence of the spectral gap ∆ at the FS in the
superconducting state of an overdoped Bi2212 sample from ARPES. The
black line is a fit to the data. For a definition of the FS angle φ see figure
1.3. From [22].

It can be obtained by ARPES scans along different angles φ. The FS for
each φ is then determined in general (but not in the underdoped region [9])
by looking at the minimum energy of the coherent peak along this direc-
tion in momentum space. A typical energy distribution curve (EDC), i.e.,
photoemission intensity as function of energy at fixed momentum, from an
ARPES experiment is given by figure 1.4. In the figure the measurement is
done at the (π, 0)-point in the superconducting state (T ¿ Tc) as well as in
the normal state (Tc > T ). In the superconducting state one sees the charac-
teristic peak-dip-hump structure; the peak can be associated with a coherent
quasiparticle. Above Tc coherence is lost and the sharp peak disappears.

In the first years after the discovery of high temperature superconductivity
it was rather unclear if the pairing symmetry is isotropic (s-wave like), as in
conventional phonon-mediated superconductors, or anisotropic. Nowadays
several experiments consistently confirm the anisotropic, i.e., the d-wave,
nature of the superconducting pairing [3]. The angular dependence of the gap
function is nicely seen in ARPES measurements on HTSC (figure 1.5), which
accurately determine the superconducting gap |∆k| at the FS. As illustrated
in figure 1.5 for a Bi2Sr2CaCu2O8+δ (Bi2212) sample, the gap vanishes for
φ = 45◦. This direction is often referred as the “nodal direction”, the point
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with figure 1.2), and of the peak and hump binding energies in the supercon-
ducting state (see figure 1.4). The empirical relation between Tc and doping
x is given by Tc/T

max
c = 1 − 82.6(x − 0.16)2 with Tmax

c = 95 K. Data for
Bi2212, from [23].

at the FS is then called the “nodal point” or “Fermi point”. In contrary, the
gap becomes maximal for φ = 0◦, 90◦, i.e., at the “anti-nodal point”.

Another feature well established by ARPES is the doping dependence of the
superconducting gap and the opening of the pseudogap at T ∗. Unlike con-
ventional superconductors, HTSC exhibit a strong deviation from the BCS-
ratio3 of 2∆/(kBTc) ≈ 4.3 for superconductors with a d-wave gap function.
In HTSC this ratio is strongly doping dependent and becomes quite large for
underdoped samples, where the transition temperature Tc goes down, while
the superconducting gap still grows. As illustrated in figure 1.6 for a Bi2212
sample, the binding energy of the peak at (π, 0), i.e., the superconducting
gap4, linearly increases when approaching half-filling. Interestingly, the open-

3Note that the conventional (s-wave) BCS-ratio is 2∆/(kBTc) ≈ 3.5.
4If we speak about (the magnitude of) the superconducting gap ∆ in a d-wave state
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mean field relation, 2∆/(kBT ∗) = 4.3, valid for d-wave superconductivity
[24], where T ∗ replaces Tc. From [25].

ing of the pseudogap at temperature T ∗ is tightly related to the magnitude
of the gap. The modified ratio 2∆/(kBT ∗) is quite constant for HTSC at
all doping levels and about 4.3 (see figure 1.7). This value agrees well with
the BCS-ratio for a d-wave superconductor, although here Tc is substituted
by T ∗. This experimental result comes as a remarkable confirmation of early
predictions from Gutzwiller-RVB theory, as we will discuss in further detail
in latter chapters. Figure 1.6 also reveals that the hump feature (see EDC
in figure 1.4) scales with the binding energy of the peak at (π, 0).

An additional doping dependent feature extracted from ARPES data is the
spectral weight of the coherent quasiparticle (QP) peak. Feng, et al. [26]
defined a superconducting peak ration (SPR) by comparing the area under
the coherent peak with those of the total spectral weight. Figure 1.8 depicts
EDCs at several doping levels together with the computed SPR as a function
of doping. The QP spectral weight strongly decreases with decreasing doping
and finally vanishes. Such a behavior is well understood by invoking the
projected nature of the superconducting state as we will discuss in following
chapters.

ARPES is both a momentum and energy resolved probe and thus allows for
the measurement of the dispersion of the coherent peak. Here, we concen-
trate on the nodal point, where the excitations become gapless even in the

without specifying the moment k, we mean the size of the gap |∆k| at k = (π, 0).
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Figure 1.8: a) Doping dependence of the superconducting state spectra in
Bi2212 at (π, 0) taken at T ¿ Tc. The doping level is decreasing form
the top curve downwards. Samples are denoted by OD (overdoped), OP
(optimal doped), and UD (underdoped), respectively, together with their Tc

in Kelvin, e.g., OD75 denotes an overdoped sample with Tc = 75K. b)
The doping dependence of superconducting peak ratio (spectral weight of
coherent peak with respect to the total spectral weight) is plotted over a
typical Bi2212 phase diagram for the spectra in a). AF, antiferromagnetic
regime; SC, superconducting regime. From [26].



CHAPTER 1. INTRODUCTION 14

Figure 1.9: Electron dynamics in the La2−xSrxCuO4 (LSCO) system. a)
Dispersion energy, E, as a function of momentum, k, of LSCO samples with
various dopings measured along the nodal direction. The arrow indicates the
position of the kink that separates the dispersion into high-energy and low-
energy parts with different slopes. EF and kF , are Fermi energy and Fermi
momentum, respectively. b) Scattering rate as measured by MDC width of
the LSCO (x=0.063). From [27].
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Figure 1.10: Schematic illustration of the temperature evolution of the Fermi
surface in underdoped Cuprates as observed by ARPES. The d-wave node
below Tc (left panel) becomes a gapless arc above Tc (middle panel) which
expands with increasing T to form the full Fermi surface at T ∗ (right panel).
From [31].

superconducting state due to the d-wave symmetry of the gap. The dis-
persion around the nodal point is well approximated by Dirac cones, whose
shape is characterized by two velocity, vF and v∆. The Fermi velocity vF

is determined by the slope of the dispersion along the nodal direction at
the nodal point, whereas the gap velocity v∆ is defined by the slope of the
“dispersion” perpendicular to the nodal direction at the nodal point. Since
all other k-points are gapped, the shape of the Dirac-like dispersion around
the nodal point is of particular importance for the description of any effect
depending on low-lying excitations.

Figure 1.9(a) illustrates the slope of the dispersion along the nodal direction
for La2−xSrxCuO4 (LSCO) samples at various dopings. The ARPES data
reveals a significant splitting in high-energy and low-energy parts, whereas
the low-energy part corresponds to the Fermi velocity vF . Within ARPES
data [see figure 1.9(a)] the Fermi velocity vF is only weakly doping-dependent.
ARPES can also determine the gap velocity v∆ by looking at the spectral
gap along the Fermi surface as done in figure 1.5. Together with the vF , the
v∆ determines the shape of the Dirac cones, which, according to ARPES,
is quite anisotropic (vF /v∆ ≈ 20 around optimal doping) [22]. This result
is confirmed by thermal conductivity measurements [28], which give similar
asymmetries than the ARPES data. Another generic feature of HTSC is
a kink seen in the ARPES nodal dispersion as shown in figure 1.9(a). This
kink also effects the scattering rate of the coherent quasiparticles as measured
by the momentum distribution curves (MDC) width, see figure 1.9(b) and
[13, 14].

An interesting feature seen in ARPES is the shrinking of the Fermi surface
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Figure 1.11: STM data for underdoped (UD) and overdoped (OD) Bi2212,
and overdoped Bi2201; comparison between the pseudogap (dashed line,
T > Tc) and the gap in the superconducting state (solid line, T < Tc).
The underdoped data exhibit a significant asymmetry between positive and
negative voltage. From [25].

when the pseudogap opens at T ∗. With decreasing temperature more and
more states around the antinodal region become gapped and thus the Fermi
surface becomes continuously smaller. Instead of a full Fermi surface the
pseudogap only exhibit Fermi arcs [29, 30, 31, 32], which finally collapse
to single nodal Fermi points at T = Tc (see figure 1.10). For more detailed
discussions about this and further ARPES observations we refer to the above
mentioned ARPES reviews [13, 14].

1.2.2 Scanning tunneling microscopy

In contrast to ARPES, STM is a momentum integrated probe. However, its
ability to measure the local density of occupied as well as unoccupied states
with a high energy resolution gives very valuable insights into HTSC. An
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example for a STM study of Bismuth-based HTSC is given in figure 1.11.
The data for the superconducting state reveals a density of states, which is
characteristic for a d-wave gap, i.e., there is no full gap in contrast to s-wave
superconductivity. In the pseudogap state (above Tc) the density of states
is still suppressed around ω = 0 (zero voltage), however, the characteristic
peaks disappear. Another interesting feature seen in figure 1.11 is the strik-
ing asymmetry between positive and negative voltage, which becomes more
pronounced for the underdoped sample. An explanation for this generic
property of HTSC will be discussed in detail within the following chapters.

A key advantage of STM is the possibility to obtain spatial information. For
example, STM experiments are able to investigate the electronic structure
around impurities [33, 34, 35] as well as around vortex cores [36, 37, 38] in the
superconducting state. Two other interesting features recently reported by
STM are a checkerboard like charge density wave [39, 40] and the existence
of spatial variations in the superconducting gaps [41]. The origin of these
observations is presently under intensive discussion.

1.3 Theories

To give a brief overview on theories of high temperature superconductivity
is quite a tough task. Due to the enormous complexity of the experimentally
observed features it is difficult to agree on the key ingredients necessary for
setting up a comprehensive theory. Further, the decision to trust or not to
trust new experimental results is often hard, since the sample quality, the
experimental resolution, and the way the data is extracted are often not
completely clear. These circumstances have been a fertile ground for the
development of numerous theoretical approaches, motivated respectively by
distinct aspects of the HTSC.

1.3.1 Electronic models

To find an appropriate microscopic reference model is the first step in for-
mulating any theory. Such a model should be simple enough on the one
hand to be treated adequately, but on the other hand it must be complex
enough to explain the relevant properties. In the case of the HTSC, it is
widely accepted that strong correlations in the two-dimensional (2D) layers
play an essential role. The copper-oxygen layers are appropriately described
by a three-band Hubbard model, which includes the Cu dx2−y2-orbital and
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the two O p-orbitals [42, 43]. Its simplified version is an one-band Hubbard
model, where each site corresponds to a copper orbital with repulsive on-site
interaction between electrons [15]. The derivation of this model Hamiltonian
is well illustrated in the reviews of Lee, et al. [11] and Dagotto [44]. Al-
though some theories deny that a one-band Hubbard model incorporates the
key properties to understand high Tc superconductivity [42, 43], the major-
ity of investigators consider it as an appropriate microscopic starting point
for theoretical considerations. However, extracting physical properties from
the two-dimensional Hubbard model5 remains difficult and requires severe
approximations, since it is still a highly complex many body problem.

1.3.2 Resonating valence bond picture

Soon after the discovery of high Tc superconductivity Anderson suggested
the concept of a resonating valence bond (RVB) state [45] to be relevant for
the HTSC. In this picture the half-filled Hubbard model is considered as a
Mott insulator with one electron per site. The charged states, doublons and
holons, form bound charge-neutral excitations in the Mott insulating state
and electrical conductivity vanishes consequently. Equivalently one can talk
of virtual hopping causing a superexchange interaction J between the elec-
trons at the copper sites. Therefore, the half-filled systems can be viewed as
Heisenberg antiferromagnet with a coupling constant J . Anderson proposed
that upon doping quantum fluctuations melt the antiferromagnetic Neel lat-
tice and yield a spin liquid ground state (denoted the RVB state) in which the
magnetic singlet pairs of the insulator become the charged superconducting
pairs. We will show in the following chapters that the RVB picture provides
an explanation for several key features of the HTSC such as the shape of the
superconducting dome, the existence of a pseudogap phase, the strong devi-
ations from the BCS-ratio, and the singular k-dependence of the one-particle
self-energy when approaching half-filling.

1.3.3 Spin fluctuation models

While the RVB idea approaches the problem from the strong coupling site,
i.e., large on-site electron repulsion U , spin fluctuation models6 start from the

5In the following we always mean the one-band Hubbard model if we solely say Hubbard
model.

6For more details we refer to the review articles by Moriya and Ueda [46], Yanase, et
al. [47], and Chubukov, et al. [48].
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weak coupling (small U) limit. The technique extends the Hartree Fock (HF)
random phase approximation and leads to a pairing state with d-wave sym-
metry. Within this picture superconductivity is mediated by the exchange
of antiferromagnetic spin fluctuations.

Weak-coupling approaches as spin fluctuation models essentially remain within
the context of Landau theory of Fermi liquids for which the quasiparticle
renormalization is Z = m/m∗, whenever the self-energy is not strongly k-
dependent, where m∗ ∼ v−1

F and m the bare band mass, respectively. The
Fermi liquid relation Z ∼ vF , is however difficult to reconcile with experi-
mental results for the HTSC, as Z → 0 and vF → const for doping x → 0,
as we will discuss in more detail in section 6.1.4.

1.3.4 Inhomogeneity-induced pairing

This class of theories assumes that the superconducting pairing is closely
connected to a spontaneous tendency to phase-separate into hole rich and
hole poor regions at low doping. Then, the repulsive interaction could lead
to a form of local superconductivity on certain mesoscale structures such
as stripes. Calculations show that the strength of the pairing tendency de-
creases as the size of the structures becomes too large. The viewpoint of
the theory is now as following: Below a critical temperature the fluctuating
mesoscale structures condensate into a global phase-ordered superconducting
state. Such a condensation will happen easier if the system is more homo-
geneous, however, that will cause larger mesoscale structures and thus less
pairing. Therefore, the optimal Tc is obtained at an optimal inhomogeneity,
where mesoscale structures are large enough to facilitate phase coherence,
but also small enough to induce enough pairing. Within the phase-separation
scenario spontaneous inhomogeneities tend to increase even in clean systems
when approaching half-filling. In this framework the pseudogap in the under-
doped regime can be understand as a phase, which is too granular to obtain
phase coherence, but has strong local pairing surviving above Tc. These
ideas are detailed reviewed by several papers of Kivelson and collaborators
[18, 49, 50].

1.3.5 SO(5) - theory

Motivated by the vicinity of antiferromagnetism and superconductivity in the
phase diagram of the HTSC, the SO(5)-theory [51] attempts to unify these
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collective states of matter by a symmetry principle. In the SO(5) picture the
5 stands for the five order parameters used to set up the theory; three de-
grees of freedom for antiferromagnetic state (Nx, Ny, Nz) and two degrees of
freedom for the superconducting state (real and imaginary parts of the super-
conducting order parameter). On this foundations the rich phenomenology
of HTSC is described through a single low-energy effective model. To in-
corporate strong correlation effects a so called projected SO(5)-theory was
proposed. Several studies support tentatively the phenomenological SO(5)-
approach on a microscopic basic (see review by Demler, et al. [51]).

1.3.6 Cluster methods

Exact numerical methods [44] like Lanczos or quantum Monte Carlo can only
treat small clusters. Therefore, all statements about the thermodynamic
limit become imprecise due to significant finite size effects. That yielded to
the development of quantum cluster theories [52], which treat correlations
within the cluster explicitly, and correlations at longer length scales either
perturbatively or within a mean field approximation. Within recent years
several different quantum cluster studies were used to extract ground state
properties from the Hubbard model. Many studies were able to reproduce
several features of the Cuprate phase diagram and report d-wave pairing in
the Hubbard model. However, even these sophisticated numerical methods
are not accurate enough to settle once forever if the Hubbard model has
indeed a superconducting ground state.

1.3.7 Competing orders

In most of above mentioned theories the pseudogap is represented by pre-
formed pairs. Hence, there are two relevant temperature for the underdoped
regime. At T ∗ pairs form, but they are not phase coherent; only at Tc the
pairs condensate and form a superconducting state. The intermediate re-
gion then gives a natural explanation for the pseudogap. However, there are
another class of theories that assume that the pseudogap and superconduc-
tivity are two phases, which compete with each other. In these scenarios
the pseudogap is characterized by an own order parameter, e.g., given by
an orbital current state [53] or a d-density wave [54], which is in reality a
π-flux state. The pseudogap suppresses superconductivity in the underdoped
regime, but also partially survives within the superconducting state. These
approaches predict that the pseudogap line ends in a quantum critical point
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Figure 1.12: Two proposed theoretical phase diagrams for the Cuprates. a)
RVB picture; b) Competing order scenario: the pseudogap (PG) ends in
a quantum critical point (black dot); pseudogap and superconducting state
(SC) can coexist (SC+PG).

which is screened by the superconducting dome. The obtained phase diagram
is compared with a preformed pairs picture in figure 1.12.

1.3.8 BCS-BEC crossover

Within this scenario the pseudogap is explained by a crossover from BCS to
Bose Einstein condensation (BEC) [55]. While in the BCS limit the fermionic
electrons condensate to a superconducting pair state, the BEC limit describes
the condensation of already existing pairs. In the crossover regime one ex-
pects a behavior very similar than observed in the pseudogap of HTSC; a
formation of pairs with a corresponding excitation gap at a temperature T ∗,
but a condensation to a superconducting state only at significant lower tem-
perature Tc < T ∗. It is interesting to note that the physics behind this
idea can be nicely described by a generalization of the BCS ground state
wave function, |Ψ0〉 [55]. It is however unclear how to incorporate the an-
tiferromagnetic Mott-Hubbard insulating state close to half-filling within a
BCS-BEC crossover scenario.



Chapter 2

Resonating valence bond
concept

The resonating valence bond (RVB) state describes a liquid of spin singlets,
which gives quite good variational energy for the 2D Heisenberg model. Upon
doping the magnetic singlets of the RVB liquid become mobile and form
charged superconducting pairs. This mechanism provides a promising ap-
proach for the HTSC as we will show in this chapter. We will discuss possible
realizations of RVB superconductors together with predictions resulting from
this picture. We also give a outlook on implementations of the RVB picture
by Gutzwiller projected wave functions and slave boson mean field theory.

2.1 The RVB state - basic ideas

Within the resonating valence bond (RVB) picture strong electron corre-
lations are essential for superconductivity in the Cuprates. The Hubbard
model is viewed as an appropriate microscopic basis and the corresponding
many-body Hamiltonian is given by,

H = −
∑

〈ij〉,σ
t(ij)

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓ , (2.1)

where c†i creates and ci annihilates an electron on site i. The hopping inte-
grals, t(ij), connect sites i and j. We will restrict our attention to nearest
neighbor hopping t for the moment, later we will also discuss the influence
of additional hopping terms. The operator niσ ≡ c†iσciσ denotes the local

22
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Figure 2.1: Hopping processes with a virtual doubly occupied site correspond-
ing to the Sz
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z
j and S+

i S−j term of the Heisenberg Hamiltonian, respectively;
in the case of parallel spins virtual hopping is not possible.

density of spin σ =↓, ↑ on site i. We consider an on-site repulsion U À t,
i.e., we work in the strong coupling limit, which is a reasonable assumption
for the HTSC.

2.1.1 RVB states in half-filled Mott-Hubbard insula-
tors

We concentrate initially on the half-filled case. Since U is much larger than t
the mean site occupancy is close to charge neutrality, namely one. If an elec-
tron wants to hop to a neighboring site it costs energy of the order U . This
potential energy is much higher than the energy the electron can regain by
the kinetic process. Thus, the motion of electrons is frozen and the half-filled
lattice becomes a Mott-Hubbard insulator. However, there are virtual hop-
ping processes, where an electron hops to its neighboring site, builds a virtual
doubly occupied site, and hops back to the empty site. Such virtual hoppings
lower the energy by an amount of the order J = 4t2/U . Pauli exclusion prin-
ciple allows double occupancy only for electrons with opposite spin (see figure
2.1). Thus, virtual hopping favors anti-parallel spins of neighboring electrons
and we obtain an effective antiferromagnetic Heisenberg Hamiltonian,

H = J
∑

〈ij〉
Si · Sj , J > 0 , (2.2)

with an antiferromagnetic exchange constant J = 4t2/U , the spin-operator Si

on site i, and 〈ij〉 denoting a sum over nearest neighbor sites. On the mean
field level, i.e., treating the spins classical, the 2D Heisenberg model on a
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Figure 2.2: Left: Antiferromagnetic Neel lattice with some holes. The motion
of a hole (consider bold circles) frustrates the antiferromagnetic order of the
lattice. Right: Snapshot of the RVB state. A configuration of singlet pairs
with some holes is shown. The RVB liquid is a linear superposition of such
configurations.

square lattice has an antiferromagnetic Neel ground state with long range
order and broken symmetry (left panel of figure 2.2). This molecular-field
prediction is experimentally (by neutron scattering studies [56]) as well as
theoretically (by a quantum nonlinear σ model [57]) well established.

Anderson [45] suggested that a resonating valence bond (RVB) liquid1 is
very close in energy to the Neel state for undoped Cuprates. Instead of long
range antiferromagnetic order a fluid of singlet pairs is assumed, i.e, the
state is built by a sum over all kind of spin singlet configurations (see right
panel of figure 2.2). For spin S = 1/2, such singlets can be favored rather
than classically antiparallel orientated spins due to quantum fluctuations. To
explain this behavior, we consider an one-dimensional (1D) chain (see figure
2.3). In this case, a Neel state with Sz = ±1/2 gives an energy of −J/4 per
site. On the other hand the ground state of two antiferromagnetic coupled
spins S = 1/2 is a spin singlet with −S (S +1) J = −3/4 J . It follows that a
chain of singlets (see figure 2.3) has an energy of −3/8 J per site, much better
than the Neel-ordered state. This simple variational argument shows that a
singlet state is superior in 1D. Similar considerations for the 2D Heisenberg
model give the energies −1/2 J per site for the Neel lattice, the singlet state
remains at −3/8 J per site. Following this reasoning we find that singlets
become much worse than the Neel state in higher dimensions.

Liang, Doucot, and Anderson [60] showed that the singlet “valence bonds” re-

1Long before the discovery of HTSC Anderson and Fazekas [58, 59] proposed the RVB
liquid as a possible ground state for 2D triangular.
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Figure 2.3: Neel state (left) and singlet state (right) for 1D antiferromagnetic
spin S = 1/2 chain.

gain some of the lost antiferromagnetic exchange energy by resonating among
many different singlet configurations and become therefore competitive with
the Neel state in 2D. Above discussed resonating singlets are very similar to
benzene rings with its fluctuating C-C links between a single and a double
bond; an analogy that motivated the term “RVB”.

2.1.2 RVB spin liquid at finite doping

The Neel state is realized in the undoped insulator, but it melts with only
a few percent of doped holes. To understand this, consider figure 2.2 (left),
which shows that moving holes cause frustration in the antiferromagnetic but
not the RVB state, figure 2.2 (right). A single hole moving in an antiferromag-
netic spin background was intensively studied in literature2, and analytical
calculations showed that the coherent hole motion is strongly renormalized
by the interactions with the spin excitations [61, 62]. When more holes are
injected into the system, the interaction of the holes with the spin back-
ground completely destroys the antiferromagnetic Neel state and an RVB
liquid (or spin liquid) state becomes superior in energy. Then the singlet
pairs of the RVB liquid are charged and may condense to a superconducting
ground state.

2.2 Realizations and instabilities of the RVB

state

Wether there exist two dimensional models with an T = 0 RVB ground state
is an open question todate. We may however regard the RVB state as an

2The single hole problem together with the corresponding literature is discussed in [11]
in more detail.
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unstable fixpoint [63] prone to various instabilities. The situation is then
analogous to that of the Fermi liquid, which becomes generically unstable
in the low-temperature limit either towards superconductivity or the various
magnetic orderings. In figure 2.4 we present an illustration of the concept of
the RVB state as an unstable fixpoint. We discuss now this point.

Besides the simple square lattice with nearest neighbor hopping, the RVB
spin liquid was proposed for the Mott insulating state in a square lattice with
further neighbor hopping as well as in a triangular lattice. Although the
simple Neel ordered state is destroyed due to frustration in these cases, the
RVB spin liquid (at n = 1) does not become the (T = 0) ground state, which
is either a valence bond crystal state [64, 65, 66, 67, 68] or a coplanar 120o

antiferromagnetic ordered state [69], respectively. In addition, instabilities
against inhomogeneous states like stripes [18, 49, 50] are conceivable, but not
explicitly included in figure 2.4.

Nevertheless an RVB state can be realized if a finite number of hole is induced
into the system, viz., when the bosonic spin state realized at half-filling turns
into a free fermionic state by the introduction of charge carriers. The hop-
ping processes then destroy above instabilities towards magnetic or valence
bond crystal ordering and a superconducting RVB state can be stabilized. A
schematic picture of this scenario is presented in figure 2.4.

In the case of HTSC, holes are created by changing the doping concentration.
A similar mechanism was proposed for superconductivity in the triangular
lattice based Cobaltates [70, 71]. Within RMFT calculations such a triangu-
lar model would result a d+id-wave pairing state [72]. On the other hand, an
RVB superconducting state at half-filling just below the Mott transition was
recently suggested for organic superconductors [73, 74, 75]. Here, the neces-
sary holes could result from a finite number of conducting doubly occupied
sites as illustrated in figure 2.4. In this case one might denote the resulting
state as “gossamer superconductor”, as it is slaved to the metal-insulator
transition occuring at half-filling for finite t/U in frustrated systems.

In summary, an RVB superconductor could emerge by two different mech-
anisms starting from a Mott insulating system (n = 1 and U > Uc); either
upon doping (n 6= 1), or from the half-filled system close to the border line
of the Mott-Hubbard transition (U ∼ Uc). Within this thesis we investi-
gate the former, i.e., the occurrence of an RVB superconductor in a doped
Mott-Hubbard insulator.
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Figure 2.4: Schematic picture of instabilities and realizations of the RVB spin
liquid state, viz., of the RVB state as an unstable fixpoint. The top panel
shows an RVB spin liquid at half-filling in the Mott-Hubbard insulating limit
(U > Uc). In the middle, we illustrate instabilities of the RVB liquid state
in a square lattice, a frustrated square lattice, and a triangular lattice in
the half-filled limit. The lower panel shows realizations of the RVB liquid,
which are realized at finite doping or close to the Mott-Hubbard transition
(U ∼ Uc).
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Figure 2.5: RVB phase diagram with singlet pairing temperature T ∗ and
phase coherence temperature Tcoh (superconducting state SC, pseudogap
PG).

2.3 Predictions of the RVB hypothesis for

HTSC

Within this section we discuss some predictions from RVB theory, which
nicely agree with experimental observations. As we will show in following
chapters, below explanations are well confirmed by more detailed microscopic
calculations.

Within the RVB picture, a possible explanation for the temperature-doping
phase diagram is obtained by considering two temperatures scales (figure
2.5). The singlets of the RVB liquid form at temperature T ∗, which decreases
when going away from half-filling. This is due to the weakening of singlet
pairs by the increasing number of holes in between them. Holes, on the
other hand, allow for particle number fluctuations, which are fully suppressed
at half-filling, and thus enhence the stability of the superconducting state
against thermal fluctuations. This results a second temperature, Tcoh, which
increases with doping and below which the superconducting carries become
phase coherent. The superconducting transition temperature Tc is therefore
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determined by the minimum of T ∗ and Tcoh as shown in figure 2.5.

It is evident from above picture that a pseudogap forms for Tcoh < T < T ∗,
i.e., for underdoped samples. In this state, although phase coherence is lost,
the RVB singlet pairs still exist. Therefore, we have to break a pair to remove
an electron from the copper-oxygen layers within the pseudogap regime. The
resulting excitation gap manifests itself, e.g., in the c-axis conductivity or in
ARPES measurements.

Above schematic explanations are to some extent confirmed by the T = 0
behavior seen in analytical as well as numerical calculations. RMFT and
VMC methods show an increase of the superconducting gap, but a vanish-
ing superconducting order parameter, when approaching half-filling. This
behavior is agreement with the T = 0 observations in experiments. It also
explains the strong deviation from the BCS-ratio in the underdoped regime
of the HTSC, if we relate the superconducting order parameter to Tc. Fur-
thermore, the doping dependence of the onset temperature of the pseudogap
T ∗ can be related to the magnitude of the gap at T = 0 (in agreement with
experiments, see figure 1.7).

Remarkably, the d-wave nature of the superconducting state was predicted
by RVB based studies already in 1988 [76, 77, 78, 79, 80], long before the
pairing symmetry was experimentally established. This early calculations
also correctly described the vanishing of superconductivity above about 30%
doping.

Implementing the RVB idea by projected wave functions, explains the sup-
pression of the Drude weight and of the superfluid density in the underdoped
regime as well as the particle-hole asymmetry in the density of states. As a
further success, RVB calculations predict a rather constant nodal Fermi ve-
locity, but a quasiparticle weight deceasing with doping x in agreement with
ARPES experiments. These effects can be understood by a decrease of freely
moving carriers at low doping, which results in a dispersion mainly deter-
mined by virtual hopping processes (proportional to the superexchange J). In
the half-filled limit, this behavior results in a divergence of the k-dependence
of the electron’s self-energy, limω→0 ∂Σ(ω,k = kF )/∂ω ∼ 1/x → ∞ , which
transcends the nature of orthodox Fermi liquids, as discussed in more detail
in chapters 6 and 7.

Beyond above key features of HTSC, RVB theory was successfully applied to
several other problems such as charge density patterns [81, 82, 83, 84], the
interplay between superconductivity and antiferromagnetism [85, 86, 87, 88,
89, 90], impurity problems [91, 92, 93], and vortex cores [94, 95].
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In conclusion, analytical and numerical results give significant support to
the RVB concept. However, most RVB studies are restricted to zero tem-
perature3, making above finite temperature picture somewhat speculative.
Within the RVB picture the superconductivity in the underdoped samples
is destroyed by the suppression of particle number fluctuations close to half-
filling, or otherwise stated, by a loss of phase coherence due to phase fluc-
tuations [97]. It is presently an unsettled question to which extend this
picture is equivalent to alternative formulations, such as an increase of inho-
mogeneities (like in the “inhomogeneity-induced pairing” picture [18, 49, 50])
or a destruction of the superfluid density due to nodal quasiparticle excita-
tions (see section 6.4), which were also proposed in order to describe the
transition from the RVB superconducting state to the pseudogap state in
the underdoped regime. Further work is necessary to unambiguously clarify
this point.

2.4 Transformation from the Hubbard to the

t-J model

The RVB scenario rests on the existence of a strong antiferromagnetic su-
perexchange J . The superexchange process via virtual hopping processes
results in an effective Heisenberg Hamiltonian as discussed before, see figure
2.1. For a more formal derivation we consider a canonical transformation,
e−iS, of the Hubbard Hamiltonian in the strong coupling limit (U À t) to
remove off-diagonal processes, i.e., hopping processes that change the num-
ber of double occupancies and thus involve energies of the order U . Such a
transformation makes the Hamiltonian block diagonal in subspaces with a
fixed number of double occupancies. By restricting ourselves to the energet-
ically lowest subspace, viz., the subspace of no double occupancies, we find
an effective low energy Hamiltonian.

We evaluate now the canonical transformation in lowest order in t/U [98, 99].
First we assume that S is of the order O(t/U) and expand the transformation

3A possible ansatz for finite temperatures was recently proposed by Anderson [96]. He
suggests a spin-charge locking mechanism within the Gutzwiller-RVB theory to describe
the pseudogap phase in the underdoped Cuprates as a vortex liquid state.
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as,

H(eff) = eiSHe−iS = eiS(T̂ + Û)e−iS (2.3a)

= T̂ + Û + i [S, T̂ + Û ] +
i2

2
[S, [S, T̂ + Û ]] + . . . (2.3b)

= Û + T̂ + i[S, Û ]︸ ︷︷ ︸
O(t)

+ i [S, T̂ ] +
i2

2
[S, [S, Û ]]

︸ ︷︷ ︸
O(t2/U)

+ . . .︸︷︷︸
O(t3/U2)

. (2.3c)

Here, we split the Hubbard Hamiltonian H into the kinetic energy part T̂ ,
the first term of (2.1), and the potential energy part Û , the second term of
(2.1) (includes the parameter U). In (2.3c) we have ordered the terms with
respect to t/U . For a block diagonal Hamiltonian H(eff) in order O(t/U), the
term, T̂ + i [S, Û ], in (2.3c) may not contain any hopping processes changing
the total number of doubly occupied sites. An appropriate choice for S is
given by,

S = −i
∑

〈ij〉,σ

t(i,j)
U

(
a†i,σdj,σ + a†j,σdi,σ − h.c.

)
, (2.4)

because then,

T̂ + i [S, Û ] = −
∑

〈ij〉,σ
t(ij)

(
a†iσajσ + d†iσdjσ + h.c.

)
, (2.5)

does not involve hopping process changing the number of double occupan-
cies. Here, we used the operators a†i,σ ≡ (1 − ni,−σ)c†i,σ and d†i,σ ≡ ni,−σc

†
i,σ.

Equation (2.5) is block diagonal and verifies the choice of S in (2.4).

The full form of H(eff) is now obtained by evaluating all O(t2/U)-terms in
(2.3c) with S from (2.4). By restricting ourselves to the subspace of no double
occupancies (energetically the lowest subspace), we find the t-J Hamiltonian,

Ht−J ≡ PG H(eff) PG = PG ( T + HJ + H3 ) PG , (2.6)

where,

PG =
∑

i

(1− ni↑ ni↓) , (2.7)

is the Gutzwiller projection operator that projects out all doubly occupied



CHAPTER 2. RESONATING VALENCE BOND CONCEPT 32

sites. The terms of the Hamiltonian are given by,

T = −
∑

〈i,j〉,σ
t(i,j)

(
c†i,σcj,σ + c†j,σci,σ

)
, (2.8)

HJ =
∑

〈i,j〉
J(i,j)

(
Si Sj − 1

4
ninj

)
, (2.9)

H3 = −
∑

i,τ1 6=τ2,σ

J(i+τ1,i,i+τ2)

4
c†i+τ1,σc

†
i,−σci,−σci+τ2,σ

+
∑

i,τ1 6=τ2,σ

J(i+τ1,i,i+τ2)

4
c†i+τ1,−σc

†
i,σci,−σci+τ2,σ , (2.10)

where J(i,j) = 4t2(i,j)/U and J(i,j,l) = 4t(i,j)t(j,l)/U . 〈i, j〉 are pairs of neighbor

sites and i + τ(1,2) denotes a neighbor site of i. Equation (2.6), together with
(2.8)-(2.10), gives the full form of t-J Hamiltonian. However, the so-called
correlated hopping or three-site term H3 is often dropped in literature, since
its expectation value is proportional both to t2/U and the doping level x.
Further, the density-density contribution ninj is sometimes neglected within
the superexchange term HJ , as it is a constant at half-filling. Note that
(2.8) is equivalent to (2.5) due to the projection operators PG occuring in
the definition (2.6) of the t-J Hamiltonian.

Above calculations explain the effect of the superexchange processes for the
Hubbard model in the strong coupling limit. The resulting t-J Hamiltonian
(2.6) does not allow for double occupancies and therefore each site becomes
single occupied at half-filling. In this limit (n → 1), the hopping of electrons
is frozen, the kinetic energy vanishes, and the t-J Hamiltonian reduces to an
antiferromagnetic Heisenberg model (2.2).

2.5 Implementations of the RVB concept

For an implementation of the RVB concept, the t-J Hamiltonian (2.6) is more
suitable than the Hubbard model, because it directly includes the superex-
change term, which is responsible for the formation of singlets. However, for
exact numerical methods, the t-J Hamiltonian provides only a minor simpli-
fication over the Hubbard Hamiltonian, and we must turn to approximative
schemes for any calculations on sufficiently large clusters. In the following, we
view the t-J Hamiltonian as an appropriate microscopic basis for the HTSC,
and present two prevalent methods, which allow for systematic calculations
within the RVB picture.
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2.5.1 Gutzwiller projected wave functions

Anderson [45] proposed projected BCS wave functions as possible RVB trial
states for the t-J model. These states provide a suggestive way to write an
RVB liquid in the compact form4,

|ΨRVB〉 = PN PG |BCS〉 , (2.11)

with the BCS wave function

|BCS〉 =
∏

k

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉 , (2.12)

which constitutes a singlet pairing state. Here, the operator PG (Gutzwiller
projection operator) projects out double occupancies and the PN fixes the
particle number to N ; uk and vk are the variational parameters with the con-
straint, u2

k + v2
k ≡ 1. This notation for |ΨRVB〉 allows for a straightforward

treatment of doping and immediately suggests a connection to superconduc-
tivity.

Projected wave functions were originally proposed by Gutzwiller in 1963
to study the effect of correlations presumed to induce ferromagnetism in
transition metal compounds [100]. In the following years these wave functions
were applied to study the Mott-Hubbard metal insulator transition [101] and
for a description of liquid 3He as an almost localized Fermi liquid [98, 102,
103], to give a few examples. However, these early studies considered only a
projected Fermi sea,

PG|ΨFS〉 = PG

∏

k<kF

c†k↑c
†
k↓|0〉 , (2.13)

in the Hubbard model, whereas Anderson [45] suggested a projected BCS
paired wave function for the t-J model.

To calculate the variational energy of a projected state |Ψ〉 ≡ PG|Ψ0〉, ex-
pectation values of the form

〈Ψ0|PG Ô PG |Ψ0〉
〈Ψ0|PGPG|Ψ0〉 (2.14)

must be considered, where Ô is a suitable operator. Here, the |Ψ0〉 can be any
wave function with no restriction in the number of double occupancies, viz.,

4For a real space representation of equation (2.11) we refer to section 5.1.1.
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it lives in the so-called “pre-projected” space. In our case we concentrate on
|Ψ0〉 = |BCS〉. In section 2.6 we will give a short review of other types of trial
wave functions used to study correlated electron systems. The exact eval-
uation of (2.14) is quite sophisticated and requires variational Monte Carlo
(VMC) techniques that will be discussed in chapter 5. However, approxi-
mate analytical calculations can be done by a renormalization scheme based
on the Gutzwiller approximation (GA), which will be outlined in the chapters
3 and 4. Within this approximation, the effects of projection on the state
|Ψ0〉 are approximated by a classical statistical weight factor multiplying the
expectation value with the unprojected wave function [102], i.e.,

〈Ψ0|PG Ô PG |Ψ0〉
〈Ψ0|PGPG|Ψ0〉 ≈ gO

〈Ψ0|Ô|Ψ0〉
〈Ψ0|Ψ0〉 . (2.15)

The so-called Gutzwiller renormalization factor gO only depends on the local
densities and is derived by Hilbert space counting arguments [76, 102, 104] or
by considering the limit of infinite dimensions (d = ∞) [105, 106, 107, 108].
The GA shows good agreement with VMC results (see [76]) and is discussed
detailed in chapter 3.

Implementing the RVB idea by Gutzwiller projected wave functions provides
a successful approach for studying HTSC. As we will show in the following
chapters, this Gutzwiller-RVB theory explains several key features of the
HTSC.

2.5.2 Slave boson mean field theory (SBMFT)

An alternative representation of the t-J Hamiltonian, equation (2.6), is ob-
tained by removing the projection operators PG, and replacing the creation
and annihilation operators by

c†i,σ → c̃†i,σ = c†i,σ (1− ni,−σ) , and (2.16a)

ci,σ → c̃i,σ = ci,σ (1− ni,−σ) , (2.16b)

with σ =↑, ↓ and −σ denoting the opposite spin of σ. In this form the
restriction to no double occupation is fulfilled by the projected operators c̃†i,σ
and c̃i,σ. Thus, only empty and single occupied sites are possible, which can
be expressed by the local inequality

∑
σ

〈c̃†i,σ c̃i,σ〉 ≤ 1. (2.17)
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However, the new operators do not satisfy the fermion commutation relations,
which makes an analytical treatment difficult. The slave-boson method [109,
110, 111] handles this problem by decomposing c̃†i,σ into a fermion operator

f †i,σ and a boson operator bi via

c̃†iσ = f †i,σbi . (2.18)

The physical meaning of f †i,σ (fi,σ) is to create (annihilate) a single occupied

site with spin σ, those of bi (b†i ) to annihilate (create) an empty site. Since
every site can either by single occupied by an ↑-electron, single occupied by
a ↓-electron, or empty the new operators must fulfill the condition

〈f †i↑fi↑ + f †i↓fi↓ + b†ibi〉 = 1 . (2.19)

When writing the Hamiltonian solely by the fermion and the (slave) boson
operator this constraint (2.19) must be included by a Lagrangian multiplier
λi. In the slave-boson representation, the t-J model is thus written as,

Ht−J = −
∑

〈i,j〉,σ
t(i,j)

(
f †i,σbib

†
jfj,σ + f †j,σbjb

†
ifi,σ

)
(2.20)

−
∑

〈i,j〉
J(i,j)

(
f †i↑f

†
j↓ − f †i↓f

†
j↑

)
(fi↓fj↑ − fi↑fj↓)

− µ0

∑
i,σ

f †i,σfi,σ +
∑

i

λi (f
†
i↑fi↑ + f †i↓fi↓ + b†ibi − 1) ,

where the Heisenberg exchange term,

Si Sj − 1

4
ninj = −

(
f †i↑f

†
j↓ − f †i↓f

†
j↑

)
(fi↓fj↑ − fi↑fj↓) ,

is a function of fermion operators only, since it does not involve charge degrees
of freedom [112]. Furthermore, a chemical potential term, −µ0

∑
i,σ f †i,σfi,σ,

is included within the grand canonical ensemble.

The advantage of this representation is that the operators (fiσ, bi) obey stan-
dard algebra and can thus be treated using field theoretical methods. The
partition function Z of (2.20) can be written as a functional integral over co-
herent Bose and Fermi fields, allowing to calculate observables in the original
Hilbert space. The Fermi fields can be integrated out using standard Grass-
mann variables. Then carrying out a saddle-point approximation for the
Bose fields reproduces the mean field level. The incorporation of Gaussian
fluctuations around the saddle point approximation provides a possibility
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for systematic extensions of the SBMFT. Following this idea led to the de-
velopment of the U(1)-gauge and SU(2)-gauge theory, which are reviewed in
detail in a recent work by Lee, et al. [11]. In general, the results from SBMFT
are quite similar to those from RMFT, e.g., the early prediction of d-wave
superconductivity in the t-J model rests on very similar gap equations in
both schemes. The SBMFT result by Kotliar and Liu [77], and Suzumura,
et al. [78] and the RMFT result by Zhang, et al. [76] nearly simultaneously
appeared in 1988. For a more detailed review on SBMFT we refer to [11].
In the following chapter, we will only mention SBMFT calculations when
comparing them to the RMFT results.

2.6 Variational approaches to correlated elec-

tron systems

In this section, we briefly discuss how projected states,

|Ψ〉 = PG|Ψ0〉 , (2.21)

can be extended to study strongly correlated systems on a wide variational
basis. Apart from the HTSC, these states can then be applied to other
important topics such as the description of Mott insulators [113], the super-
conductivity in organic compounds [75, 114], or Luttinger liquid behavior in
the t-J model [115, 116].

2.6.1 Order parameters

A prevalent ansatz to extend the trial state (2.21) is to allow for additional
order parameters in the mean field wave function |Ψ0〉. In section 2.5.1, we
restricted ourselves to a superconducting BCS wave function |Ψ0〉 = |BCS〉.
However, antiferromagnetic [86, 85, 87, 88], π-flux [88, 117], or charge ordered
[81, 82, 83, 84] mean field wave functions can also be used for |Ψ0〉. In
addition, a combination of different kind of orders is possible. As an example
we give a trial wave function,

|Ψ0〉 =
∏

k

(
uk + vk b†k↑ b†−k↓

)
|0〉 , (2.22)

with
bk = αkckσ + σβkck+Q . (2.23)
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Equation (2.22) includes finite superconducting as well as antiferromagnetic
order [86]. Here, bk is the Hartree-Fock spin-wave destruction operator with
Q = (π, π) as required for a commensurate antiferromagnet. The parameters,
αk and βk are related to the antiferromagnetic order parameter ∆AF by
usual mean field relations; in analogy the superconducting order parameter
determines the values of vk and uk. In the chapters 4 and 5, we will discuss
applications of above wave function for the HTSC.

We note that |Ψ0〉 is applicable to all kind of lattice geometries and was
also used to study superconductivity in triangular lattice based Cobaltates
[69, 70, 71, 72] and organic compounds [73, 74, 75, 114]. Recent calculations
show that projected states also provide a competitive energy on more exotic
models such as a spin-1/2 Heisenberg model on a Kagome lattice [118].

2.6.2 Jastrow correlators

The incorporation of Jastrow correlator J [119] provides an additional pow-
erful way for extending trial wave functions. In (2.21), the original Gutzwiller
projector PG can be viewed as the simplest form of a Jastrow correlator,

PG = Jg = g
P

i ni,↑ni,↓ =
∏

i

(1− (1− g)ni,↑ni,↓) . (2.24)

So far we have considered PG in the fully projected limit, which corresponds
to g → 0 in Jg. However, when using (2.24) in the Hubbard model, g becomes
a variational parameter that controls the number of doubly occupied sites.

The variational freedom of the trial wave function can be increased by in-
cluding further Jastrow correlators,

|Ψ〉 = Js Jhd Jd PG |Ψ0〉 = Js Jhd Jd Jg |Ψ0〉 . (2.25)

Popular choices of Jastrow correlators are the density-density correlator Jd,

Jd = exp


−

∑

(i,j)

vij(1− ni)(1− nj)


 , (2.26)

the holon-doublon correlator Jhd,

Jhd = exp


−

∑

(i,j)

wij(hidj + dihj)


 , (2.27)
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with hi = (1− ni↑)(1− ni↓) and di = ni↑ni↓, and the spin-spin correlator Js,

Js = exp


−

∑

(i,j)

uijS
z
i S

z
j


 . (2.28)

The corresponding variational parameter are given by vij, wij, and uij, re-
spectively.

Since the generalized trial wave function (2.25) includes a very high number
of variational parameters, many authors do not take all Jastrow correlators
into account. In the case of the t-J model the situation is slightly simplified,
because double occupancies are forbidden and thus g → 0 and wij = 0.

We now discuss the properties of the density-density correlator in (2.26) and
assume uij = wij = 0 for a moment. A positive vij implies density-density
repulsion, a negative vij means attraction and may lead to phase separa-
tion. Several studies indicate the importance of long range density-density
Jastrow correlators for improving the variational energy. Hellberg and Mele
[115] showed that the one-dimensional t-J model can be accurately described
when vi,j ∼ log |i − j|, i.e., when the Jastrow correlator is scale invariant.
The incorporation of long-ranged density-density correlations induces Lut-
tinger liquid like behavior in the t-J model [115, 116]. In the one-dimensional
Hubbard model an appropriate choice of the density-density correlator in mo-
mentum space allows to distinguish between metallic and insulating behavior
[113]. In the two-dimensional t-J model, the Jd is often used to improves
the variational energy of a projected superconducting state [120, 121] as we
will discuss in section 5.2.

The holon-doublon Jastrow correlator Jhd is important for studying the re-
pulsive Hubbard model on a variational basis. A negative wi,j < 0 implies at-
traction of empty and doubly occupied sites and may induce a Mott-Hubbard
insulating state [75, 114]. In two dimensions, a negative nearest neighbor
wi,j ∼ −δ〈ij〉, substantially decreases the variational energy [75, 114], since
these states occur as intermediate states during the superexchange process
(compare figure 2.1). Combining these effect with a superconducting wave
function |Ψ0〉 = |BCS〉 then explains key aspects of superconductivity in
organic compounds near the Mott-Hubbard transition [75, 114]. The wij

seems to be less important for one dimension, probably a consequence of the
very good spin-spin correlation energy of the Gutzwiller wave function in one
dimension [98, 122].

The spin-spin Jastrow correlator Js is not as often used as the density-density
and the holon-doublon Jastrow correlators (Jd and Jhd). However, recent
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studies show that the inclusion of Js is important when considering charge
fluctuations within the two-dimensional t-J model [123]. An appropriate
spin-spin Jastrow correlator Js can also create antiferromagnetic order in a
non-magnetic wave function, an example for the ability of Jastrow correlators
to induce a new long-range order in a wave function.



Chapter 3

Gutzwiller approximation

The Gutzwiller approximation (GA) is straightforward method to handle
Gutzwiller projected wave functions, which incorporate strong electron cor-
relations by prohibiting doubly occupied sites. Within the GA, effects of
projection are absorbed by statistical weight factors (Gutzwiller renormal-
ization factors), which then allow for an analytical treatment of strongly
correlated Gutzwiller wave functions.

In this chapter, we present the derivation of the Gutzwiller factors by Hilbert
space counting argument as well as by considering the limit of infinite dimen-
sions. We discuss furthermore the relevance of fugacity factors within the GA
when comparing results to variational Monte Carlo (VMC) calculations in
the canonical and grand canonical scheme, respectively. As we will show in
the last section of this chapter, the GA can also be extended to the case of
partially projected wave functions, where one reservoir site is excepted from
projection.

3.1 Basic principles of the Gutzwiller approx-

imation1

The Gutzwiller approximation (or Gutzwiller renormalization scheme) con-
stitutes the basis of the RMFT and is a successful method to treat Hilbert
space restrictions due to strong electron correlations. Originally [100, 101] it

1To avoid confusions we always mark density operators with a “hat” within this section.
We write, e.g., n̂iσ = c†iσciσ.

40
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was applied to calculate the variational energy of the projected Fermi sea,
PG|FS〉, in Hubbard like models. In this context, the projection operator,
PG =

∑
i(1 − α n̂i↑n̂i↓), was generalized to partial projection with the pa-

rameter α determined by optimizing the energy. Such considerations for
partially projected states resulted in a successful modeling of normal liquid
3He [102, 124] and heavy fermion systems [125, 126].

We concentrate, here, however, onto the t-J model and the large U limit, and
we will mainly discuss the fully projected case, i.e., α = 1. We will derive the
corresponding renormalization factors (Gutzwiller renormalization factors) in
this limit, but do not discuss the generalization to finite double occupancy,
which can easily be obtained through the same reasoning. The GA,

〈Ψ0|PGÔ PG |Ψ0〉
〈Ψ0|PGPG|Ψ0〉 ≈ gO

〈Ψ0|Ô|Ψ0〉
〈Ψ0|Ψ0〉 , (3.1)

approximates the expectation value within the projected state PG |Ψ0〉 by a
corresponding statistical weight gO multiplying the matrix element within
the unprojected wave function |Ψ0〉. To determine the Gutzwiller renor-
malization factor gO we can either invoke Hilbert space counting arguments
[76, 102, 104], or consider the limit of infinite dimensions (d = ∞) [105,
106, 107, 108]. In the following, we review both techniques and compare the
respective results.

3.1.1 Gutzwiller renormalization factors by counting
arguments

Hilbert space counting arguments enable us to derive the renormalization
factor gO through simple physical reasoning. We may use,

gO ≈ 〈Ô〉Ψ
〈Ô〉Ψ0

(3.2)

with |Ψ〉 ≡ PG|Ψ0〉, as a “definition” for the factor gO; 〈...〉Ψ denotes the
expectation value with respect to a wave function |Ψ〉. The spirit of the GA
rests on calculating the ratio in (3.2) by neglecting correlations in the wave
functions |Ψ〉 and |Ψ0〉. The only quantities to be taken into account are
the probabilities for a site i to be empty, to be single occupied with spin σ,
and to be doubly occupied, respectively. These probabilities are obtained by
considering the Hilbert space restrictions and are summarized for |Ψ〉 and
|Ψ0〉 in table 3.1. In this context, we must be aware that the densities before
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projection (n0
i , n0

i↓ and n0
i↑) and after projection (ni, ni↓ and ni↑) may differ.

This is due to the projection operator, PG =
∏

i(1− n̂i↓n̂i↑), which can, e.g.,
remove more terms with an ↑-electron than a ↓-electron on site i. Such effects
become of importance for Gutzwiller projection in antiferromagnetic, charge
ordered, or grand-canonical states. Keeping this caveat in mind, the expec-
tation values in (3.2) can be approximated by considering the probability
amplitudes of “bar”- and “ket”-configurations that may contribute. We ob-
tain the Gutzwiller renormalization factor by calculating the ratio between
these approximative expectation values. Although, we neglect any off-site
correlations in the derivation of the Gutzwiller renormalization factor, the
GA itself (3.1) incorporates additional correlations by the expectation value
of Ô in |Ψ0〉.
To illustrate above scheme, we consider the expectation value of the hopping
element, 〈c†i↑cj↑〉. For a projected state, |Ψ〉 = PG|Ψ0〉, we can write

〈c†i↑cj↑〉Ψ = 〈(1− n̂i↓)c
†
i↑(1− n̂j↓)cj↑〉Ψ . (3.3)

We then perform the GA for the right hand side of (3.3), which is written
in terms of projected operators (1− n̂i↓)c

†
i↑ and (1− n̂j↓)cj↑. It is convenient

to rewrite the matrix elements in this manner before determining the GA,
since it guarantees agreement with the infinite dimensions approach. Next
we consider the probability for 〈(1 − n̂i↓)c

†
i↑(1 − n̂j↓)cj↑〉 in |Ψ〉 and |Ψ0〉.

Configurations can only contribute if the bra-vector has a single ↑-electron on
site i and a vacancy on site j. For the ket-vector the interchanged occupancies
are necessary, i.e., a single ↑-electron on site j, and a vacancy on site i. The
corresponding hopping process is illustrated in figure 3.1. With the help
of table 3.1 we find the amplitudes of the bra- and ket-contribution, whose
product gives the probability in |Ψ〉,

[ni↑(1− nj)]
1/2 · [nj↑(1− ni)]

1/2 , (3.4)

probabilities
occupancy on site i

in |Ψ〉 in |Ψ0〉
〈(1− n̂i↓)(1− n̂i↑)〉 1− ni (1− n0

i↓)(1− n0
i↑)

〈n̂i↓(1− n̂i↑)〉 ni↓ n0
i↓(1− n0

i↑)
〈n̂i↑(1− n̂i↓)〉 ni↑ n0

i↑(1− n0
i↓)

〈n̂i↓n̂i↑〉 0 n0
i↓n

0
i↑

Table 3.1: Probability for different occupancies on site i in |Ψ〉 and |Ψ0〉.
We distinguish between the densities before projection (n0

i , n0
i↓ and n0

i↑) and
after projection (ni, ni↓ and ni↑).
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i ij j
"bra" "ket"

Figure 3.1: Required bar- and ket-configurations, so that 〈(1 − n̂i↓)c
†
i↑(1 −

n̂j↓)cj↑〉 contributes in |Ψ〉 and |Ψ0〉. Configurations that do not contribute

to 〈(1− n̂i↓)c
†
i↑(1− n̂j↓)cj↑〉 are crossed out.

and in |Ψ0〉,
[
n0

i↑(1− n0
i↓)(1− n0

j↓)(1− n0
j↑)

]1/2 · [n0
j↑(1− n0

j↓)(1− n0
i↓)(1− n0

i↑)
]1/2

.
(3.5)

The square roots stem from the fact that both bra- and ket-vector only pro-
vide amplitudes; the probability is obtained by a product of two amplitudes.

Combining (3.4) and (3.5) yields

〈(1− n̂i↓)c
†
i↑(1− n̂j↓)cj↑〉|Ψ〉

〈(1− n̂i↓)c
†
i↑(1− n̂j↓)cj↑〉|Ψ0〉

≈ g̃t =
1

(1− n0
i↓)(1− n0

j↓)
· [ni↑(1− nj)nj↑(1− ni)]

1/2

[
n0

i↑(1− n0
j↑)n

0
j↑(1− n0

i↑)
]1/2

. (3.6)

The expectation value in |Ψ〉 is now obtained by renormalizing the unpro-
jected value by (3.6),

〈c†i↑cj↑〉Ψ = 〈(1− n̂i↓)c
†
i↑(1− n̂j↓)cj↑〉Ψ (3.7a)

≈ g̃t 〈(1− n̂i↓)c
†
i↑(1− n̂j↓)cj↑〉Ψ0 (3.7b)

≈ g̃t (1− n0
i↓)(1− n0

j↓)︸ ︷︷ ︸
=gt

〈c†i↑cj↑〉Ψ0 . (3.7c)
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In the last row of (3.7) we decoupled the densities in |Ψ0〉. The Gutzwiller
renormalization factor is then,

gt =
[ni↑(1− nj)nj↑(1− ni)]

1/2

[
n0

i↑(1− n0
j↑)n

0
j↑(1− n0

i↑)
]1/2

. (3.8)

We emphasize that the decoupling in (3.7c) is controlled by the infinite di-
mensions limit, viz., all neglected decouplings yield off-site correlations of
higher order2 and thus vanish for d = ∞. Violating this rule causes devia-
tions from the mathematical thoroughness of the infinite dimension scheme.

For the full determination of the Gutzwiller renormalization factor in (3.8),
it is necessary to evaluate the dependence of the densities after projection
relative to the densities prior to projection. The situation is particularly
simple for a homogeneous wave functions with fixed particle number and
spin symmetry, where n0

i↑ = n0
i↓ = n0

i /2 = n/2 on each site i. Then, ni↑ =
ni↓ = n/2, and the Gutzwiller factor simplifies to the well-known result,

gt =
1− n

1− n/2
, (3.9)

which incorporates the fact that the kinetic energy in |Ψ〉 is connected to the
motion of holes, vanishing in the undoped case.

However, the relation of the niσ with respect to the n0
iσ become more subtle,

if we consider, e.g., an antiferromagnet with sublattice magnetization m,
where n0

Aσ = n/2± m, and, n0
Aσ = n0

B−σ (sublattices A and B, σ =↑, ↓). In
this case, niσ 6= n0

iσ, and we must invoke counting arguments to determine
niσ. We consider a canonical ensemble, where the overall particle density is
the same before and after projection (ni = ni↑ + ni↓ = n0

i↑ + n0
i↓ = n0

i = n).
Furthermore, the density niσ is necessarily related to the probability to find
a single σ-electron at site i in |Ψ0〉. Thus, niσ ∝ n0

iσ(1 − n0
i−σ). Due the

conserved particle density,

ni↑ + ni↓ = n = n0 , (3.10)

this relation is fixed to,

niσ = n0
iσ(1− n0

i−σ)
n

n− 2n0
i↑n

0
i↓

. (3.11)

2We violate this rule, strictly speaking, by neglecting decouplings which include on-site
pairing, 〈c†i↑c†i↓〉. However, we work in the fully projected limit, i.e., |Ψ〉 does not allow
for on-site pairing. It is thus reasonable to prohibit on-site pairing in |Ψ0〉 as well and to
set 〈c†i↑c†i↓〉 ≡ 0.
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Inserting this expression in the numerator of (3.8) gives the Gutzwiller renor-
malization factor,

gt =
1− n

1− 2n0
↑n

0
↓/n

, (3.12)

where n0
↑ and n0

↓ are from the same site. We note that (3.11) is valid for sites
i and j on the same as well as on different sublattices as one can show easily
and reduces to, gt = (1−n)/(1−n/2), in the non-magnetic limit, n0

σ = n/2.

The situation becomes yet more complicated if we consider states with an
inhomogeneous particle density, where it is difficult to determine ni, ni↓, and
ni↑. Therefore, most authors assume ni = n0

i . This assumption is mathe-
matically however not correct, because the operator PG =

∑
i(1 − n̂i↑ n̂i↓)

allows for changes in the local particle density. An elegant solution is to
redefine the operator PG, so that ni = n0

i or even niσ = n0
iσ. This conserva-

tion of local particle densities can be achieved by incorporating appropriate
fugacity factors into a new operator P̃G (Gutzwiller correlator), which is
then not a projection operator any more. The redefined operator P̃G still
allows to present any projected wave function as |Ψ〉 = P̃G|Ψ̃0〉, however,
the unprojected wave function |Ψ̃0〉 will generally differ from |Ψ0〉 defined by
|Ψ〉 = PG|Ψ0〉. The use of P̃G instead of PG is often not explicitly stated
in literature, although the assumed conservation of densities is only valid
for a generalized Gutzwiller correlator P̃G. Such a clear differentiation be-
tween P̃G and PG becomes of particular importance if results from the GA
are compared to VMC calculations, which in general implement the original
Gutzwiller projector PG. The non-conserving of local particle densities by
the operator PG also explain discrepancies between VMC calculations in the
canonical and the grand canonical scheme [5], which we will discuss in detail
in section 3.2.

Before turning to the d = ∞ scheme, we discuss how to determine the
Gutzwiller renormalization factor gS for the superexchange interaction, de-
fined by

〈SiSj〉Ψ = gS 〈SiSj〉Ψ0 . (3.13)

We first consider the GA for the contribution 〈S+
i S−j 〉, i.e.,

〈S+
i S−j 〉Ψ = g±S 〈S+

i S−j 〉Ψ0 . (3.14)

The procedure resembles the derivation of gt. We note that the process S+
i S−j

requires, an ↑-spin on site i and a ↓-spin on site j in the bra-vector, and the
reverse in the ket-vector. Therefore, the probability becomes

( ni↑nj↓ni↓nj↑ )1/2 (3.15)
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in the state |Ψ〉, while it is

[ n0
i↑(1− n0

i↓)n
0
j↓(1− n0

j↑)n
0
i↓(1− n0

i↑)n
0
j↑(1− n0

j↓) ]1/2 (3.16)

in the state |Ψ0〉. Using ni,σ from (3.11) yields,

g±S =
1

(1− 2n0
↑n

0
↓/n)2

. (3.17)

One can show again, that above formula results also for the case of sites
belonging to the same sublattice.

Next we evaluate the GA for the diagonal contribution to the superexchange,

〈Sz
i S

z
j 〉Ψ = gz

S 〈Sz
i S

z
j 〉Ψ0 . (3.18)

Here, we use, Sz
i = 1/2(n̂i↑ − n̂i↓), and write,

4 〈Sz
i S

z
j 〉 = 〈n̂i↑(1− n̂i↓)n̂j↑(1− n̂j↓)〉+ 〈n̂i↓(1− n̂i↑)n̂j↓(1− n̂j↑)〉
− 〈n̂i↑(1− n̂i↓)n̂j↓(1− n̂j↑)〉 − 〈n̂i↓(1− n̂i↑)n̂j↑(1− n̂j↓)〉 , (3.19)

which is valid for any wave function. The Gutzwiller approximations of the
terms in (3.19) give a common renormalization factor,

gz
S =

1

(1− 2n0
↑n

0
↓/n)2

. (3.20)

This is seen by considering the term 〈n̂i↑(1 − n̂i↓)n̂j↑(1 − n̂j↓)〉 in (3.19), as
an example. By applying the probabilities from table 3.1, we obtain,

〈n̂i↑(1− n̂i↓)n̂j↑(1− n̂j↓)〉Ψ
〈n̂i↑(1− n̂i↓)n̂j↑(1− n̂j↓)〉Ψ0

≈ ni↑nj↑
n0

i↑(1− n0
i↓)n

0
j↑(1− n0

j↓)
≡ gz

S , (3.21)

where using (3.11) for ni↑nj↑ directly confirms (3.20). Since all density terms
of (3.19) renormalize in exact the same manner, gz

S gives the correct renor-
malization factor for 〈Sz

i S
z
j 〉Ψ in (3.18).

From (3.17) and (3.20), we find a common Gutzwiller renormalization factor,
gS = g±S = gz

S, for (3.13), which simplifies to,

gS =
1

(1− n/2)2
, (3.22)

in the non-magnetic limit, n0
σ = n/2. At half-filling, n = 1 and gS → 4, the

magnetic correlations are four times as pronounced in |Ψ〉 than in |Ψ0〉. We
note that Gutzwiller approximations for other quantities are easily obtained
by following the same reasoning as for gt and gS.
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3.1.2 Gutzwiller renormalization factors in infinite di-
mensions

The effects of the Gutzwiller correlator can be evaluated exactly in the limit of
infinite dimensions [105, 106]. Gebhard [106] showed that a simple diagram-
matic evaluation is possible for d = ∞. Using the Gutzwiller renormalization
factors from d = ∞ for finite dimensions corresponds to a mean field approx-
imation. Thus the d = ∞ approach provides a thorough scheme to calculate
Gutzwiller factors, which in general agree with results from counting argu-
ments. Here, we briefly present this technique for fully projected states, but
refer to recent works of Bünemann, et al. [107, 108] for a detailed reasoning.

To simplify calculations, the Gutzwiller projector PG is reformulated as a
Gutzwiller correlator P̃G within the d = ∞ scheme. This redefinition agrees
with the one already discussed before and ensures that local densities are
conserved, viz., niσ = n0

iσ. The Gutzwiller correlator, P̃G =
∏

i P̃G,i, is
written as a product of local correlators,

P̃G,i = λ0
i (1− n̂i↓)(1− n̂i↑) + λ↑i n̂i↑(1− n̂i↓) + λ↓i n̂i↓(1− n̂i↑) . (3.23)

Physically, the parameters λ0
i and λσ

i allow to weight locally the probabilities
to find empty sites and sites occupied with a spin σ, respectively. The λ0

i ,
λ↑i , and λ↓i are determined by the constraints,

〈P̃ 2
G,i〉Ψ̃0

≡ 1 , (3.24)

〈c†iσP̃ 2
G,iciσ〉Ψ̃0

≡ 〈c†iσciσ〉Ψ̃0
= n0

iσ . (3.25)

Equation (3.24) guarantees the normalization, 〈Ψ|Ψ〉 = 〈Ψ0|P̃GP̃G|Ψ0〉 = 1,
of the projected wave function and equation (3.25) provides the conservation
of local densities. Evaluating these equations, we find,

λ0
i =

√
1− ni

(1− ni↓)(1− ni↑)
, (3.26)

λσ
i =

√
1

(1− ni−σ)
. (3.27)

Using these parameters in the Gutzwiller correlator P̃G guarantees via (3.24)
a conserved norm and via (3.25) conserved spin densities for any projected
wave function, |Ψ〉 ≡ P̃G|Ψ̃0〉. The GA for an operator Ôij acting on the sites
i and j is now obtained by neglecting all correlations except those between
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sites i and j. This procedure becomes exact in infinite dimensions and is
written as,

〈Ψ̃0|P̃GÔijP̃G|Ψ̃0〉 = 〈Ψ̃0|P̃G,iP̃G,jÔijP̃G,iP̃G,j|Ψ̃0〉 . (3.28)

Decoupling the right hand site and neglecting all off-site correlations of higher
order, provides the exact solution for d = ∞, which agrees with results from
counting arguments presented in the previous section.

As an example, we consider the hopping process, 〈c†i↑cj↑〉P̃G|Ψ0〉. Using (3.28),
we find,

〈Ψ̃0|P̃Gc†i↑cj↑P̃G|Ψ̃0〉 = 〈Ψ̃0|P̃G,ic
†
i↑P̃G,iP̃G,jcj↑P̃G,j|Ψ̃0〉 (3.29a)

= λ↑i λ
0
i λ

0
jλ
↑
j 〈Ψ̃0|(1− n̂i↓)c

†
i↑(1− n̂j↓)cj↑|Ψ̃0〉 (3.29b)

= λ↑i λ
0
i λ

0
jλ
↑
j(1− ni↓)(1− nj↓)︸ ︷︷ ︸

=gt

〈Ψ̃0|c†i↑cj↑|Ψ̃0〉 , (3.29c)

where we decoupled the densities in the last row as already done in the
discussion using counting arguments. Equation (3.29) is exact in infinite
dimensions, and gives the Gutzwiller renormalization factor,

gt =

√
(1− nj)(1− ni)

(1− nj↑)(1− ni↑)
, (3.30)

which agrees with (3.8) if we assume locally conserved densities. However,
we note that this result differs from (3.12), which incorporates the changed
spin densities due to the projection operator PG. Above presented scheme
is applicable to any kind of operator, gives the exact result for d = ∞,
and provides an useful check for results derived from counting arguments.
Nevertheless we must keep in mind that results may differ depending on,
whether we use PG and PG|Ψ0〉 together with counting arguments, or P̃G

and P̃G|Ψ̃0〉 in connection with above consideration to derive the Gutzwiller
renormalization factor.

3.2 Gutzwiller approximation in the canoni-

cal and the grand canonical scheme

In this section we follow Edegger, et al. [5] and study the effects of projection
on superconducting BCS wave functions,

|Ψ0〉 = |BCS〉 ≡
∏

k

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉 . (3.31)
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Since |Ψ0〉 = |BCS〉 exhibits particle number fluctuations, the projection
operator PG can change the average particle number N of the wave function,
i.e., in general,

〈Ψ0|N̂ |Ψ0〉
〈Ψ0|Ψ0〉 6= 〈Ψ0|PG N̂ PG|Ψ0〉

〈Ψ0|P 2
G|Ψ0〉 . (3.32)

In above equation the equality could be recovered when replacing the Gutzwiller
projector PG by a Gutzwiller correlator P̃G which conserves local densities as
discussed in the previous section. Here, we follow a different route and try
to compensate the effects of projection by using a fugacity factor in the wave
function. This ansatz then explains differences observed between VMC cal-
culations in the canonical framework (fixed particle number) and the grand
canonical ensemble (fluctuating particle number) using the corresponding
GA.

3.2.1 Incorporation of a fugacity factor

The effect of the projection operator PG can be seen most clearly by examin-
ing the particle number distribution in the unprojected and projected Hilbert
spaces. Towards this end, let us write the average numbers, N̄ (0)(N̄) in the
unprojected (projected) Hilbert space, as,

N̄ (0) =
∑
N

N ρ
(0)
N , (3.33)

N̄ =
∑
N

N ρN . (3.34)

Here,

ρ
(0)
N =

〈Ψ0|PN |Ψ0〉
〈Ψ0|Ψ0〉 , (3.35)

ρN =
〈Ψ0|PG PN PG |Ψ0〉
〈Ψ0|PG PG |Ψ0〉 , (3.36)

are the particle number distributions in the unprojected and projected BCS
wave functions respectively. The PN is an operator which projects onto terms
with particle number N . The particle number distributions before and after
projection may be related by

〈Ψ0|PG PN PG |Ψ0〉
〈Ψ0|PG PG |Ψ0〉︸ ︷︷ ︸

ρN

= gN
〈Ψ0|PN |Ψ0〉
〈Ψ0|Ψ0〉︸ ︷︷ ︸

ρ
(0)
N

, (3.37)
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where

gN =
〈Ψ0|Ψ0〉

〈Ψ0|PG PG |Ψ0〉︸ ︷︷ ︸
=C(=const)

〈Ψ0|PG PN PG |Ψ0〉
〈Ψ0|PN |Ψ0〉 . (3.38)

Equation (3.37) constitutes the GA for the projection operator PN with the
corresponding renormalization factor gN . The parameter C is an irrelevant
constant (the ratio of the normalization of the unprojected and projected
wave functions), which does not depend on N . Following Gutzwiller, we
estimate gN by combinatorial means, as being equal to the ratio of the relative
sizes of the projected and unprojected Hilbert spaces. Then,

gN ≈ C

L!
(L−N↑−N↓)! N↑! N↓!

L!
(L−N↑)! N↑!

L!
(L−N↓)! N↓!

, (3.39)

where L is the number of lattice sites and N↑ (N↓) is the number of up-
(down)-spins. N↑ = N↓ = N/2 with N being the total number of particles
in PN |Ψ0〉, and the expression for gN can consequently be simplified to

gN ≈ C
((L−N/2)!)2

L! (L−N)!
. (3.40)

Hence, if we were to impose the condition that the average particle numbers
before and after projection are to be identical, a factor g−1

N needs to be
included in (3.34). Then, from (3.34) and (3.37), we obtain the particle
number after projection N̄new,

N̄new ≡
∑
N

N
1

gN

ρN =
∑
N

N
gN ρ

(0)
N

gN

= N̄ (0) , (3.41)

which is the desired result.

Now, let us show how this procedure can be implemented for the wave func-
tion |Ψ0〉. Since the BCS wave function is a linear superposition of states
with particle numbers . . . , N − 2, N, N + 2, . . ., we consider the effect of pro-
jection on two states whose particle numbers differ by two. Then, the ratio
is

f 2 ≡ gN+2

gN

≈
(

L−N

L−N/2

)2

(3.42)

in the thermodynamic limit. Equation (3.42) shows that the projection op-
erator acts unequally on the N and N +2 particle states; the renormalization
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of the weight of the N + 2 particle states gN+2, is f 2 times the weight of the
N particle states, gN . This effect can be rectified as in (3.41) by multiplying
every Cooper pair c†k↑c

†
−k↓ by a amplitude 1

f
in the BCS wave function. It

produces the desired result, viz., the projected and unprojected BCS wave
functions have the same average particle number.

Alternatively (following Anderson [127]), we can multiply every empty state
by the factor f and write,

|Ψ(f)
0 〉 =

∏

k

(
f uk + vkc

†
k↑c

†
−k↓

)
√

f 2|uk|2 + |vk|2
|0〉 . (3.43)

Then again by construction, the fugacity factor f in (3.43) ensures that the

projected wave function PG|Ψ(f)
0 〉 and the unprojected wave function |Ψ0〉

without fugacity factor have the same particle number. The denominator in
(3.43) is the new normalization factor.

The fugacity factor f in (3.42) depends on the variable particle number N .
However, since the particle number of the BCS wave function is sharply
peaked within the range, N̄ (0) −

√
N̄ (0) and N̄ (0) +

√
N̄ (0), we will assume

that the fugacity factor f = f(N̄ (0)) in the thermodynamic limit. In this
limit, (3.42) reduces to,

f 2 →
(

1− n

1− n/2

)2

= g2
t , (3.44)

with gt being the Gutzwiller renormalization factor for the hopping term as
discussed before. Then, (3.43) becomes,

|Ψ(f)
0 〉 =

∏

k

(
gt uk + vkc

†
k↑c

†
−k↓

)
√

g2
t |uk|2 + |vk|2

|0〉 , (3.45)

which is the wave function proposed by Anderson [127].

3.2.2 Singular particle number renormalization close
to half-filling

We showed that the inclusion of the fugacity factor is necessary for the av-
erage particle number in a BCS wave function to remain unchanged when
projecting out all doubly occupied sites. Alternatively, one might ask what is
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the effect of the projection operator on a BCS wave function; viz., if projec-
tion changes the mean particle number of a BCS state, how are the particle
numbers before and after projection related when no fugacity factors are
introduced into the wave function?

In order to ensure this question, we consider two BCS states defined by,

|Ψ0〉 =
∏

k

(
uk + vkc

†
k↑c

†
−k↓

)
|0〉 , (3.46)

|Ψ(r)
0 〉 =

∏

k

(
uk + gt vk c†k↑c

†
−k↓

)
√
|uk|2 + g2

t |vk|2
|0〉 =

∏

k

(
u

(r)
k + v

(r)
k c†k↑c

†
−k↓

)
|0〉 , (3.47)

where,

u
(r)
k ≡ uk√

|uk|2 + g2
t |vk|2

, v
(r)
k ≡ gt vk√

|uk|2 + g2
t |vk|2

. (3.48)

From (3.42), it is clear that the projection operator reduces the ratio of the
weights of N + 2 and N particle states in a BCS wave function by a factor
g2

t . Then, it follows that,

〈Ψ(r)
0 | N̂ |Ψ(r)

0 〉
〈Ψ(r)

0 |Ψ(r)
0 〉

≈ 〈Ψ0|PG N̂ PG |Ψ0〉
〈Ψ0|PG |Ψ0〉 , (3.49)

with

gt =
L− 〈N̂〉PGΨ0

L− 1
2
〈N̂〉PGΨ0

, (3.50)

where we use the particle number 〈N̂〉PGΨ0 ≈ 〈N̂〉
Ψ

(r)
0

. Furthermore, we

have,

〈N̂〉
Ψ

(r)
0

≡ 〈Ψ(r)
0 | N̂ |Ψ(r)

0 〉
〈Ψ(r)

0 |Ψ(r)
0 〉

= 2
∑

k

|v(r)
k |2. (3.51)

Since the particle numbers of |Ψ(r)
0 〉 and PG|Ψ0〉 are identical, we can use

(3.48) in (3.51) to obtain,

N̄after ≡ 〈Ψ0|PG N̂ PG |Ψ0〉
〈Ψ0|PG |Ψ0〉 ≈ 〈Ψ(r)

0 | N̂ |Ψ(r)
0 〉

〈Ψ(r)
0 |Ψ(r)

0 〉
= 2

∑

k

g2
t |vk|2

|uk|2 + g2
t |vk|2 .

(3.52)
Note that gt is specified by the particle in PG|Ψ0〉, i.e., N̄after (≈ 〈N̂〉

Ψ
(r)
0

),

and (3.52) therefore constitutes a self-consistency relation for N̄after.
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Figure 3.2: Particle density before projection nbefore, equation (3.53), as a
function of the particle density after projection nafter, equation (3.52), for
different d-wave order parameters ∆. The dashed line indicates the Fermi
liquid result nbefore = nafter. From [5].

Now, since the particle density in the state |Ψ0〉 before projection is given
by,

n̄before ≡ N̄before

L
=

2

L

∑

k

|vk|2 , (3.53)

equation (3.52) provides us with a way to calculate the particle number in the
state PG|Ψ0〉 after projection, whenever the particle number as a function of
the identical uk and vk is known for |Ψ0〉, viz., before projection. Equation
(3.52) can be solved self-consistently for N̄after. One obtains numerical solu-
tions for (3.52) on a square lattice by using the standard BCS expressions
for a d-wave superconductor,

v2
k =

1

2

(
1− ξk

Ek

)
, u2

k =
1

2

(
1 +

ξk

Ek

)
, (3.54)

with,

Ek =
√

∆2
k + ξ2

k, (3.55a)

∆k = ∆ ( cos kx − cos ky ), (3.55b)

ξk = −2 ( cos kx + cos ky )− µ . (3.55c)

The only free parameters are the chemical potential µ and the order param-
eter ∆.



CHAPTER 3. GUTZWILLER APPROXIMATION 54

0.01 0.1 1 10 100
∆

0.6

0.7

0.8

0.9

1

n af
te

r

µ=−0.7

0.1

-0.3

0.7

3
10 50

Figure 3.3: The particle density after projection nafter as a function of the
parameter ∆ for a d-wave BCS state at various chemical potentials µ. The
figure shows a comparison between results from equation (3.52) (solid lines)
and the VMC results of Yokoyama and Shiba [80] [for 6×6 - (circles) and 8×8
-lattices (squares)]. Numbers in the figure denote the chemical potentials of
the corresponding curves. From [5].

For fixed values of the order parameter ∆, we have determined the particle
numbers (before and after projection) for various chemical potentials. The
results for the particle densities are shown in figure 3.2. The results clearly
show that the particle density before projection attains its maximal value
(nbefore = 2), when nafter = 1 (half-filling). This result holds for any finite
value of the order parameter ∆. The case of half-filling, nafter → 1, is therefore
singular in the grand canonical scheme and substantial deviations with resect
to the canonical framework can be expected (see discussion in the following
section).

In the opposite limit, viz., low densities of electrons, nbefore converges to the
value of nafter as expected. The size of the intermediate region depends on the
magnitude of the order parameter ∆, as illustrated by the results in figure
3.2.

The accuracy of (3.52) can be checked by comparing above results with those
of Yokoyama and Shiba (YS) [80], who performed VMC studies of projected
BCS wave functions with fluctuating particle number (but without a fugacity
factor) . They determined the particle density of the projected d-wave state
PG |Ψ0〉 as a function of the chemical potential µ and the parameter ∆, within
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a grand canonical scheme. The unprojected wave function |Ψ0〉 is specified
as usual, through (3.54)-(3.55). Since YS do not include a fugacity factor
in their definition of the BCS wave function, projection changes the particle
number. So, we use (3.52) to determine nafter which we compare with their
results for particle number.

As seen in figure 3.3, above results are in good qualitative agreement with YS.
Discrepancies are mostly due to finite size corrections. YS used 6×6 and 8×8-
lattices, while the analytic calculations are valid in the thermodynamic limit.
The results show the singular effect of the projection near the insulating phase
(half filling). The chemical potential diverges to infinity in this limit.

3.2.3 Gutzwiller renormalization factors in the canon-
ical and the grand canonical ensemble

Next we discuss the differences between the Gutzwiller approximation in the
canonical and grand canonical scheme. After deriving analytical expressions,
we check the validity of the statements by a comparison to numerically exact
VMC calculations [79, 80].

Let us first consider the canonical case. Here, we are interested in the expec-
tation value of an operator Ô calculated within a projected wave function
PNPG|Ψ0〉 with fixed particle number. The corresponding Gutzwiller ap-
proximation can be understood as follows:

〈Ψ0|PG PN Ô PN PG |Ψ0〉
〈Ψ0|PG PN PG |Ψ0〉 (3.56a)

≈ gO
〈Ψ0|PN Ô PN |Ψ0〉
〈Ψ0|PN |Ψ0〉 (3.56b)

= gO
〈Ψ0| Ô |Ψ0〉
〈Ψ0|Ψ0〉 , (3.56c)

where PN is the projector on the terms with particle number N . The
Gutzwiller renormalization factor gO, corresponds to the operator Ô. The
term (3.56a) represents a quantity which can be calculated exactly by the
VMC scheme with fixed particle number [79, 128]. Since the particle num-
ber is fixed, the usual Gutzwiller approximation can be invoked, leading to
(3.56b). The equality to the last row is guaranteed only if N is equal to the
average particle number of |Ψ0〉 (N = N̄). Then, one can perform a trans-
formation from a canonical to a grand canonical ensemble, which is valid in
the pre-projected Hilbert-space in the thermodynamic limit.
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In the grand canonical scheme, where we calculate the expectation value of
Ô with a particle number non-conserving wave function, this scheme must
be modified as follows:

〈Ψ(f)
0 |PG Ô PG |Ψ(f)

0 〉
〈Ψ(f)

0 |PG PG |Ψ(f)
0 〉

≈ gO
〈Ψ0| Ô |Ψ0〉
〈Ψ0|Ψ0〉 , (3.57)

where PG|Ψ(f)
0 〉 is the projected d-wave state corrected for fugacity, i.e., a

fugacity factor is included simultaneously with the projection. This correc-
tion is essential to guarantee the validity of the Gutzwiller approximation;
without it, the left hand side (lhs) and the right hand side (rhs) of (3.57)
would correspond to states with different mean particle numbers.

Comparing (3.56) and (3.57) we obtain,

〈Ψ0|PGPN ÔPNPG|Ψ0〉
〈Ψ0|PGPNPG|Ψ0〉 ≈ 〈Ψ(f)

0 |PGÔPG|Ψ(f)
0 〉

〈Ψ(f)
0 |P 2

G|Ψ(f)
0 〉

. (3.58)

Equation (3.57) and (3.58) constitute a main results of this section. Equa-
tion (3.57) shows that when the Gutzwiller approximation is used for a wave
function which does not have a fixed particle number, a fugacity factor must
be included along with the projection. Equation (3.58) shows that to ob-
tain identical results, one has to use different wave functions in the grand
canonical (rhs) and canonical (lhs) scheme. The wave function |Ψ(f)

0 〉 is a
d-wave state corrected by the fugacity factor, whereas |Ψ0〉 is a pure d-wave
state. These arguments leading up to (3.57) and (3.58) can be verified by a
comparison with VMC studies. We now proceed to do so.

Expectation values in the canonical and grand canonical schemes can be
calculated (nearly exactly) by VMC studies. In figure 3.4, we compare VMC
results from Gros [79] (fixed particle number VMC, canonical) and from YS
[80] (grand canonical VMC). The discrepancy between the two sets of results
can be explained readily by (3.58). YS consider a pure d-wave state, i.e.,
the fugacity factor is not included in their calculations. Equation (3.58) on
the other hand shows that this is only to be expected because the particle
numbers in the two schemes are not identical without a fugacity factor. In
their paper, YS argued that the discrepancies between the two results can
be removed by introducing an additional variational parameter α, so that
ak ≡ vk/uk is replaced by ak ≡ α vk/uk (equation 4.1 in [80]). We opine that
the parameter α is directly related to above fugacity factor, i.e., α = gt in
the wave function |Ψ(f)

0 〉. This conclusion is supported by the comparison of
VMC data to the corresponding Gutzwiller approximation (see below).
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The validity of the Gutzwiller approximation in the canonical case (3.56) is
well accepted. It is used for instance, in the renormalized mean field theory
(RMFT) of Zhang, et al., where all physical quantities are calculated using
unprojected wave functions and the corresponding Gutzwiller renormaliza-
tion factors [76]. A comparison with VMC studies with fixed particle number
exhibits a good agreement [76] (also illustrated in figure 3.4).

To compare the grand canonical VMC of YS with the Gutzwiller approxima-
tion, we need to modify (3.57). This is necessary because YS did not include
the fugacity factor in their considerations, as pointed out earlier. We modify
(3.58) by the following procedure:

1. We start with a d-wave BCS state |Ψ0〉 for specified values of ∆.

2. We fix the particle density nafter of PG|Ψ0〉 and determine the corre-
sponding chemical potential µ by (3.52).

3. We introduce an “inverse” fugacity factor into |Ψ0〉 to get |Ψ(r)
0 〉 via

(3.47). The fugacity factor is determined for nafter. |Ψ(r)
0 〉 and PG|Ψ0〉

correspond to the same particle density nafter.

4. In analogy to (3.57), the expectation values within the wave function

PG|Ψ0〉 can now be approximated by |Ψ(r)
0 〉 and Gutzwiller renormal-

ization factors, viz.,

〈Ψ0|PG Ô PG |Ψ0〉
〈Ψ0|PG PG |Ψ0〉 ≈ gO

〈Ψ(r)
0 | Ô |Ψ(r)

0 〉
〈Ψ(r)

0 |Ψ(r)
0 〉

. (3.59)

In figure 3.4, we compare the GA of the kinetic energy E(1) [T in (2.6)],
and the expectation value E(2) of the remaining terms in the t-J model
[HJ + H3 in (2.6)] to those obtained by the grand canonical VMC study
of YS. A good agreement between the VMC and Gutzwiller results is seen,
which confirms the validity of above Gutzwiller approximation for the grand
canonical scheme, i.e., equations (3.57) and (3.59).

In figure 3.4, we also show Gutzwiller approximations for the fixed particle
number VMC [79]. Clearly, canonical and grand canonical approaches yield
different energies (as do the corresponding VMC studies). We emphasize
this is because the projection operator PG changes the particle number in a
grand canonical scheme. For these two methods to yield the same results,
a fugacity corrected wave function must be used when working in a grand
canonical ensemble. Hence, all previous speculations about the coincidence of
these two VMC schemes in the thermodynamic limit have to be reformulated
carefully.
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Figure 3.4: (a) The kinetic energy E(1) and (b) the energy of the remaining
terms E(2) per site of the t-J model as a function of ∆ for the d-wave state at a
filling n = 0.9. Fixed particle (can., circles) VMC data [79] and grand canon-
ical (grand can., squares) VMC data [80] are compared. The dashed/solid
lines represent the corresponding Gutzwiller approximations (GA). From [5].

3.3 Gutzwiller approximation for partially pro-

jected states

Till now we concentrated on the Gutzwiller renormalization scheme for fully
projected wave functions. It is however necessary to consider sometimes
partially projected states of the form

|Ψ′
l〉 = P ′

l |Ψ0〉, P ′
l =

∏

i6=l

(1− n̂i↑n̂i↓) . (3.60)

The wave function |Ψ′
l〉 describes a state where double occupancies are pro-

jected out on all sites except the site l, which we call the reservoir site. The
reason for the appearance of reservoir sites is not far to seek. Consider, for
example, the operator PGcl↑. Clearly, it can be rewritten as cl↑P ′

l . Such
commutations become necessary, e.g., for the calculation of the quasiparti-
cle weight (discussed in Chapter 6), where partially projected states arise
inevitably.

Before discussing |Ψ′
l〉 in more detail, we remark that the notation “partially

projected” is also used for a projection operator,

Pα =
∏

i

(1− α n̂i↑n̂i↓) , (3.61)

with α ∈ [0, 1]. The operator Pα is used for studying Hubbard-like model
with “partially projected” wave functions Pα|Ψ0〉 (see also section 3.1). Here,
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the parameter α controls the total number of double occupancies, whereas P ′
l

in (3.60) yields a fully projected state with only a single unprojected reservoir
site i. We emphasize that the respective Gutzwiller approximations for these
two projection operators are fundamentally different.

Below we follow the work of Fukushima, et al. [6], who developed an ana-
lytical method to calculate expectation values for partially projected states
[as defined in (3.60)]. The calculations rest on counting arguments, however,
similar results can in principle be obtained within the infinite dimensions
approach. We first determine the local occupancy of the reservoir site, which
is then used to derive the Gutzwiller renormalization factors of specific ex-
pectation values. We also provide a comparison to VMC calculations to test
the validity of the approximation and to find its limitations.

We are interested in expectation values such as

〈Ψ′
l|Ô|Ψ′

l〉
〈Ψ′

l|Ψ′
l〉

= g′O
〈Ψ0|Ô|Ψ0〉
〈Ψ0|Ψ0〉 , (3.62)

that generalize the Gutzwiller approximation to partially projected wave
functions. Note that the reservoir site does not have a special role in the
unprojected wave function |Ψ0〉. This is in contrast to the impurity problem
(which we do not consider here), where an impurity site would break the
translational invariance of both the unprojected and of the projected wave
function.

3.3.1 Occupancy of the reservoir site

In order to evaluate the generalized renormalization parameters g′O in (3.62),
we obviously need the normalization of 〈Ψ′

l|Ψ′
l〉. We define with

X =
〈Ψ0|PGPG|Ψ0〉
〈Ψ0|P ′

l P
′
l |Ψ0〉 =

〈Ψ|Ψ〉
〈Ψ′

l|Ψ′
l〉

, (3.63)

the norm of the fully projected state relative to the state with one reser-
voir site. Invoking the Gutzwiller approximation, we estimate this ratio by
considering the relative sizes of the Hilbert spaces,

X ∼
L!

N↑!N↓!Nh!

L!
N↑!N↓!Nh!

+ (L−1)!
(N↑−1)!(N↓−1)!(Nh+1)!

, (3.64)

where L = N↑ + N↓ + Nh, is the number of lattice sites and N↑, N↓ and Nh,
the number of up spins, down spins and empty sites, respectively. The first
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term in the denominator of (3.64) represents the number of states with the
reservoir site being empty or singly occupied; the second term represents the
state with the reservoir site being doubly occupied.

Equation (3.64) can be simplified in the thermodynamic limit. We obtain,

X =
1− n

(1− n↑)(1− n↓)
, (3.65)

where nσ = Nσ/L (σ = ↑, ↓) and n = n↑ + n↓ are the respective particle
densities. Note that the X vanishes at half-filling. Above argument can be
extended to the case of two unprojected sites. We then get,

〈Ψ0|PGPG|Ψ0〉
〈Ψ0|P ′

lmP ′
lm|Ψ0〉 = X2 , (3.66)

where, Plm =
∏

i6=l,m(1− n̂i,↑n̂i,↓). We note for later use that

1−X

X
=

n↑n↓
(1− n)

. (3.67)

Assuming translation invariance for the unprojected wave function |Ψ0〉, it
is possible to derive the following exact expressions,

〈(1− n̂l↑)(1− n̂l↓)〉Ψ′l = X(1− n) =
(1− n)2

(1− n↑)(1− n↓)
, (3.68)

〈n̂lσ(1− n̂l−σ)〉Ψ′l = Xnσ =
(1− n)nσ

(1− n↑)(1− n↓)
, (3.69)

〈d〉Ψ′l ≡ 〈n̂l↑n̂l↓〉Ψ′l = 1−X =
n↑n↓

(1− n↑)(1− n↓)
, (3.70)

for the occupancy of the reservoir site, where we used,

〈...〉Ψ′l ≡ 〈Ψ′
l|...|Ψ′

l〉/〈Ψ′
l|Ψ′

l〉 ,

and (3.65). The proof is straightforward. Consider for instance, the proba-
bility (3.68) of finding the reservoir site empty. Since,

〈Ψ0|PG(1− n̂l)PG|Ψ0〉 = 〈Ψ0|P ′
l (1− n̂l↑)(1− n̂l↓)P ′

l |Ψ0〉 , (3.71)

we have,

〈(1− n̂l↑)(1− n̂l↓)〉Ψ′l =
〈Ψ|(1− n̂l)|Ψ〉

〈Ψ|Ψ〉
〈Ψ|Ψ〉
〈Ψ′

l|Ψ′
l〉

= (1− n)X . (3.72)

Equations (3.69) and (3.70) can be proved analogously. Note that

lim
n→1

〈d〉Ψ′l = 1 , (3.73)

i.e., at half-filling the reservoir is exactly doubly occupied.
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Figure 3.5: Required bar- and ket-configurations, so that 〈c†l↑(1 − n̂m↓)cm↑〉
contribute in |Ψ′

l〉 when l is a reservoir site (indicated by a shaded back-
ground). The last row presents the sum from the two possible contributions
as used in (3.76). Boxes with white background indicate the fully projected
site m.

3.3.2 Renormalization of mixed hopping terms

The occupancies of the reservoir site, (3.68)-(3.70), directly enter the respec-
tive Gutzwiller renormalization factor g′O. We consider here, as an example,
the mixed hopping term,

〈Ψ0|P ′
l c
†
lσcmσP

′
l |Ψ0〉

〈Ψ0|P ′
l P

′
l |Ψ0〉 ≈ g′t

〈Ψ0|c†lσcmσ|Ψ0〉
〈Ψ0|Ψ0〉 . (3.74)

where l denotes the reservoir site and m 6= l is a fully projected site. Following
the arguments leading to (3.3), we rewrite,

〈c†l↑cm↑〉Ψ′l = 〈c†l↑(1− n̂m↓)cm↑〉Ψ′l (3.75a)

≈ g̃′t 〈c†l↑(1− n̂m↓)cm↑〉Ψ0 (3.75b)

≈ g̃′t(1− nm↓)︸ ︷︷ ︸
=g′t

〈c†l↑cm↑〉Ψ0 . (3.75c)

As for (3.3), we perform the GA for the rhs of (3.75a) to guarantee agreement
with the infinite dimensions approach. However, the decoupling of (1−nm↓)
in (3.75c) becomes exact in infinite dimensions and we can recover the GA
of (3.74).
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Figure 3.6: Double occupancy of the reservoir site 〈d〉Ψ′l = 〈n̂l↑n̂l↓〉Ψ′l as
a function of doping, for the partially projected Fermi sea. Note the good
agreement between the Gutzwiller result (solid line), equation (3.70), and the
VMC results for the projected Fermi sea (open circles). Statistical errors and
finite-size corrections are estimated to be smaller than the symbols. From
[6].

In analogy to the calculations in section 3.1, we consider the probability for
〈c†l↑(1 − n̂m↓)cm↑〉 in |Ψ′

l〉 to determine the corresponding Gutzwiller renor-
malization factor g̃′t entering in (3.75c). We illustrate the two configurations
that can contribute, together with the resulting probability from combining
the bra- and ket-vectors, in figure 3.5. Using (3.68)-(3.70) for the partially
projected site (grey in figure 3.5), we find the probability,

(
[Xnl↑X(1− nl)]

1/2 + [(1−X)Xnl↓]
1/2

)
· [(1− nm)nm↑]

1/2

= X

(
[nl↑(1− nl)]

1/2 +

[
1−X

X
nl↓

]1/2
)
· [(1− nm)nm↑]

1/2 , (3.76)

in |Ψ′
l〉. With nlσ = nmσ = nσ and (3.67) above probability simplifies to,

X
[
nσ(1− n) + n2

σ

]
= X nσ(1− nσ) . (3.77)

For the respective probability in |Ψ0〉 we use table 3.1 and obtain,

[
n0

l↑(1− n0
l↓)

]1/2 · [n0
m↑(1− n0

m↓)(1− n0
m↓)(1− n0

m↑)
]1/2

. (3.78)

As pointed out in section 3.1, n0
lσ = n0

mσ = nσ, for non-magnetic wave
function. We then get the renormalization factor g̃′t by the ratio of (3.77)
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Figure 3.7: Double occupancy of the reservoir site 〈d〉Ψ′l = 〈n̂l↑n̂l↓〉Ψ′l as
a function of doping, for the partially projected BCS wave function. The
solid line is the GA result from (3.70). The parameterization follows [122].
Statistical errors and finite-size corrections for the VMC results are estimated
to be smaller than the symbols. From [6].

and (3.78), i.e.,

g̃′t =
X

1− nσ

. (3.79)

Together with (3.75c), we obtain the renormalization factor,

g′t = (1− nσ)g̃′t = X =
1− n

(1− n↑)(1− n↓)
, (3.80)

for the GA in (3.74). Other expectation values in partially projected states
can be calculated in analogy to above considerations. We will use above
scheme when calculating the quasiparticle weight in chapter 6.

3.3.3 Comparison of the GA for partially projected
states with VMC calculations

Before closing this section, we compare (3.70) to VMC results for 〈d〉Ψ′l =
〈n̂l↑n̂l↓〉Ψ′l = 1−X. We find that the results from the generalized Gutzwiller
approximation are in excellent qualitative agreement with the VMC results
for a partially projected Fermi sea as shown in figure 3.6. We also used VMC
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to obtain the same quantity using projected s/d-wave BCS states3 as varia-
tional states in the simulation. The results for 〈d〉Ψ′l in BCS states are shown
in figure 3.7. In contrast to the projected Fermi sea, a clear deviation from
the Gutzwiller approximation is seen. This underscores the importance of
pairing correlations in the unprojected wave function that are not completely
taken into account by the Gutzwiller approximation scheme. It also explains
to a certain extend the discrepancies between the VMC calculations and the
GA for the quasiparticle weight as we will discuss in the chapter 7.

3The BCS states are defined by, |vk|2 = 1/2 (1 − ξk/Ek), and ukv∗k = ∆k/(2Ek),
where ξk = −2 (cos kx + cos ky) − µ and Ek =

√
|∆k|2 + ξ2

k [s-wave: ∆k = ∆, d-wave:
∆k = ∆ (cos kx − cos ky)].



Chapter 4

Renormalized mean field
theory: Basic ideas and recent
extensions

On the basis of the GA, Zhang, et al. [76] derived a renormalized mean field
theory (RMFT) for the t-J model. In this chapter, we present an overview
on this approach, which plays a central role within Gutzwiller-RVB theory.
We illustrate successes and recent extensions of the RMFT for the HTSC,
derive the RMFT gap equation, and review its applications to the Hubbard
model in the strong coupling limit. Further extensions to antiferromagnetic
and inhomogeneous patterns then provide a quantitative description of the
Cuprate phase diagram.

4.1 Overview on the RMFT method

We start with an overview and discuss now how the RMFT allows for a
systematic treatment of the Hubbard Hamiltonian in the strong-coupling
limit. We present here the basic concepts, which will be then discussed in
detail in the corresponding sections. Figure 4.1 summarizes the main steps
necessary for the strong-coupling treatment of the Hubbard model within the
RMFT. In the following we refer to the individual points illustrated in figure
4.1.

As shown in figure 4.1, the first step is to apply a canonical transformation
e−iS to the Hubbard Hamiltonian removing hopping processes that change

65



CHAPTER 4. RENORMALIZED MEAN FIELD THEORY 66Hubbard Hamiltonian
anoni
al transformation eiSHe�iS mt-J HamiltonianGutzwiller renormalization gt, gS +renormalized Hamiltonianmean-�eld de
oupling ~�r; ~�r +renormalized mean-�eld Hamiltonianground state j	0i +proje
ted trial wavefun
tion j	i = PGj	0i
VariationalMonte Carlonumeri
al evaluation:h	0jPGHt�JPGj	0ih	0jPGPGj	0i

Figure 4.1: Schematic illustration of the RMFT method; see text for a de-
tailed description.

the number of doubly occupied sites. Doing so, we obtain the t-J Hamilto-
nian, which is defined in the subspace excluding double occupancy. The t-J
Hamiltonian provides an effective low energy Hamiltonian for the Hubbard
model in the strong coupling limit as already discussed in detail in section
2.4.

Next we invoke the Gutzwiller approximation to remove the restriction to
projected states within the t-J Hamiltonian. As we will discuss in sec-
tion 4.2.1, this procedure results in a renormalized Hamiltonian with terms
weighted by the corresponding doping-dependent Gutzwiller renormalization
factors (see also section 3.1).

We then perform a mean field decoupling for the renormalized Hamiltonian,
focusing on hopping amplitudes ξ̃r ≡

∑
σ 〈c†iσci+rσ〉Ψ0 and pairing amplitudes

∆̃r ≡ 〈c†i↑c†i+r↓ − c†i↓c
†
i+r↑〉Ψ0 . Following this way, we find self-consistent gap

equations for the mean field amplitudes (see section 4.2.2).

Solving the gap equations provides us with the mean field ground state |Ψ0〉 of
the renormalized t-J Hamiltonian in the “pre-projected” Hilbert space. Once
|Ψ0〉 is known, we can construct the Gutzwiller projected state |Ψ〉 = PG|Ψ0〉,
which then provides an approximative wave function for ground state of the
projected t-J Hamiltonian. We can control the RMFT by using |Ψ〉 as a
projected trial wave function within the VMC technique (see chapter 5).
Therefore, above scheme provides a consistent ansatz to study Gutzwiller
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projected wave functions by a combination of RMFT and VMC methods.

The projected wave function |Ψ〉 allows for the calculation of relevant physical
quantities as well as for the definition of excited states within the t-J model.
To determine observables within the Hubbard Hamiltonian, we can employ
the re-transformed wave function e−iS|Ψ〉 for the calculation of expectation
values. We will discuss this approach in section 4.3.

4.2 Derivation of the RMFT gap equations

In this section we review the work of Zhang, et al. [76] and develop a renor-
malized mean field theory (RMFT) for the t-J model based on the Gutzwiller
renormalization scheme (=̂ GA, see section 3.1). To illustrate the RMFT,
we start with the simplest form of the t-J Hamiltonian,

Ht−J = PG


−t

∑

〈i,j〉,σ

(
c†i,σcj,σ + c†j,σci,σ

)
+ J

∑

〈i,j〉
Si Sj


 PG . (4.1)

We restrict ourselves to nearest neighbor hopping t, and a superexchange
interaction J . We neglect any further hopping parameters as well as addi-
tional contributions in the Hamiltonian like the density-density term and the
correlated hopping terms, see equation (2.6). The effects of such extensions
are discussed in section 4.3, where we consider an RMFT for the Hubbard
model, including next nearest neighbor hopping matrix elements.

4.2.1 Derivation of the renormalized t-J Hamiltonian

Two steps are necessary to obtain explicit analytic expressions for the ground
state of the t-J model (4.1) for various doping levels x, where x = 1−n. The
first is the Gutzwiller approximation, where the effects of the projection PG

are taken into account by appropriate renormalization factors. We search for
a Gutzwiller projected state PG|Ψ0〉 that minimizes the energy expectation
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value,

E0 =
〈Ψ0|PGHt−JPG|Ψ0〉
〈Ψ0|PGPG|Ψ0〉

= −t
∑

〈i,j〉,σ

〈Ψ0|PG(c†i,σcj,σ + c†j,σci,σ)PG|Ψ0〉
〈Ψ0|PGPG|Ψ0〉

+ J
∑

〈i,j〉

〈Ψ0|PGSi SjPG|Ψ0〉
〈Ψ0|PGPG|Ψ0〉 . (4.2)

By invoking a GA for (4.2), we get rid of the projection operator PG and
obtain,

E0 ≈ −gtt
∑

〈i,j〉,σ

〈Ψ0|(c†i,σcj,σ + c†j,σci,σ)|Ψ0〉
〈Ψ0|Ψ0〉 + gS J

∑

〈i,j〉

〈Ψ0|Si Sj|Ψ0〉
〈Ψ0|Ψ0〉 . (4.3)

The GA for the hopping term [first term in (4.3)] has a renormalization factor,
gt = (1− n)/(1− n/2), which was derived in the previous chapter, equation
(3.9). For the superexchange term [second term in (4.3)], the renormalization
factor is gS = 1/(1 − n/2)2, where we assume a homogeneous state without
any sublattice magnetization, see (3.22).

We can now determine the variational ground state by searching for the state
|Ψ0〉, that minimizes the renormalized t-J Hamiltonian, H̃t−J , defined as,

H̃t−J = −gtt
∑

〈i,j〉,σ
(c†i,σcj,σ + c†j,σci,σ) + gS J

∑

〈i,j〉
Si Sj . (4.4)

Once |Ψ0〉 is known, we may consider the projected state, PG|Ψ0〉, as a trial
ground-state of Ht−J .

4.2.2 Mean field decoupling of the renormalized Hamil-
tonian

The next step in derivation of the RMFT, see section 4.1, is the realization
that H̃t−J allows for several types of molecular-fields [7, 76]: For simplifica-
tion we only concentrate on the singlet pairing amplitude,

∆̃r ≡ 〈c†i↑c†i+r↓ − c†i↓c
†
i+r↑〉Ψ0 , (4.5)
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and the hopping amplitude,

ξ̃r ≡
∑

σ

〈c†iσci+rσ〉Ψ0 , (4.6)

where r = x̂, ŷ =̂ (1, 0), (0, 1) connects nearest neighbor sites. This decoupling
scheme of the renormalized Hamiltonian leads to a BCS ground state,

|Ψ0〉 =
∏

k

(uk + vkc
†
k↑c

†
−k↓) |0〉 , (4.7)

with,

v2
k =

1

2

(
1− ξk

Ek

)
, (4.8)

and u2
k = 1− v2

k. The resulting gap equations are

∆̃r = 1/L
∑

k

cos(k r)∆k/Ek , (4.9)

ξ̃r = −1/L
∑

k

cos(k r)ξk/Ek , (4.10)

together with the condition, x = 1/L
∑

k ξk/Ek, for the hole-doping con-
centration. The dispersion of the mean field excitations is given by, Ek =√

ξ2
k + ∆2

k, where

∆k =
3J

4

(
∆̃x cos kx + ∆̃y cos ky

)
(4.11)

ξk = −
(

2gtt +
3J

4
ξ̃x

)
cos kx −

(
2gtt +

3J

4
ξ̃y

)
cos ky − µ . (4.12)

Equation (4.9) resembles the usual BCS gap equation, except that we con-
sider independent pairing along the x- and the y-direction. Together with
(4.10), we have four coupled gap equations (for ∆̃x, ∆̃y, ξ̃x, ξ̃y), which must
be solved self-consistently. The ∆k is obviously related to pairing in the state
|Ψ0〉, however, it is not identical to the superconducting order parameter in
PG|Ψ0〉 as will be shown below. The ξk becomes the renormalized dispersion
in the absence of pairing and includes a chemical potential µ to regulate the
particle density.

4.2.3 Solutions of the RMFT gap equations

The gap equation can be solved numerically for J = t/3, which is a reasonable
assumption for HTSC. However, we emphasize that the results presented
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Figure 4.2: Doping dependence of the d-wave pairing amplitude ∆̃, the hop-
ping amplitude ξ̃, and the superconducting order parameter Φ, see (4.13), in
the d-wave ground state for the t-J model (4.1) with J = t/3.

below are not sensitive to a particular choice of J . We find that a d-wave
pairing state is stable for x ≤ 0.35. In this case, ∆̃ ≡ |∆̃x| = |∆̃y| with
∆̃x = −∆̃y and ξ̃ ≡ ξ̃x = ξ̃y . We illustrate the doping dependence of these
quantities in figure 4.2. The superconducting order parameter,

Φ ≡ |〈c†i↑c†i+τ↓ − c†i↓c
†
i+τ↑〉Ψ| , (4.13)

is an expectation value in the projected ground states, |Ψ〉 ≡ PG|Ψ0〉, where
τ is a neighboring site. Evaluating Φ by the GA (section 3.1) one finds that
Φ is renormalized as the hopping amplitude by gt, namely Φ ≈ gt ∆̃. As
illustrated in figure 4.2, Φ vanishes linearly near x = 0, while ∆̃ contin-
uously increases towards half-filling. These results are in good agreement
with VMC results [99, 122, 128] and the experimentally observed Tc for the
d-wave pairing in the HTSC.

For the renormalized Hamiltonian, the Ek corresponds to the dispersion of
the Bogoliubov quasiparticles, |Ψσ

k,0〉 ≡ γ†kσ|Ψ0〉, with σ =↑↓ , where the cor-

responding Bogoliubov operators are defined by, γ†−k↓ ≡ ukc
†
−k↓+ vkck↑, and,

γ†k↑ ≡ ukc
†
k↑−vkc−k↓, respectively. However, Ek also describes the excitation

energy of the corresponding projected Gutzwiller-Bogoliubov quasiparticles,

|Ψkσ〉 ≡ PG|Ψσ
k,0〉 = PGγ†kσ|Ψ0〉 . (4.14)
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To see why, one evaluates the expectation value of the t-J Hamiltonian with
respect to |Ψkσ〉. Because, |Ψkσ〉 = PG|Ψσ

k,0〉, is renormalized exactly as,

|Ψ〉 = PG|Ψ0〉, we recover the renormalized Hamiltonian H̃t−J , (4.4), by in-
voking a GA. The state |Ψσ

k,0〉 is now acting onto H̃t−J , yielding in mean field
decoupling a Bogoliubov quasiparticle with excitation energy Ek. Therefore,
the gap ∆k in Ek =

√
ξ2
k + ∆2

k corresponds to the quasiparticle gap in the
projected superconducting state and is directly proportional to the mean
field amplitude ∆̃ in figure 4.2. We note that RMFT [76] correctly reported
the doping dependence of the d-wave gap, i.e., an increasing gap with de-
creasing doping, substantially before this behavior was experimentally well
established.

Above calculations follow the original work [76] and are restricted to a ho-
mogeneous phase without any magnetization. Therefore, the results can not
adequately describe the antiferromagnetic region around half-filling as well
as the kinds of inhomogeneities observed in HTSC. In order to investigate
these effects, we must allow for additional degrees of freedom in the mean
field solutions. RMFT studies, which follow this way, are discussed in the
following sections and provide a more detailed description of the HTSC.

4.2.4 Local SU(2) symmetry in the half-filled limit

In this subsection, we call attention to the half-filled case. In this limit the
kinetic energy renormalizes to zero, since gt → 0 for x → 0. The t-J model
reduces to the antiferromagnetic Heisenberg model, which is conserved under
local SU(2) gauge transformations [76, 129],

c†i↑ → αic
†
i↑ + βici↓ , ci↓ → −β∗i c

†
i↑ + α∗i ci↓ , (4.15)

where αiα
∗
i + βiβ

∗
i = 1. The invariance of the Hamiltonian is due the spin

operator Si, which does not change under SU(2) transformations, as can be
proved by applying (4.15) to the operators S±i and Sz

i . For S+
i we find,

S+
i = c†i↑ci↓ → (αic

†
i↑ + βici↓)(−β∗i c

†
i↑ + α∗i ci↓)

→ αiα
∗
i S+

i + βiβ
∗
i S+

i = S+
i . (4.16)

The invariance of S−i and Sz
i under (4.15) can be shown analogously.

Because of the local SU(2) gauge symmetry the renormalized mean field
Hamiltonian has a large degeneracy in the representation of ground states at
half-filling, as may be seen by transforming the mean field amplitudes ∆̃r and
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ξ̃r, (4.5) and (4.6), under (4.15). Some of the resulting degenerated states,
which are related to each other by appropriate SU(2) transformations, are
summarized in table 4.1. Another example among the degenerated states is
the staggered π-flux state [129],

ξij = |ξ0|2 exp
(
i(−1)ix+iy

π

4

)
, (4.17)

with a complex hopping amplitude ξij ≡ 〈c†iσciσ〉0, but a vanishing pairing

amplitude ∆ij ≡ 〈c†i↑ci↓〉0 = 0.

It is important to note that above degeneracy is not true in terms of the
projected wave function, since it only results from using an underdetermined
representation. In other words, the states that are degenerated are the un-
projected states |Ψ0〉, but not the physical states PG|Ψ0〉 [76]. Therefore,
the whole set of degenerated grounds states in the renormalized mean field
Hamiltonian correspond (except of a phase factor) to a single projected state;
for a prove see [76].

All states listed in the table 4.1 and (4.17) have the same superexchange
energy, even at finite doping, due the SU(2) invariance. However, the kinetic
energy T , (2.8), and the 3-site term H3, (2.10), which only vanish at half-
filling, are not invariant under the SU(2) transformation (4.15). Therefore
the degeneracy in |Ψ0〉 is lifted at finite doping, where the d-wave pairing
state is selected due to its lower kinetic energy.

The SU(2) gauge symmetry of the superexchange term led to the specula-
tion that at finite doping, when the degeneracy is lifted, some among the
“degenerated” states may compete with the d-wave state (also one of the
degenerated states at half-filling). In particular, it was argued that stag-
gered flux states could serve as a “competing” and/or as a “normal” state

d-wave pairing ∆̃x = −∆̃y = ξ̃x = ξ̃y = C/
√

2

d-wave density matrix∗ ∆̃x = ∆̃y = ξ̃x = −ξ̃y = C/
√

2

chiral state ∆̃x = − i ∆̃y = C , ξ̃x = ξ̃y = 0

anisotropic state ∆̃x = ξ̃y = C , ∆̃y = ξ̃x = 0

Table 4.1: Examples of degenerated states of the renormalized mean field
Hamiltonian at half-filling, see also [76]. The general constant C = 0.479 is
determined by the RMFT gap equations, (4.9) and (4.10). ∗We note that
the d-wave density matrix is not the d-density wave (DDW) order discussed
in [54].
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in the underdoped regime of the HTSC [11, 117]. Besides this competing
order scenario, a spin-charge locking mechanism [96] resting on the presence
of the SU(2) gauge symmetry at half-filling was suggested. Despite above
studies the entire consequences of the degeneracy in the unprojected mean
field ground states at half-filling are not yet well established.

4.3 RMFT for the Hubbard model and ap-

plication to HTSC

The RMFT presented so far can be improved by considering all terms con-
tributing to the t-J Hamiltonian (2.6), i.e., including the density-density
term (2.9) as well as the correlated hopping terms (2.10). The t-J Hamilto-
nian Ht−J is then connected to the Hubbard model H, equation (2.1), via
the canonical transformation Ht−J = PGeiSHe−iSPG as discussed in section
2.4. Observables for the Hubbard model can be evaluated by considering
expectation values in the re-transformed wave function e−iSPG|Ψ0〉. Below
we will use this ansatz to study the superconducting order parameter. Be-
fore discussing detailed results for above considerations, we note that we will
include next nearest neighbor hopping (t′) into the Hubbard Hamiltonian in
order to allow for qualitative comparisons with experimental results for the
HTSC.

4.3.1 Generalized gap equations for the strong cou-
pling limit

We obtain the RMFT gap equations for the Hubbard model in the strong
coupling limit by considering the corresponding effective Hamiltonian, i.e.,
the full t-J Hamiltonian. The gap equations for this t-J Hamiltonian, which
includes all terms from equation (2.6), can then be derived in analogy to the
previous section.

First we invoke the GA to obtain the renormalized Hamiltonian for (2.6).
We note that all (nearest as well as further neighbors) hopping terms are
renormalized by gt = (1−n)/(1−n/2) and all superexchange terms by gS =
1/(1 − n/2)2. Since the density-density term commutes with the projection
operator PG, it does not pick up any Gutzwiller renormalization factor. The
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new correlated hopping terms, equation (2.10), are of the following form,

〈c†i+τ1,↑c
†
i,↓ci,↓ci+τ2,↑〉PGΨ0 ≈ g3 〈c†i+τ1,↑ni,↓(1− ni,↑)ci+τ2,↑〉Ψ0 ,

〈c†i+τ1,↓c
†
i,↑ci,↓ci+τ2,↑〉PGΨ0 ≈ g3 〈c†i+τ1,↓c

†
i,↑ci,↓ci+τ2,↑〉Ψ0 , (4.18)

involve three sites (i, i + τ1, and i + τ2), and are renormalized by a factor
g3 = (1−n)/(1−n/2)2. For a derivation of the GA for the correlated hopping
terms we refer to the appendix of [5].

Next we decouple the resulting renormalized Hamiltonian by the same scheme
discussed in the previous section, obtaining therefore the same gap equations,
(4.9) and (4.10) as before. However, the dispersion relation, Ek =

√
ξ2
k + ∆2

k,
with,

ξk = −
(

2gtt + J
ξ̃

4
x1 + J3

ξ̃′

4
x2

)
(cos kx + cos ky)

−
(

2gtt
′ + J ′

ξ̃′

4
x1 + J3

ξ̃

4
x2

)
2 cos kx cos ky

−xD

∑

τ1 6=τ2

tτ1tτ2
4U

cos [k(τ1 − τ2)] − µ , (4.19)

∆k = J
∆̃

4
[3gs + 1− (3 + x)g3] (cos kx − cos ky) , (4.20)

incorporates the effects of further neighbor hopping and correlated hopping
terms. Above expressions for ξk and ∆k are valid for ∆̃ ≡ |∆̃x| = |∆̃y|,
∆̃x = −∆̃y, ξ̃ ≡ ξ̃x = ξ̃y, i.e., for the d-wave pairing state, which is the
most stable solution of the gap equations (4.9) and (4.10). Furthermore we
defined new hopping amplitudes for next nearest neighbors, ξ̃′ ≡ ξ̃x+y = ξ̃x−y.
The last sum in (4.19) is a sum over all pairs of non-identical neighboring
sites τ1 and τ2, where tτ1 and tτ2 are nearest and next nearest neighbor
hopping terms. We defined, J = 4t2/U , J3 = 4t′t/U , and J ′ = 4t′2/U and
abbreviated, x1 = 3gs− 1 + 3(3− x)g3, x2 = 4(3− x)g3, and xD = (1− x2)g3

in (4.19).

As in section 4.2, the ground state |Ψ0〉 of the renormalized t-J Hamiltonian
results from above equations. By including a projection operator PG into the
wave function we obtain PG|Ψ0〉, which corresponds to a variational wave
function for the ground state of the t-J Hamiltonian in the fully projected
Hilbert space. Invoking the canonical transformation e−iS then provides an
approximative ground state e−iSPG|Ψ0〉 for the Hubbard model.
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Figure 4.3: Doping dependence of (solid line, right scale) the superconducting
order parameter, Φ, and (dashed line, left scale) the superconducting gap,
|∆k|, at k = (π, 0) for t = 300 meV. The RMFT superconducting gap is
scaled by a factor α = 1/2 for comparison with experimental data (red
circles, Bi2122 [14]). From [7].

4.3.2 Results from the generalized gap equations

For comparison with experiments we consider a ratio t′/t = −1/4 between
next nearest and nearest neighbor hopping amplitudes, which is widely used
for the modelling of the band structure of various HTSC [44]. Furthermore,
we choose an on-site repulsion U = 12 t, i.e., we work in the strong coupling
regime U À t, t′, where the transformation from the Hubbard to the t-
J model is valid approximatively. Above choice of the model parameters
reduces the number of free parameters to one energy scale t, which is about
t ≈ 300− 500 meV for the HTSC.

The doping dependence of the superconducting gap, |∆k| at k = (π, 0),
is shown in figure 4.3. It resembles experimental observations quite well.
However, the gap is overestimated by a factor of about 2 (see scaling factor
α = 1/2 in figure 4.3) within mean field theory. We attribute this overall
mismatch to the neglecting of dynamical correlations [130] within the RMFT,
which is based on the molecular-field approximation and on the incorporation
of static on-site correlations.

As mentioned in section 4.2.3, the superconducting gap is not identical to the
true superconducting order parameter, Φ ≡ |〈c†i↑c†i+τ↓ − c†i↓c

†
i+τ↑〉| [76, 128].

Here, we determine the expectation value for Φ within the re-transformed
wave function, e−iSPG|Ψ0〉. Following section 2.4, we evaluate the canonical
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transformation e−iS in order O(t/U). Doing so, provides systematic t/U -
corrections with respect to the result from section 4.2.3, where we used simply
PG|Ψ0〉 when calculating the expectation value for the superconducting order
parameter.

The required calculations for the expectation value of a general observable
Ô within the Hubbard model are summarized by,

〈 Ô 〉e−iSPGΨ0
= 〈 eiSÔe−iS 〉PGΨ0 (4.21a)

≈ 〈 Ô + i[S, Ô] 〉PGΨ0 , (4.21b)

where the last step corresponds to the evaluation of e−iS in order O(t/U);
compare with section 2.4. Note that (4.21b) corresponds to an expectation
value of the operator O + i[S, Ô] in the projected state PG|Ψ0〉. We can
therefore use a generalized Gutzwiller approximation by invoking the count-
ing arguments given in section 3.1.

Setting, Ô = c†i↑c
†
i+τ↓ − c†i↓c

†
i+τ↑, we can evaluated the superconducting order

parameter Φ for the Hubbard model by above scheme. We find,

Φ ≈ gt∆̃ +
t

U
g3 (6− x) ∆̃ ξ̃ . (4.22)

In deriving (4.22) we considered t′ ≈ 0 within S, for simplicity, since |t′| ¿ |t|.
As shown in figure 4.3, Φ vanishes as x → 0, and the t/U -corrections do not
qualitatively change the result of Zhang, et al. [76] near half-filling. We
emphasize that above procedure is applicable to all kind of observables and
provides a systematic way to study the Hubbard model in the strong coupling
limit.

Next we consider the nature of the low lying excitations, i.e., the quasipar-
ticles created at the nodal point, kF ≡ kF,x = kF,y. The nodal dispersion
around kF is characterized by the velocity, vF , which directly influences a
number of experimentally accessible quantities. Within RMFT, vF is directly
obtained by calculating the gradient of ξk along the direction, (0, 0) → (π, π).
We use ξk from equation (4.19). The result is presented in figure 4.4 (for
t = 0.3, 0.4, 0.5 eV and a0 = 4Å) and is well approximated by the formula,

vF /a0 ≈
√

2 sin kF

[
2gt(t + 2t′ cos kF ) + x1

J

4
ξ̃

]
. (4.23)

In the above equation, we have set J ′ and J ′′ to zero for simplicity; an approx-
imation that becomes exact in the half-filled limit and only little influences
the result. As seen in figure 4.4, vF increases with x, but remains finite as
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Figure 4.4: Doping dependence of Fermi velocity, vF . The RMFT results are
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x → 0. As can be inferred from (4.23), the energy scale of the nodal veloc-
ity at x = 0 is determined by J , i.e., vF /(a0J) ≈ √

2 sin(kF )11
4
ξ̃ ≈ 1.5 (for

ξ̃ ≈ 0.38 and kF ≈ π
2
). The observed doping dependence stems from the

effects of the Gutzwiller projection PG. As x increases, holes gain kinetic
energy by direct hopping, viz., gt increases with doping; but gs decreases,
leading to the doping dependence of vF seen in figure 4.4. Note, that the
RMFT results presented in figure 4.4 are absolute in value. No rescaling has
been made for comparison with the experiments, contrary to the results for
the gap |∆k=(π,π)| presented in figure 4.3.

Above results agree with the numerical VMC results of Paramekanti, et al.,
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who extracted vF from the discontinuity of the first moment of the spectral
function in the repulsive U Hubbard model [128, 99] and of Yunoki, et al.,
who obtain vF from the quasiparticle dispersion in the t-J model [121]. A
comparison to ARPES data [27, 131, 132, 133, 134], presented in figure 4.4,
shows good agreement. The doping dependence of vF in the severely un-
derdoped regime remains to be settled experimentally. While some groups
report a nearly constant Fermi velocity (see data for LSCO in figure 4.4.),
others observe an slight increase with doping (see data for YBCO and Bi2212
in figure 4.4.). The energy scales t and J might be extracted, in principle,
from the ARPES data in vF , whenever data with high accuracy becomes
available. By using ξ̃ ≈ 0.38 and setting kF and the ratio t′/t to the experi-
mentally observed values, t and J can be fitted by (4.23). Within RMFT, we
find that the nodal properties remain essentially unchanged when ∆̃ is set to
0; i.e., the doping dependence of vF results from the vicinity of the state to
a Mott insulator, rather than the occurrence of superconductivity itself.

In figure 4.5, we present the energy dispersion, ω = −Ek, of the Gutzwiller-
Bogoliubov QP along the directions, (0, 0) → (π, 0), (π, 0) → (π, π), and
(π, π) → (0, 0) for different doping levels x. The dispersion is flattened
when approaching half-filling and the gap around (π, 0) becomes large. We
emphasize that these RMFT calculations adequately describe only the low
energy sector of the HTSC, and do not seek to explain the “kink” at higher
energies [27, 131, 132, 133, 134].

Above calculations present a systematic way to study the Hubbard model in
the strong coupling limit. The approach rests on the use of the t-J model
as an effective Hamiltonian and on determining expectation values within
the re-transformed trial wave function, e−iSPG|Ψ0〉; a scheme that can be
straightforward extended to excited states as shown in chapter 6 (see also
[7]).

4.4 Possible extensions and further applica-

tions

4.4.1 Incorporation of antiferromagnetism

The incorporation of antiferromagnetism is an example of a possible exten-
sion of the RMFT. In order to describe an antiferromagnet with finite sublat-
tice magnetization m, we have to allow for an additional degree of freedom in
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Figure 4.6: RMFT calculations including antiferromagnetism from Ogata
and Himeda [90]. The self-consistent parameters ∆̃ (pairing amplitude),
ξ̃ (hopping amplitude), and m (staggered magnetization) are shown as a
function of the doping rate x = 1 − n for J/t = 0.3 and t′ = J ′ = 0.
The dashed lines represent the results when the antiferromagnetic order is
suppressed, i.e, m is fixed to zero. From [90].

the wave function. When deriving the corresponding gap equation we must
keep in mind that the antiferromagnetic correlation effects the GA as dis-
cussed in section 3.1. However, Himeda and Ogata [85] showed by VMC cal-
culations that even the formulas from section 3.1 do not adequately describe
all aspects in a magnetic ordered state. They determined effective Gutzwiller
renormalization factors by comparing the numerically obtained expectation
values in the projected state with the respective mean field values before pro-
jection. It was found that the z-component of the Gutzwiller renormalization
factor gz

S is enhanced compared with those of the xy-component g±S .

Ogata and Himeda [90] argued that the discrepancies stem from spatial corre-
lations neglected by the GA. They derived extended Gutzwiller renormaliza-
tion factors by considering a cluster around the sites i and j to incorporate
further inter-site correlations. Applying these renormalization factors and
solving the gap equations including antiferromagnetism yields the results of
figure 4.6. We see that for doping, δ < 0.1, long range antiferromagnetic
order coexists with superconductivity. For higher doping the magnetization
m vanishes and solely the superconducting order remains. This result is ob-
tained neglecting the next nearest neighbor hopping (t′ = 0) and agrees with
previous VMC results [85, 86, 87, 88]. We note that the extended Gutzwiller
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renormalization factors of Ogata and Himeda are essential for reproducing
the VMC calculations. However, figure 4.6 does not quantitatively agree with
the experimentally phase diagram of hole-doped Cuprates, where antiferro-
magnetism already disappears at about 3 − 5% doping. A better matching
may be obtained by considering the effects of t′ as already done by VMC [89]
and quantum cluster methods [135, 136].

4.4.2 Applications to inhomogeneous systems

The RMFT was also applied to study inhomogeneities, such as stripes and
checkerboard charge order [81, 82, 83, 84], vortex cores [94, 95], or magnetic
and non-magnetic impurities [91, 92, 93]. These investigations throw light
on the interplay between antiferromagnetic correlations, d-wave supercon-
ductivity, and charge order and can be compared with STM data.

However, such studies require an unrestricted Hartree-Fock treatment of the
renormalized t-J Hamiltonian (4.4), i.e., local expectation values such as,
∆̃ij ≡ 〈c†i↑c†j↓〉Ψ0 , and, ξ̃ijσ ≡ 〈c†iσcjσ〉Ψ0 , must be considered independently
for each bond. Furthermore, the local charge densities niσ generally differ
from site to site, and thus the Gutzwiller renormalization factors of the renor-
malized Hamiltonian depend on the site indices i and j (gij

t , gij
S ). Special

attention must be paid when deriving these Gutzwiller renormalization fac-
tors, because the local charge densities can differ between the projected and
unprojected state (see discussion in section 3.1). For inhomogeneous systems
the RMFT gap equations generalize to the so-called Bogoliubov-de Gennes
equations, which must then be solved self-consistently.

The investigation of charge modulations within above framework [81, 82, 83,
84] provides an understanding of the recently observed 4 × 4 checkerboard
patterns in the STM data of the HTSC. These studies neglected long range
antiferromagnetism and assumed ξ̃ij = ξ̃ij↑ = ξ̃ij↓ and ni↑ = ni↓. This is
a reasonable assumption since the authors concentrated on doping levels,
where antiferromagnetism is not observed experimentally. The renormalized
mean field Hamiltonian can then be written as [83],

HMF = − t
∑

〈ij〉σ
gij

t (c†i,σcj,σ + h.c.)− µ
∑
iσ

ni,σ

− 3

4
J

∑

〈ij〉σ
gij

S (ξ̃jic
†
i,σcj,σ + h.c.− |ξ̃ij|2)

− 3

4
J

∑

〈ij〉σ
gij

S (∆̃jic
†
i,σc

†
j,−σ + h.c.− |∆̃ij|2) . (4.24)
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However, we must abandon above constraints for investigations around vortex
cores or impurities, where antiferromagnetic correlations are essential. Do-
ing so and solving the Bogoliubov-de Gennes equations under an uniformly
applied magnetic field shows that significant antiferromagnetic correlations
develop inside vortex cores [95] in agreement with experimental observations
[137, 138, 139, 140, 141, 142]. Tsuchiura, et al. [91, 92, 93] also studied the
effects of magnetic and non-magnetic impurities onto the local density of
states in HTSC within above approach. The obtained results resemble the
STM data [33, 34, 35] quite well1. The self-consistent determination of order
parameters within the renormalized Bogoliubov-de Gennes theory was also
applied to study surface effects in 2D superconducting states [144, 145].

To analyze above problems within an unrestricted Hartree-Fock theory most
authors consider a large (but finite) unit cell, which exhibits a certain charge
ordering pattern or which has a vortex core or an impurity site in the mid-
dle. The corresponding renormalized Bogoliubov-de Gennes equations can
then be solved by assuming a lattice of unit cells (e.g., Nc = 20 × 20) and
making use of Fourier transformations. While most of above studies used
the Gutzwiller factors derived in chapter 3 some recent works [95, 93] ap-
plied the extensions proposed by Ogata and Himeda [90] (see section 4.4.1).
All above studies concentrate on ground state properties (T = 0). Although
it would be highly interesting to consider finite temperature effects within
a renormalized unrestricted Hartree-Fock theory, such studies have not yet
been carried out.

4.4.3 Gossamer superconductivity

Another class of renormalized mean field theories concentrates onto a mod-
ified version of the Hubbard model, which includes a superexchange inter-
action J like in the t-J Hamiltonian. This t-J-U model was proposed by
Zhang [146] to study the so-called gossamer superconductivity [147]. Here,
the form of the GA, which includes finite double occupancy, must be used for
the renormalized Hamiltonian [146]. Then RMFT gap equations are obtained
in a straightforward manner, whereas the number of double occupancies is
determined by optimizing the ground state energy. Within this approach,
at half-filling, there is a first order phase transition from a Mott insulating
phase at large Coulomb repulsion U to a gossamer superconducting phase at
small U. Away from half-filling the Mott insulator evolves into an RVB state,

1Nevertheless VMC calculations [143] for a non-magnetic impurity report some minor
discrepancies to the corresponding RMFT study [93].
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which is adiabatically connected to the gossamer superconductor [148]. Al-
though several works [148, 149, 150, 151, 152] considered this ansatz for the
HTSC, it is probably more adequate for describing organic superconductors
[73, 74].

4.4.4 Time-dependent Gutzwiller approximation

The studies discussed so far mainly focused on the superconducting state
mediated by the antiferromagnetic superexchange J . Seibold and Lorenzana
[153] considered the Hubbard model without superconducting pairing and de-
veloped a time-dependent Gutzwiller approximation analogous to the time-
dependent Hartree-Fock theory. This new formalism incorporates ground
state correlations beyond the GA within the random phase approximation
and allows for a computation of the dynamical density-density response func-
tion. The scheme successfully describes several interesting features of HTSC,
such as the dynamics of stripes [154] or the dispersion of magnetic excita-
tions [155, 156, 157] and was recently applied to investigate checkerboard
inhomogeneities [158].



Chapter 5

Variational Monte Carlo
calculations for HTSC - an
overview

The VMC technique allows for an accurate evaluation of expectation values
in Gutzwiller projected wave functions. In this chapter we present technical
details on the VMC method and review the variational search for the opti-
mal ground state energy in the Hubbard and t-J model. In this context, we
discuss the coexistence of superconductivity with antiferromagnetism and
flux states as well as the improvement of the trial wave function by fur-
ther variational parameters and Jastrow factors. Further we consider doping
dependent features of projected wave functions and compare them to exper-
imental findings in HTSC. At the end of the chapter we discuss a recent
numerical study dealing with the tendency towards a spontaneous breaking
of the Fermi surface symmetry.

5.1 Details on the VMC method

The VMC method was first applied to the study the projected Fermi sea
[98, 159], which has a fixed particle number. However, superconducting BCS
wave functions |Ψ0〉 are generally defined in a grand canonical ensemble,
where the wave function shows particle number fluctuations. These particle
number fluctuations are also present in the projected BCS wave function,
|Ψ̃〉 ≡ PG |Ψ0〉. Within the VMC scheme we have now two possibilities, we
can either directly work with |Ψ̃〉 (grand canonical ensemble) [80], or we can
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project out the particle number fluctuations by a projector PN that fixes
the particle number and work with |Ψ〉 ≡ PN |Ψ̃〉 (canonical ensemble) [79].
Within this thesis we only present the method of Gros [79, 122], which is
used in most recent VMC calculations, since it avoids complications due to
the fluctuating particle number. Possible discrepancies between the grand
canonical and the canonical VMC scheme are discussed in detail in section
3.2.

5.1.1 Real space representation of the trial wave func-
tion

Before performing a VMC calculation we have to rewrite the wave function
in an appropriate way. By inserting a complete set of states { |α〉 } for the
subspace that excludes double occupancy and has fixed particle number N ,
we can remove the projection operator PN and PG from the wave function
|Ψ〉,

|Ψ〉 ≡ PNPG|Ψ0〉 =
∑

α

〈α|Ψ0〉 |α〉 . (5.1)

The most suitable choice of |α〉 is given by a straightforward real space rep-
resentation in terms of fermion creation operators,

|α〉 = c†R1,↑ . . . c†RN↑ ,↑c
†
R1,↓ . . . c†RN↓ ,↓|0〉 . (5.2)

The state (5.2) is specified by two disjoint sets {R1 . . .RN↑} and {R1 . . .RN↓},
which determine the positions of the up- and down-spin electrons on a finite
lattice.

Next we have to calculate the overlap 〈α|Ψ0〉. To determine this quantity by
a Monte Carlo calculation, we write the BCS wave function PN |Ψ0〉 as [45],

PN |Ψ0〉 ≡ PN

∏

k

(
uk + vk c†k↑c

†
−k↓

)
|0〉 (5.3a)

∝ PN

∏

k

(
1 + ak c†k↑c

†
−k↓

)
|0〉 (5.3b)

∝
(∑

k

ak c†k↑c
†
−k↓

)N/2

|0〉 (5.3c)

=


 ∑

Rj,↓,Rj,↑

a(Rj,↓ −Rj,↑) c†Rj,↑,↑c
†
Rj,↓,↓




N/2

|0〉 . (5.3d)
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When going to (5.3b) we defined the quantity ak ≡ vk/uk, which becomes

ak =
∆k

ξk +
√

ξ2
k + ∆2

k

(5.4)

if we use the mean field result from (4.8). Due to the projection operator PN

we can then present the wave function by a product of N/2 pairs, where we
use Nσ = N↑ = N↓ = N/2, which is valid for a BCS wave function. In (5.3d)
we assumed ak = a−k, applied a Fourier transformation, and defined

a(r) ≡
∑

k

ak cos(k · r) . (5.5)

Finally, we arrive at the real space representation of PN |Ψ0〉 as given in
(5.3d).

Since all configurations α in (5.1) have the same to particle number N ,
〈α|Ψ0〉 = 〈α|PN |Ψ0〉. Making use of (5.3d) one finds that the overlap, 〈α|Ψ0〉,
is given [79, 122] by the determinant of the matrix Aα which has the form,



a(R1,↓ −R1,↑) a(R1,↓ −R2,↑) . . . a(R1,↓ −RNσ ,↑)
a(R2,↓ −R1,↑) a(R2,↓ −R2,↑) a(R2,↓ −RNσ ,↑)

...
. . .

...
a(RNσ ,↓ −R1,↑) a(RNσ,↓ −R2,↑) . . . a(RNσ,↓ −RNσ ,↑)


 .

To see this we must expand (5.3d) and gather all terms contributing to the
configuration α, which has down-electrons on {R1,↓,R2,↓ . . .RNσ,↓} and up-
electrons on {R1,↑,R2,↑ . . .RNσ,↑}. The number and functional form of these
terms are obviously the same as those for |Aα|. Next we must order up- and
down-electrons in the same way for all terms. By doing so we pick up relative
signs, which are exactly reproduced by the determinant of Aα.

We note that above real space representation can be extended [69] to wave
functions, which allow for a staggered magnetization and an unequal number
of up- and down-electrons, N↑ 6= N↓. Then, the a(r) in (5.3d) and (5.5)
becomes spin and site dependent, i.e., a(r) → a(Ri,σi

,Rj,σj
, σi, σj). The

values of a(Ri,σi
,Rj,σj

, σi, σj) depend on the particular choice of the mean
field wave function and can be evaluated numerically. The overlap 〈α|Ψ0〉 is
then determined by [69],

〈α|Ψ0〉 = Pf (Q) , (5.6)

where Pf (Q) is the Pfaffian1 of the matrix

Q = a(Ri,σi
,Rj,σj

, σi, σj)− a(Rj,σj
,Ri,σi

, σj, σi) . (5.7)

1The Pfaffian is an analog of the determinant that is defined only for antisymmetric
matrices. For an antisymmetric matrix A, the square of the Pfaffian is equivalent to its
determinant, viz., Pf (A)2 = |A|.
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The positions of the electrons, Ri,σi
and Rj,σj

determine the real space
configuration α. For a simple BCS wavefunction with a(Ri,↑,Rj,↑, ↑, ↑) =
a(Ri,↓,Rj,↓, ↓, ↓) = 0 and a(Ri,↑ − Rj,↓) = a(Ri,↑,Rj,↓, ↑, ↓), the overlap
〈α|Ψ0〉 in equation (5.6) reduces to the previously discussed determinant
|Aα|.

5.1.2 Implementation of the Monte Carlo simulation

By using (5.1) we can write the expectation value of an operator Ô in |Ψ〉
as,

〈Ô〉Ψ =
〈Ψ0|PGPN ÔPNPG|Ψ0〉
〈Ψ0|PGPNPG|Ψ0〉 (5.8a)

=
∑

α,β

〈α|Ô|β〉 〈Ψ0|α〉〈β|Ψ0〉
〈Ψ0|PNPG|Ψ0〉 (5.8b)

=
∑

α

(∑

β

〈α|Ô|β〉〈β|Ψ0〉
〈Ψ0|α〉

)
|〈Ψ0|α〉|2

〈Ψ0|PNPG|Ψ0〉 (5.8c)

=
∑

α

f(α) p(α) , (5.8d)

with

f(α) =
∑

β

〈α|Ô|β〉〈β|Ψ0〉
〈Ψ0|α〉 , (5.9a)

p(α) =
|〈Ψ0|α〉|2

〈Ψ0|PNPG|Ψ0〉 . (5.9b)

Here, α and β are some real space configurations as given by (5.2). Since,

p(α) ≥ 0 ,
∑

α

p(α) = 1 , (5.10)

are the features of a probability distribution, we can evaluate 〈Ô〉Ψ by a ran-
dom walk through the configuration space with weight p(α). Therefore, we
can analyze (5.8) by a standard Metropolis Monte Carlo calculation. We note
that the norm 〈Ψ0|PNPG|Ψ0〉 in (5.9b) is not of relevance within the Monte
Carlo calculation, since only relative probabilities p(α) enter the transition
probability.
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Figure 5.1: (left) Real space picture of the L2 + 1 lattice for L = 5, with
periodic boundary conditions, (5, 1) and (−1, 5), applied along the opposite
edges of the tilted square indicated by dashed lines. (right) The k-space
Brillouin zone of the “tilted lattice” for L = 5. From [99].

Next, we give some comments on the updating procedure and the calculation
of the determinant |Aα|. Most VMC calculations generate a new configura-
tion α′ by randomly interchanging two electrons with opposite spin or moving
an electron to an empty site. The so-constructed random walks are ergodic.
In general, to optimize the numerical performance, the rules for generating
the random walk through the configuration space should be chosen in order
to maximize the acceptance rate, T (α → α′).

The calculation of |Aα| is numerically expensive and is required at each Monte
Carlo step for the computation of p(α). Therefore it is advantageous to
determine the ratio |Aα′|/|Aα| between new and old determinant (new and
old configuration α′ and α) instead of directly evaluating |Aα′| for every
configuration. According to Ceperley, et al. [160], this ratio can be efficiently
computed within O(N2

σ) computation steps, while a direct evaluation of |Aα′|
requiresO(N3

σ) steps. The trick is to store not only the matrix Aα, but also its
inverse A−1

α . For the commonly used updating procedures mentioned above,
α′ differs from α only by the interchange of two electrons with opposite spins
or the interchange of an electron and an empty site. Thus, the matrices Aα′

and Aα differ only by one row and one column, and |Aα′|/|Aα| = |Aα′A
−1
α | ,

which enters the transition rate T (α → α′), can easily be computed.

A general advantage of the Monte Carlo method is the possibility to estimate
the numerical accuracy systematically with the error being proportional to
the inverse square root of the number of Monte Carlo steps Nr. Present
computer capacities allow to consider sufficiently large cluster, for which finite
size effects play a minor role. However, ak = vk/uk, equation (5.4), becomes
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singular whenever ∆k = 0 and ξk ≤ 0. In particular, that is problematic
for a d-wave gap, where ∆k = 0 for all k-points along the Brillouin zone
diagonals, i.e., |kx| = |ky|. It is thus convenient to avoid these k-points
by an appropriate choice of boundary conditions. There are three different
approaches discussed in literature. The first possibility is a tilted lattice with
periodic boundary conditions (PBCs). Such a lattice has L2 + 1 sites with
odd L, preserves the fourfold rotational symmetry of the lattice, and does
not introduce any twist in the boundary conditions. An example for these
widely used boundary conditions (see, e.g., [79, 99, 128, 122]) is illustrated
in figure 5.1. Another choice are L×L lattices with even L and periodic and
antiperiodic boundary conditions in the x- and the y-direction, respectively.
Finally it is possible to use a rectangular Lx × Ly lattice with PBCs and
mutually coprime dimensions Lx and Ly, i.e., the greatest common divisor
of Lx and Ly is 1.

5.2 Improvements of the trial wave function

The early VMC calculations for projected BCS states of Gros [79] and Yokoyama
and Shiba [80] were carried out to check whether a Gutzwiller projected
superconducting wave function constitutes a competitive candidate for the
ground state in the t-J model. To limit the number of variational parameters
they used a dimensionless dispersion, ξk = −2 (cos kx +cos ky)− µ, and vari-

ous superconducting gap functions ∆k to calculate ak = ∆k/(ξk+
√

ξ2
k + ∆2

k).
In his original work, Gros [79] compared variational energies of s-wave,
∆k = ∆, d-wave, ∆k = ∆ (cos kx − cos ky), and extended s-wave, ∆k =
∆(cos kx + cos ky) − µ, functions. By optimizing solely2 the variational pa-
rameter ∆, he found that a d-wave gap can substantially lower the energy
compared to projected Fermi sea (∆k = 0) at half-filling as well as at finite
doping. The result is consistent with other early works such as the VMC
calculations of Yokoyama and Shiba [80] or the mean field theories of Zhang,
et al. [76] and Kotliar and Liu [77].

More detailed studies showed that the optimal superconducting state remains
a pure d-wave even if mixed states of s- and d-wave pairing are considered
[161]. The optimal variational parameter ∆ decreases when going away from
half-filling and vanishes at about 30% doping. The exact dimension of the

2Due to the fixed particle number, the chemical potential µ becomes an additional free
parameter. However, this parameter was fixed in [79] by setting the chemical potential µ
to those of the unprojected wave function.
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Figure 5.2: Optimal energies per site (in units of J) for five different
Gutzwiller projected wave functions with a linear part subtracted (E−µsep)
as a function of doping x. Wave functions: superconducting without an-
tiferromagnetism (SC, solid circles), superconducting with antiferromag-
netism (SC+AF, empty circles), staggered-flux without antiferromagnetism
(SF, solid squares), staggered-flux with antiferromagnetism (SF+AF, empty
squares), and zero-flux (projected Fermi sea, empty diamonds). The arrow
in the panel shows the best variational estimate for the half-filled system
(E = −0.669J per site) [162, 163]. Only nearest neighbor hopping is consid-
ered and J/t = 0.3. From [88].

superconducting region in the phase diagram depends on the choice of J/t
as well as on the inclusion of the correlated hopping term [161].

5.2.1 Antiferromagnetism and flux states

Further extensions [85, 86, 87, 88, 89] considered the incorporation of antifer-
romagnetism for a more accurate description of the t-J model near half-filling.
These studies show a coexistence between superconductivity and antiferro-
magnetic long-range order (AFLRO) for doping x ≤ 0.1. At half-filling, the
optimal so-constructed wave function has a staggered magnetization of 0.75
and a variational energy of −0.664J per site; impressively close to the best
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numerical estimate of −0.669J per site by Green’s function Monte Carlo
techniques [162, 163]. A comparison of the variational energies of the differ-
ent wave functions is given in figure 5.2. The figure also reveals an upward
convexity of the ground state energy (SC+AF state) as a function of doping.
That indicates a phase separation at xsep = 0.13 (see figure 5.2). However,
Ivanov [88] demonstrated that a sufficiently strong nearest neighbor Coulomb
repulsion can suppress the formation of separated phases. Further VMC cal-
culations showed that the coexistence of superconductivity and AFLRO is
nearly absence if next and next next nearest neighbor hopping are included
[89]. For these more realistic model parameters, the AFLRO disappears at
about 6% doping in better agreement with experimental observations [89].

Apart from the superconducting states, the projected staggered-flux state
was considered as a competitive variational state, however, its energy lies
above those of the d-wave for all dopings (figure 5.2). As discussed in chapter
4, the flux state becomes identical to the superconducting state at half-filling
explaining the collapse of the energies in figure 5.2 (see also [117]). This
behavior is due to SU(2)-symmetry, which is also made responsible for the
occurrence of staggered-vorticity correlations of current in the d-wave state
at small dopings [164].

5.2.2 Increasing the number of variational parameters

In up-to-date VMC calculations, the chemical potential µ as well as the next
nearest neighbor hopping t′var are chosen as additional variational parameters,
which are optimized numerically. While the chemical potential has minor in-
fluence onto the optimal state [161], a variational t′var can significantly effect
the shape of the Fermi surface. Himeda and Ogata [165] reported that for
a bare dispersion t′ = 0 and a doping level of x = 0.15 the lowest energy is
provided by a variational t′var = −0.1t, causing a spontaneous deformation
of the Fermi surface. More detailed VMC studies [166] include next nearest
(t′) and next next nearest (t′′) neighbor hopping in the bare dispersion and
also use variational parameters t′var and t′′var. The obtained momentum dis-
tribution n(k) (related to the Fermi surface, see section 6.5) together with
the optimal variational ∆ and t′var from these calculations are illustrated in
figure 5.3. This work of Shih, et al. [166] also revealed that the more nega-
tive the bare ratio t′/t the higher the superconducting pairing in the optimal
variational state of the t-J model. This is in agreement with band-structure
calculations [167] that suggest that the ratio t′/t is essential to raise Tc.

By concentrating on inhomogeneous patterns, VMC calculations [168] found
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Figure 5.3: Momentum distribution n(k) in the first Brillouin zone for doping
x = (a) 0.19, (b) 0.31 (c) 0.42 (d) 0.49 for 12 × 12 lattice with J/t = 0.3,
t′ = −0.3t, and t′′ = 0. (e) optimal parameters t′v (squares) and ∆ (circles).
From [166].

that around x = 1/8 stripe states with spatially oscillating d-wave supercon-
ductivity can lower the variational ground state energy in the two-dimensional
t-J model. More recent studies report that at x = 1/8 a bond-order modu-
lated staggered flux state can also overcome the RVB superconductor for suffi-
ciently large short range Coulomb repulsion [169]. However, the energy gains
within these studies are often quite small and sensitively depend on model
parameters. Nevertheless these VMC calculations show that the slightly
doped t-J model exhibits tendencies towards various inhomogeneities, which
could be relevant for explaining experimental observations in the underdoped
HTSC.

The energy of the projected d-wave state can further be improved by the
incorporation of Jastrow factors (see section 2.6). Sorella, et al. [120] nu-
merically showed that the so-obtained wave function lowers the variational
energy and still exhibits long range superconducting order. Nevertheless
there is still a continuing controversy (see [170, 171, 172]) whether the su-
perconductivity within the VMC scheme results only from a biased choice
of the wave function or is indeed a ground state property of the t-J model.
This debate is however, in our opinion, not an obstacle for an improved
understanding of the HTSC, because we are mainly interested in physical
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properties of projected wave functions rather than in exact ground states,
which we will probably never find. We may let us inspire by Anderson, et al.
[173], who stated: “The philosophy of this method is analogous to that used
by BCS for superconductivity, and by Laughlin for the fractional quantum
Hall effect: simply guess a wave function. Is there any better way to solve a
non-perturbative many-body problem?”

5.3 Ground state properties - VMC results

Within this section we discuss ground state properties of the HTSC by con-
sidering observables in a Gutzwiller projected superconducting state. We fol-
low, in part, Paramekanti, et al. [99, 128], who studied the Hubbard model
in the strong coupling limit using the re-transformed trial wave function,
e−iSPG|Ψ0〉 (see chapter 4). By evaluating the canonical transformation e−iS

to O(t/U), this ansatz can be treated within the VMC scheme. The t/U -
corrections due to e−iS provide a more accurate description of the HTSC,
however, the qualitative nature of the results is not changed compared to the
t-J model. We note that a coexistence of superconductivity with a flux state,
antiferromagnetism, or a charge ordered pattern is neglected in the following
considerations.

5.3.1 Superconducting gap and order parameter

In the previous section we have seen that the variational parameter ∆, which
is proportional to the superconducting gap ∆k, increases when going towards
half-filling. The doping dependence of ∆ is illustrated in figure 5.3 and
resembles the RMFT result (figure 4.3) as well as the experimental observed
gap at k = (π, 0). However, we cannot deduce the relevant energy scale
of the gap from ∆, since it is a dimensionless parameter within the VMC
calculations. For detailed statements about the gap we have to consider the
energy of excited states as we will do in the chapters 6 and 7.

When considering the variational parameter ∆, we must realize that it does
not correspond to the true superconducting order Φ ≡ |〈c†i↑c†i+τ↓ − c†i↓c

†
i+τ↑〉|

as discussed in chapter 4. For this quantity we can analyze the off-diagonal
long range order (ODLRO) [79, 122, 128] defined by,

Fα,β(r− r′) = 〈c†↑(r)c†↓(r + α̂)c↓(r)c↑(r + β̂)〉 ,
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Figure 5.4: Doping dependence of the superconducting order parameter Φ
from VMC calculations of Paramekanti, et al. [128]. Model parameters: U =
12t, t′ = −t/4.

where α̂, β̂ = x̂, ŷ. In the limit of large |r − r′|, Fα,β is related to Φ2 via

Fα,β → ±Φ2 with + (−) sign obtained for â ‖ (⊥) to b̂, indicating d-wave su-
perconductivity [128]. The doping dependence of the superconducting order
parameter Φ is depicted in figure 5.4 (VMC calculations of Paramekanti, et
al. [128]). It is not identical to ∆ as first noted by Gros [79, 122]. The VMC
calculation match the RMFT result (figure 4.3), where Φ vanishes linearly as
x → 0. The vanishing order parameter Φ indicates a Mott insulating phase
at x = 0, where superconductivity is destroyed due to the suppression of
particle number fluctuations. At finite doping x a superconducting state is
realized within the range 0 < x < 0.35.

5.3.2 Derivation of spectral features from ground state
properties

Next we follow [128] and analyze the one-particle spectral function A(k, ω)
by calculating the moments,

Ml(k) =

∫ 0

−∞
dω ωl A(k, ω) , (5.11)

in the projected d-wave ground state at T = 0. This ansatz allows to obtain
information about A(k, ω) from ground state expectation values without the
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Figure 5.5: (a) The momentum distribution function n(k) plotted along the
diagonal k = (k, k) showing the jump at kF which implies a gapless nodal
quasiparticle with spectral weight Z. (b) Nodal quasiparticle weight Z(x) as
a function of doping x compared with the simple SBMFT result Zsb(x) = x.
Model parameters: U = 12t, t′ = −t/4. From [128].

need for explicit representations of the excited states. We first concentrate
on the zeroth moment M0(k) ≡ n(k), which is equivalent to the moment
distribution n(k). Figure 5.5(a) shows that n(k) has a jump along (0, 0) to
(π, π). This implies the existence of gapless quasiparticles and allows to write
the low energy part of the spectral function along the diagonal as

A(k, ω) = Zδ(ω − ξk) + Ainc , (5.12)

where ξk = vF (k − kF ) is the quasiparticle dispersion and Ainc a smooth
incoherent part. The locating of the discontinuity determines the Fermi point
kF and its magnitude gives the quasiparticle weight Z. Figure 5.5(b) reveals
a significant doping dependence and shows that Z vanishes when approaching
the Mott-Hubbard insulator x = 0. This behavior is in agreement with more
direct calculations, which explicitly include quasiparticle states (chapters 6
and 7) as well as experiments.

To determine the nodal Fermi velocity vF , we have to evaluate the first
moment M1(k) = 〈c†kσ[H, ckσ]〉 along the nodal direction. Due to the singular
behavior of A(k, ω) at kF , it can be written as,

M1(k) = ZξkΘ(−ξk) + smooth part . (5.13)

Since the slope dM1(k)/dk has a discontinuity of ZvF at kF , Paramekanti, et
al. could extract the nodal Fermi velocity vF in the way presented in figure
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Figure 5.6: (a) The first moment M1(k) of the spectral function along the
zone diagonal, with smooth fits for k < kF and k > kF , showing a dis-
continuity of ZvF in its slope at kF . (b) Doping dependence of the nodal
quasiparticle velocity obtained from the slope discontinuity of M1(k). Error
bars come from fits to M1(k) and errors in Z. Also shown are the bare nodal
velocity v0

F , the slave boson mean field vsb
F (x) (dashed line), and the ARPES

estimate v
(expt)
F [13, 14]. Model parameters: U = 12t, t′ = −t/4. From [128].
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Figure 5.7: (a) Doping dependence of the total (Dtot) and low energy (Dlow)
optical spectral weights (b) The optical spectral weight Dlow versus the nodal
quasiparticle weight Z. Model parameters: U = 12t, t′ = −t/4. From [128].

5.6(a). The doping dependence of vF is given in figure 5.6(b) together with
its bare value v0

F . The so obtained Fermi velocity is only weakly doping
dependent and consistent with the ARPES data. However, this estimate
of vF is rather inaccurate compared to the direct evaluation [121] from the
quasiparticle excitation energies discussed in Chapter 7.

Ground state expectation values also provide important information about
the optical conductivity in the Hubbard and the t-J model. The total optical
spectral weight Dtot(x) can be calculated by [99]

∫ ∞

0

dω < σ(ω) = π
∑

k

m−1(k)n(k) ≡ πDtot/2 , (5.14)

where m−1(k) = (∂2ε(k)/∂kx∂kx) is the non-interacting mass tensor. ε(k) is
the non-interacting dispersion and we set h̄ = c = e = 1. Since the integral in
(5.14) goes from 0 to +∞, it includes contributions from the upper Hubbard
band and is thus finite even at x = 0 as shown in figure 5.7(a).
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Paramekanti, et al. [99, 128] emphasized that the low frequency optical
weight, or Drude weight [174],

Dlow = ∂2〈HA〉/∂A2 , (5.15)

is more interesting, because the upper cutoff is chosen smaller than U and
thus excludes the upper Hubbard band. In (5.15), A is the electron-magnetic
vector potential, which is introduced into the Hamiltonian (2.1) in terms of
a Peierls substitution [174],

c†iσcjσ → c†iσcjσ exp (i eA (Ri −Rj)) , (5.16)

where we used A = (A, 0) and set h̄ = c = 1 for simplicity. As shown in figure
5.7(a), the Drude weight Dlow vanishes linearly for x → 0. This demonstrates
that the Gutzwiller projected superconductor indeed describes an insulator
in the half-filled limit, which can be argued to be a general property of
projected states [99]. The VMC results for the Drude weight Dlow resemble
experimental data in magnitude as well as in the doping dependence quite
well [99]. By plotting Dlow versus Z (from the nodal point) Paramekanti, et
al. also illustrated that Dlow ∝ Z, see figure 5.7(b).

The Drude weight Dlow also provides an upper bound to the superfluid stiff-
ness Ds, i.e., Ds ≤ Dlow [175]. It follows that Ds → 0 as x → 0 in agreement
with experiments [176]. Since the penetration depth λL is related to Ds by
λ−2

L = 4πe2Ds/h̄
2c2dc , where dc is the mean-interlayer spacing along the c

axis in a layered compound, Paramekanti, et al. [99] could also estimate a
lower bound for λL which is again consistent with experimental data.

Above VMC calculations based on a Gutzwiller projected superconducting
ground state describe several key features of HTSC remarkable well. The
results are in general agreement with RMFT and confirm the usefulness of
projected wave functions in the context of HTSC. Although restricted to
T = 0 above ansatz can give some hints onto the finite temperature regime.
The superconducting order parameter Φ resembles the doping dependence
of Tc and vanishes at half-filling, while the superconducting gap (expected
to scale with ∆) remains finite. This indicates that the underdoped regime
exhibits strong pairing but weak inter-pair phase coherence, which could lead
to the break down of superconductivity and to the well-known pseudogap
behavior.
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Figure 5.8: Fermi surface of the isotropic t-J model with J = 0.3t and
t′ = −0.3t at x = 0.07 (a) RMFT results for the Fermi surface of the normal
state with ∆k ≡ 0 (quasi 1D state, solid line) and the optimal d-wave state
(isotropic, dashed line). (b) Best quasi 1D state on a (152 + 1)-sites lattice
by VMC; filled circles indicate the Fermi surface. From [8].

5.4 Investigation of the Pomeranchuk insta-

bility

In section 5.2 we discussed various states that coexist and/or compete with
superconductivity in the Hubbard and the t-J model. As a further example
of a competing order we present VMC calculations of Edegger, et al. [8] indi-
cating a tetragonal symmetry breaking of the 2D Fermi surface due to strong
electron correlations. As illustrated in figure 5.8(a), this instability results
in a deformation of the Fermi surface, which becomes quasi one dimensional,
although the underlying two dimensional (2D) lattice is still isotropic. Moti-
vated by the Fermi surface depicted in figure 5.8(a), the state resulting from
the tetragonal symmetry breaking was denoted as a “quasi 1D state”.

The instability towards a quasi 1D state was first reported by Yamase and
Kohno [177, 178] within slave boson mean field theory (SBMFT) for the
2D t-J model and later by Halboth and Metzner [179] within a renormal-
ization group (RG) study for the 2D Hubbard model in the limit of weak
coupling. Subsequently, several authors [8, 180, 181, 182, 183, 184, 185,
186, 187, 188, 189, 190, 191, 192, 193] investigated this tetragonal symmetry
breaking, which was also called “Pomeranchuk instability” (PI).

The VMC technique provides an excellent opportunity to check the predic-
tions from previous SBMFT and RG studies. However, the projected wave
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function must be extended to allow for a possible quasi 1D state as well as
for finite d- and s-wave pairing. When calculating ak = ∆k/(ξk +

√
ξ2
k + ∆2

k)
we choose,

ξk = − 2 [(1 + δ1D
var) cos kx + (1− δ1D

var) cos ky]

− 4t′var cos kx cos ky − µvar (5.17)

and
∆k = ∆(d)

var(cos kx − cos ky) + ∆(s)
var(cos kx + cos ky) . (5.18)

and therefore get the following five variational parameters: (i) the asymmetry
δ1D
var between the x− and the y−direction; (ii) the variational next nearest

neighbor hopping term t′var; (iii) a variational chemical potential µvar; (iv)

and (v) variational parameters for d− and s−wave pairing, ∆
(d)
var and ∆

(s)
var,

respectively. Using standard VMC techniques as discussed before, Edegger,
et al. [8] computed the energy expectation values and minimized the energy
by searching for the optimal set of variational parameters.

5.4.1 Isotropic lattice

We first present results for the isotropic t-J Hamiltonian, with model param-
eters J = 0.3t and t′ = −0.3t. These are reasonable model parameters for
the phenomenology of the high temperature superconductors. The optimal
solution for various values of hole concentration, x = 0 − 0.3, is determined
by searching through the whole variational parameter space. We find that
the pure isotropic projected d−wave state always optimizes the ground state
energy, i.e., the s−wave parameter ∆

(s)
var and the asymmetry δ1D

var vanish for all

values of x, within the numerical resolution [∆∆
(s)
var = 0.05 and ∆δ1D

var = 0.05].

In figure 5.9(a) (circles) we show the condensation energy per site, econd,
of the optimal state with respect to the projected isotropic Fermi sea. The
condensation energy econd is calculated by comparing the VMC energy expec-
tation values in the projected Fermi sea and optimal d−wave states. We see a
continuous increase of |econd| and of the superconducting d−wave parameter
[shown in figure 5.9(b)] as doping x decreases. The optimal variational value
for t′var is given in figure 5.9(c). These results show that the additional vari-

ational parameters ∆
(s)
var and δ1D

var are not relevant for improving the ground
state in the isotropic t-J model.

To uncover the PI, it is necessary to suppress superconductivity by setting
∆k ≡ 0. Doing so, the VMC calculations indeed reveal a PI; we obtain an
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Figure 5.9: (a) VMC results for condensation energies per site econd of the
quasi 1D state (δ1D

var 6= 0, ∆k ≡ 0) and the d-wave state (∆k 6= 0, δ1D
var ≡ 0)

with t′ = −0.3 t; see (5.17) and (5.18) for the definition of these states.

Optimal variational parameters ∆
(d)
var and t′var of the d-wave state are shown

in (b) and (c). Optimal variational parameters δ1D
var and t′var of the quasi 1D

state are given in figure 5.10. The errors in (b) and (c) are ∆∆
(d)
var = 0.05 and

∆t′var = 0.05, respectively. System sizes: L = 112 + 1 = 122, L = 132 + 1 =
170, L = 152 + 1 = 226, and L = 172 + 1 = 290. From [8].
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Figure 5.10: VMC results for a quasi 1D state for the isotropic t-J model
(J = 0.3t) with t′ = 0 (circles) and t′ = −0.3t (squares). Doping dependence
x of (a) the condensation energy per site, econd, and (b),(c) the optimal
variational δ1D

var. The errors in (b) and (c) are ∆δ1D
var = 0.05. System sizes:

L = 152 + 1 = 226 and L = 172 + 1 = 290. From [8].

small improvement of the energy expectation value relative to the isotropic
projected Fermi sea by using a finite asymmetry δ1D

var, although the underlying
lattice is still isotropic. We compare the condensation energy of this state
to that of the d−wave state. Results are shown in figure 5.9(a). As for the
d−wave state, |econd| for the quasi 1D state initially increases as x decreases.
However its energy gain is much less than that of the d−wave, and so the
latter is always favored on an isotropic lattice. Furthermore, note that the
condensation energy of the quasi 1D state saturates and finally vanishes very
close to half-filling. We will come back to this point later.

The resulting VMC Fermi surface of the optimal quasi 1D state at x = 0.07 is
shown in figure 5.8(b). It reveals why finite size effects become important in
the VMC calculations when dealing with a finite asymmetry in the projected
Fermi sea. Varying δ1D

var causes discontinuous changes of the Fermi surface
on a finite lattice. The occupied states regroup for certain δ1D

var leading to
small yet discontinuous changes in the FS as a function of the variational
parameter δ1D

var.

These finite size effects cause a rather large error for the optimal value of
asymmetry, ∆δ1D

var = 0.05, and for the effective next nearest neighbor hopping,
∆t′var = 0.05 − 0.1. The jump size increases with decreasing system size,



CHAPTER 5. VARIATIONAL MONTE CARLO CALCULATIONS 102

0 0.1 0.2 0.3
doping x

-0.4

-0.3

-0.2

-0.1

0

t’ v
ar

t’=0, L=290
t’=0, L=226
t’=-0.3, L=290
t’=-0.3t, L=226

Figure 5.11: VMC results for the quasi 1D state in the isotropic t-J model
(J = 0.3t) with t′ = 0 (circles) and t′ = −0.3t (squares). Doping dependence
x of the optimal variational t′var. ∆t′var = 0.1; System sizes: L = 152+1 = 226
and L = 172 + 1 = 290. From [8].

thus requiring sufficiently large lattices. The problem is less severe when
considering a superconducting state, where the occupancy in momentum
space changes continuously at the Fermi surface.

To consider the effect of t′ on the PI, we compared the two cases, t′ = 0
and t′ = −0.3t, in the absence of superconducting order (∆k ≡ 0). The PI
is stronger for t′ < 0, yielding a larger condensation energy [figure 5.10(a)].
As seen in figure 5.10(b), the anisotropy is significant even at higher doping
levels and exists up to x ≈ 0.2 for t′ = −0.3t. For t′ = 0, the δ1D

var is significant
only in the range, x = 0.03− 0.10 [figure 5.10(c)]. In figure 5.11 we show the
optimal variational value for t′var. Interestingly, t′var → 0 for x → 0 even for a
bare dispersion t′ = −0.3t. Recently, we reported a similar renormalization
of the next nearest neighbor hopping terms due to strong coupling effects
within RMFT [7, 9], which will be discussed further in detail in section 6.5.3.

The PI can also be studied by RMFT (figure 5.12) in analogy to above VMC
results by allowing for a finite asymmetry when solving the gap equation.
RMFT or SBMFT analyzes also provide a better understanding for the origin
of the PI. Let us therefore consider the effective hopping t̃τ in the τ -direction,

t̃τ ≡ gt tτ +
3gs

8
J ξ̃τ , (5.19)

which can be read off from the RMFT dispersion ξk in (4.12). Here, J =
4t2τ/U , ξ̃τ ≡

∑
σ〈c†i,σci+τ,σ〉Ψ0 , and τ = x̂, ŷ. The renormalization factors

for the kinetic energy, gt = 2x/(1 + x), and for the spin-spin correlation,
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Figure 5.12: RMFT results for the isotropic t-J model with J = 0.3t. (a)
Condensation energy per site relative to the isotropic non-superconducting
solution (∆k ≡ 0, ξ̃x = ξ̃y) for the quasi 1D state (∆τ ≡ 0) and for the optimal
d-wave state with t′ = −0.3t. (b) Asymmetry and (c) condensation energy
per site for the quasi 1D state with t′ = 0 and t′ = −0.3, respectively. The
order parameter characterizing the asymmetry, δ1D

RMFT is given by δ1D
RMFT ≡

(t̃x− t̃y)/(t̃x + t̃y). The RMFT results in (a)-(c) can be directly compared to
VMC calculations in figure 5.9 and figure 5.10. From [8].
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Figure 5.13: RMFT and VMC results for the d + s-wave ground state of the
anisotropic t-J model with J = 0.3t and δ1D

0 ≡ (tx− ty)/(tx + ty) = 0.05. (a)
Effective asymmetry δ1D ≡ (t̃x−t̃y)/(t̃x+t̃y) from RMFT as a function of hole
doping x for (dashed) t′ = 0 and (solid) t′ = −0.3t. VMC results for t′ = 0
are given by squares and circles for L = 122 and L = 170, respectively. (b)
RMFT Fermi surface (solid lines) of the d+s-wave ground state and the tight
binding dispersion (dashed) at x = 0.08 with t′ = −0.3t and δ0

1D = 0.025.
From [8].

gs = 4/(1 + x)2, are derived within the GA. (5.19) shows that the tendency
to a quasi 1D state stems from the J-term [2nd term in (5.19)] because it
includes the factor ξ̃τ . For an isotropic dispersion it is the only quantity
in (5.19) that may cause an anisotropy in the effective hopping t̃τ . Similar
arguments apply for the enhancement of a bare asymmetry δ1D

0 in a slightly
anisotropic lattice (see also discussion below). The origin of the PI may also
be understood in the framework of a Landau-Ginzburg analysis as shown by
Yamase and Kohno within SBMFT [177, 178].

Although there is good overall agreement between the VMC data and SBMFT
results by Yamase and Kohno [177, 178], we find clear and significant discrep-
ancies in the limit x → 0. As seen in figure 5.10(a)-(c) the asymmetry goes
to zero at x = 0 within the VMC calculations. On the other hand, SBMFT
as well as RMFT (see figure 5.12) predict a pure 1D state at half-filling when
∆k ≡ 0. This hints at limitations of the mean field theories when treating
states near half-filling as discussed in more detail in [8].
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5.4.2 Anisotropic lattice

Above results from VMC and RMFT confirm that a quasi 1D state is always
suppressed by the d-wave pairing state. A PI occurs only when ∆k ≡ 0.
However, the situation can be quite different when the underlying lattice
structure is anisotropic. In this case, the tendency towards a quasi 1D state
is present even in the superconducting state. SBMFT [177, 178] predicts an
optimal state which has a dominant d-wave symmetry with a small s-wave
contribution. Interestingly, the bare anisotropy δ1D

0 of the lattice is enhanced
due to the electron correlations. Here we re-examine this prediction within
the RMFT and VMC schemes.

Results from RMFT are shown in figure 5.13(a) and (b) and agree quantita-
tively with the SBMFT data from [177, 178]. As seen in figure 5.13(a), the
bare asymmetry of δ1D

0 = 0.05 increases within the RMFT calculations up
to about δ1D

opt = 0.2 in the underdoped regime. These results are confirmed
to some extent by VMC calculations for t′ = 0 in figure 5.13(a) (circles and
squares), that show an increase of the asymmetry up to about δ1D

var ≈ 0.1.
However, owing to numerical difficulties, the errors in these VMC calculations
are quite large. In figure 5.13(b), we compare the Fermi surface obtained from
the bare dispersion (δ1D

0 = 0.05) with that of the optimal superconducting
state obtained by solving the RMFT equations self consistently for x = 0.08.
As seen in the figure, the enhancement of anisotropy due to strong corre-
lations may even lead to a change in the topology of the underlying Fermi
surface.

Above VMC study for the PI is only one out of several possible instabil-
ities in the t-J model, which is mainly governed by the superexchange J .
Since J ∝ 4t2/U , a small asymmetry in the bare hopping integral t becomes
twice as large in the superexchange energy. Hence, it is natural that the
effects discussed in this paper are largest in the underdoped regime, where
the dispersion is mainly determined by J . The tendency towards a quasi
one-dimensional state may be also enhanced if phonons are coupled to the
lattice.



Chapter 6

Quasiparticle states within
renormalized mean field theory

Extending the RMFT to excited states requires the consideration of Gutz-
willer-Bogoliubov quasiparticles within the t-J and the Hubbard model. These
Gutzwiller-Bogoliubov excitations then allow for a systematic analysis of
the single particle spectral function and explain momentum- and doping-
dependent features in ARPES and STM experiments. Apart from these key
results, we discuss the renormalization of the current carried by Gutzwiller-
Bogoliubov quasiparticles and the consequences for the suppression of the
superfluid density. As an application of above quasiparticle studies, we de-
termine the underlying Fermi surface and discuss discrepancies between dif-
ferent approaches.

6.1 Coherent and incoherent spectral weight

Understanding spectral features of HTSC requires a thorough consideration
of excited states. In this section we mainly focus on the shift of spec-
tral weight from coherent quasiparticles (QPs) towards an incoherent back-
ground. Stimulated by STM, which reveals a striking particle-hole asym-
metry in the spectra of underdoped HTSC [37, 40, 41], this problem was
recently intensively investigated by RMFT [6, 127, 194] and VMC methods
[6, 99, 128, 195, 196, 197, 198, 199, 200]. As nicely seen in the experiments,
e.g., in figure 1(c) and 3(e) of [40] or figure 1.11, the spectral weight on the
hole side of the spectrum is distinct more pronounced than the particle side.

106
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6.1.1 Sum rules for the spectral weight

The asymmetry in the STM spectra may be explained qualitatively by con-
sidering sum rules [194, 201, 202, 203, 204] for the one-particle spectral func-
tion,

A(k, ω) =
∑
m

〈0|c†kσ|m〉〈m|ckσ|0〉 δ (ω + (Em − E0)) (6.1a)

+
∑
m

〈0|ckσ|m〉〈m|c†kσ|0〉 δ (ω − (Em − E0)) , (6.1b)

for doped Mott insulators with
∫ ∞

−∞
dω A(k, ω) = 1 . (6.2)

In (6.1a) and (6.1b), we use the T = 0 spectral representation of A(k, ω),
where |m〉 are the exact many-body eigenstates with energies Em. The
ground state is given by m = 0, and ω is measured with respect to the
chemical potential. We are now interested in the low energy spectral weight
of a doped Mott insulator described by a Gutzwiller projected ground state,
i.e., |0〉 ∼ |Ψ〉 ≡ PG|Ψ0〉.
When removing a hole from the ground state [as in (6.1a)] certainly no doubly
occupied sites are created. Thus, the resulting state is situated in the so-
called “lower Hubbard band” (LHB) and involves only low energy excitations,
i.e., 0 < Em − E0 ¿ U (excitation energies much smaller than the Hubbard
U). Thus, at the hole side, the low energy spectral weight corresponding to
momentum k and spin σ is given by,

∫ 0

−∞
dω A(k, ω) = 〈0|c†kσckσ|0〉 = 〈nkσ〉Ψ . (6.3)

By summing over all spin and momenta, we obtain the total low energy
spectral weight for the hole side,

1

L

∑

k,σ

∫ 0

−∞
dω A(k, ω) =

1

L

∑

k,σ

〈nkσ〉Ψ = n . (6.4)

We note that similar sum rules can be derived for the dynamical conductivity,
viz., the f -sum rule [205].

The situation is different when adding an electron to the ground state [as
in (6.1b)]. In such a process a part of the resulting state is located in the
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“upper Hubbard band” (UHB), i.e., a doubly occupied site may be created.
Therefore, we have to choose an upper cutoff ΩL (located between LHB and
UHB) to extract the low energy spectral weight. By integrating A(k, ω) from
0 to ΩL, we restrict ourselves solely to the Gutzwiller projected eigenstates
out of all |m〉, and we obtain1,

∫ ΩL

0

dω A(k, ω) = 〈0|ckσPGc†kσ|0〉 = 〈PGckσPGc†kσPG〉Ψ0 . (6.5)

Summing again over all spin and momenta and making use of Fourier trans-
formation, we find the total low energy spectral weight for the electron side
to be,

1

L

∑

k,σ

∫ ΩL

0

dω A(k, ω) =
1

L

∑

k,σ

〈PGckσ PG c†kσ PG 〉Ψ0 (6.6a)

=
1

L

∑

l,σ

〈PG clσ(1− nl−σ) c†lσ PG〉Ψ0 (6.6b)

=
1

L

∑

l,σ

〈(1− nl−σ)(1− nlσ)〉Ψ (6.6c)

= 2 · (1− n) , (6.6d)

where we used, PG c†lσ PG = (1− nl−σ) c†lσ PG (for a site l), to get (6.6b).

From (6.4) and (6.6), we find that it is more difficult to add an electron
to the LHB than to extract one in a doped Mott insulator. This feature
increases towards half-filling. For a hole density x = 1− n the total spectral
weight at the particle side is reduced to 2x = 2(1 − n), while the hole side
of the spectral weight is not much affected. However, above sum rules solely
explain the particle-hole asymmetry of the total spectral weight, but tell us
little about the energy distribution of spectral weight within the LHB.

Note, that the total spin-integrated spectral weight is 2, and the integrated
spectral weight of the upper Hubbard band is consequently, 2−n−2·(1−n) =
n, which agrees with the Hubbard-I approximation for the paramagnetic case
[206].

6.1.2 Definition of coherent quasiparticle excitations

To explain the distribution of spectral weight at low energies, we approximate
the eigenstates |m〉 by the Gutzwiller-Bogoliubov quasiparticles, equation

1For a more detailed reasoning of this step we refer to [194].
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(4.14), derived from RMFT [7, 194]. We formulate particle-like Gutzwiller-
Bogoliubov QPs by,

|ΨN+1
kσ 〉 = PN+1PGγ†kσ|Ψ0〉 , (6.7)

as well as hole-like Gutzwiller-Bogoliubov QPs with the same momentum
and spin by,

|ΨN−1
kσ 〉 = PN−1PGγ†kσ|Ψ0〉 . (6.8)

We note that in the following we work in the canonical scheme, i.e., we
fix the particle number N by the operator PN and thus the ground state
is |ΨN〉 = PNPG|Ψ0〉. To avoid confusions we include an index N for the
particle number in the wave function. On mean field level, the energies
corresponding to the states (6.7) and (6.8) are given by the RMFT excitations
Ek as discussed in section 4.2.

Using (6.7) and (6.8) in (6.1a) and (6.1b) yields,

A(k, ω) = Z+
k u2

k δ(ω − Ek) + Z−
k v2

k δ(ω + Ek) + Ainc(k, ω) , (6.9)

with the QP weights Z̃±
kσ given by,

Z̃+
kσ ≡ Z+

k u2
k =

|〈ΨN+1
kσ |c†kσ|ΨN

0 〉|2
〈ΨN+1

kσ |ΨN+1
kσ 〉〈ΨN

0 |ΨN
0 〉

, (6.10)

and

Z̃−
kσ ≡ Z−

k v2
k =

|〈ΨN−1
−k−σ|ckσ|ΨN

0 〉|2
〈ΨN−1

−k−σ|ΨN−1
−k−σ〉〈ΨN

0 |ΨN
0 〉

. (6.11)

Here, we distinguish between the QP weight Z̃±
kσ mostly used in VMC cal-

culations and the QP weight renormalization Z±
kσ often given within RMFT

studies. In (6.9) the Gutzwiller-Bogoliubov QPs cause δ-peaked excitations,
which are associated with the coherent peaks, e.g., as seen in ARPES. For
projected wave functions, the weight of these coherent excitations is renor-
malized due the Gutzwiller projection by a factor Z±

k . Therefore, some part
of the spectral weight is not covered by the Gutzwiller-Bogoliubov excita-
tions, (6.7) and (6.8), demanding the presence of an incoherent background
Ainc(k, ω).

It is now controversial, whether the asymmetry in the HTSC comes from the
incoherent part dictated by the spectral sum rules, or is even present in the
coherent QP spectrum [6, 127, 194, 197, 198]. As we show below, recent works
based on the GA support the former [7, 194], i.e., a particle-hole symmetric
quasiparticle weight renormalization,

Zk = Z+
k = Z−

k . (6.12)
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However, recent VMC calculations [197] (discussed in section 7.1) claim that
this symmetry is exactly fulfilled only for k at the (underlying) Fermi surface.
Therefore, zero (or very low) energy excitations would still exhibit particle-
hole symmetry, however, coherent excitations at higher energies could cause
an asymmetry [198].

6.1.3 Incoherent background of the spectral weight

Next we shortly discuss the incoherent background at the hole side. By
using the spectral representation, (6.1a) and (6.1b), together with A(k, ω)
from (6.9), we find the relation,

〈nkσ〉Ψ = Z−
k u2

k + ninc
kσ , (6.13)

with

ninc
kσ =

∫ 0

−∞
dω Ainc(k, ω) . (6.14)

Thus, the momentum distribution, 〈nkσ〉, provides the total spectral weight
with momentum k and spin σ at the hole side, i.e., the coherent weight
Z−

k u2
k overlaid by the incoherent background ninc

kσ . We will calculate these
quantities in section 6.3 by the GA and illustrate their distributions within
the first Brillouin zone.

6.1.4 Divergent k-dependent self-energy

In section 5.3 we already presented VMC calculations for the QP weight
renormalization at the nodal point kF . These calculations show that Z → 0
for x → 0, where Z = Z+

kF
= Z−

kF
. Before extending our considerations

to all k-points, we discuss consequences for the self-energy in the half-filled
limit. Due to the vanishing gap along the nodal direction, (0, 0) → (π, π), we
can approximate the Green’s function in the vicinity of kF by G−1(k, ω) =
ω − ε(k)− µ− Σ(k, ω), where Σ ≡ Σ′ + iΣ′′. Standard arguments then lead
to the results,

Z =

(
1− ∂Σ′

∂ω

)−1

, v
F

= Z

(
v0

F
+

∂Σ′

∂k

)
, (6.15)

where the right hand side is evaluated at the node (kF , ω = 0). Since Z → 0
for x → 0, |∂Σ′/∂ω| diverges like 1/x in this limit. Due to the finite Fermi
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velocity vF (see section 4.3 and section 5.3), a compensating divergence in
the k-dependence of the self-energy with

∂Σ′

∂k
∼ 1

x
. (6.16)

automatically shows up. Above limit behavior of vF and Z is also experi-
mentally observed and transcends orthodox Landau-Fermi liquid behavior,
where the k-dependence of the self-energy is usually small.

Equation (6.16) constitutes a key experimental result for the HTSC, since
ARPES shows unambiguously that vF → const and Z → 0 for x → 0
[13, 14, 26, 27]. The fact that (6.16) naturally results within the Gutzwiller-
RVB framework provides a strong supporting argument for the theory. It is
a consequence of the vanishing of the number of free charge carriers ∼ 1− n
due to the projection close to half-filling. The number of charge carriers is,
in contrast, ∼ n and not singular within normal Fermi liquid theory. These
considerations lead to further consequences for higher-energy features of the
one-particle self-energy, which have been explored by Randeria, et al. [207].

6.2 Calculation of the quasiparticle weight within

RMFT

To evaluate the QP weight in (6.10) and (6.11) within RMFT, we follow [6]
and use the GA for partially projected states as presented in section 3.3. For
simplification we work with a particle excitation,

|ΨN+1
kσ 〉 = PN+1PGc†kσ|Ψ0〉 , (6.17)

and a hole excitation,

|ΨN−1
kσ 〉 = PN−1PGc−k−σ|Ψ0〉 . (6.18)

However, such a re-definition does not effect the final results since all calcu-
lations include norms and, γ†kσ|Ψ0〉 ∼ c†kσ|Ψ0〉 ∼ c−k−σ|Ψ0〉, for a BCS wave
function |Ψ0〉.

6.2.1 Norms of the quasiparticle excitations

Any calculation involving |ΨN±1
kσ 〉 needs the respective norms,

NN±1
kσ = 〈ΨN±1

kσ |ΨN±1
kσ 〉 .
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We now calculate these norms within the generalized GA. For the particle
excitation, we get,

NN+1
kσ

NN
G

= 1− n + gt

(
nσ − n0

kσ

)
= gt

(
1− n0

kσ

)
, (6.19)

where gt = (1 − n)/(1 − nσ), NN
G = 〈ΨN|ΨN〉, and n0

kσ = 〈c†kσckσ〉Ψ0 is the
momentum distribution function in the unprojected wave function. We note
that we will restrict ourselves to the non-magnetic case nσ = n↑ = n↓ = n/2
in the following. The derivation of equation (6.19) is given by

NN+1
kσ = 〈Ψ0|ckσPN+1PGPGPN+1c

†
kσ|Ψ0〉 (6.20)

=
1

L

∑

l,m

eik(l−m)〈ΨN
0 |P ′

l (1− nl−σ)clσc
†
mσ(1− nm−σ)P ′

m|ΨN
0 〉

=
1

L

∑

l

〈ΨN
0 |P ′

l (1− nlσ)(1− nl−σ)P ′
l |ΨN

0 〉

+
1

L

∑

l 6=m

eik(l−m)〈ΨN
0 |PGclσc

†
mσPG|ΨN

0 〉

= NN
G

〈ΨN|(1− n)|ΨN〉
〈ΨN|ΨN〉 − NN

G

L

∑

l 6=m

eik(l−m) 〈ΨN|c†mσclσ|ΨN〉
〈ΨN|ΨN〉 ,

where we have used (3.71) for the diagonal contribution in the last step. In-
voking the Gutzwiller approximation for the off-diagonal term, (6.19) follows
directly from (6.20).

The normalization of the hole excitation can be done analogously. We note
that PGcmσ = cmσP

′
m with P ′

m =
∏

i6=m(1− n̂i↑n̂i↓) (see section 3.3) and get,

NN−1
−k−σ

NN
G

=
1

NN
GL

∑

l,m

eik(l−m)〈ΨN
0 |P ′

l c
†
lσcmσP

′
m|ΨN

0 〉 (6.21)

=
1

X

[
Xnσ + (1−X)

]
+

1

NN
GL

∑

l 6=m

eik(l−m)〈ΨN
0 |P ′

lmc†lσcmσP
′
lm|ΨN

0 〉 ,

where X = 〈PG〉0/〈P ′
l 〉0 and P ′

lm =
∏

i6=l,m(1− ni,↑ni,↓) as defined in section
3.3. The term, 1/X[Xnσ +(1−X)], in (6.21) corresponds to the on-site con-
tribution l = m, viz., the expectation value 〈ΨN

0 |P ′
l nlσP

′
l |ΨN

0 〉, which can be
evaluated by (3.69) and (3.70). The last term in (6.21) describes a hopping
process between two reservoir sites. The generalized Gutzwiller approxima-
tion assumes that the matrix elements are proportional to the square roots
of the corresponding densities, (3.68)-(3.70).
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Invoking the Gutzwiller approximation and using (3.66) for X, we get,

NN−1
−k−σ

NN
G

=
〈ΨN−1

−k−σ|ΨN−1
−k−σ〉

〈Ψ|Ψ〉 = nσ +
1−X

X
(6.22)

+
n0

kσ − nσ

X2nσ(1− nσ)

[ √
X(1− n)

√
Xnσ +

√
Xn−σ

√
1−X

]2

,

for the normalization of the hole excitation relative to the norm of the
Gutzwiller wave function. The general expression, equation (6.22), for the
hole normalization, can be simplified upon using the Gutzwiller result (3.67)
for the relative norm X. We then get,

n0
kσ − nσ

nσ(1− nσ)

[√
1− n

√
nσ +

√
n−σ

√
(1−X)/X

]2

= (n0
kσ − nσ)

[(1− n) + n−σ]2

(1− nσ)(1− n)
= (n0

kσ − nσ)
1− nσ

(1− n)
,

for the last term in (6.22). Finally, we obtain the simple result,

NN−1
−k−σ

NN
G

= n0
kσ

1− nσ

(1− n)
=

n0
kσ

gt

(6.23)

It is interesting to compare this result for the normalization of the hole ex-
citation with the corresponding expression, equation (6.19), for the particle
excitation. The vanishing of the latter at half filling could have been ex-
pected. But the divergence of NN−1

kσ as n → 1 is surprising.

6.2.2 Gutzwiller approximation for the quasiparticle
weight

We first concentrate on calculating Z+
k by (6.10). We can determine the

numerator using the result of (6.19),

〈Ψ0|ckσPGPN+1c
†
kσPNPG|Ψ0〉

NN
G

=
〈ΨN

0 |ckσPGPGc†kσ|ΨN
0 〉

NN
G

=
NN+1

kσ

NN
G

= gt(1− n0
kσ) . (6.24)

From the above expression we find that the QP weight for particle like exci-
tations takes the form,

Z+
k u2

k =
|〈ΨN+1

kσ |c†kσ|ΨN
0 〉|2

〈ΨN+1
kσ |ΨN+1

kσ 〉〈ΨN
0 |ΨN

0 〉
=

g2
t (1− n0

kσ)2

gt(1− n0
kσ)

= gt(1− n0
kσ) . (6.25)
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Since 1 − n0
kσ = u2

k, it follows Z+
k = gt. Thus the QP weight vanishes at

half filling n → 1, implying that the addition of a coherent electrons is not
possible exactly at half filling because of the restriction in the Hilbert space.

Next we consider the QP for hole-like excitations in a projected supercon-
ducting state. Naively, we might expect this process to be allowed at half
filling, since the removal of electrons is not forbidden by the projection opera-
tor. However, we are solely interested in the coherent excitations, which may
behave quite different than the total spectral weight. Therefore, we consider
the numerator of (6.11) and follow the same procedure used to evaluate the
norm of the hole excitation before. We find,

〈Ψ0|c†kσPN−1PGckσPGPN|ΨN
0 〉

NN
G

=
1

NN
GL

∑

l,m

eik(l−m)〈ΨN
0 |P ′

l c
†
lσcmσP |ΨN

0 〉

=
Xnσ

X
+

1

NGL

∑

l 6=m

eik(l−m)〈ΨN
0 |P ′

l c
†
lσcmσP

′
l |ΨN

0 〉

=
Xnσ

X
+ (n0

kσ − nσ)

[√
Xn−σ

√
1−X +

√
X(1− n)

√
Xnσ

]√
1− n

√
nσ

X(1− nσ)nσ

= nσ + (n0
kσ − nσ)

n−σnσ + (1− n)nσ

(1− nσ)nσ

= n0
kσ . (6.26)

For more calculational deals we refer to section 3.3. Using above expression
together with the norm of the hole excitation, (6.22), we obtain the QP
weight for hole-like excitation,

Z−
k v2

k =
|〈ΨN−1

−k−σ|ckσ|ΨN
0 〉|2

〈ΨN−1
−k−σ|ΨN−1

−k−σ〉〈ΨN
0 |ΨN

0 〉
=

n0
kσn

0
kσ

n0
kσ/gt

= gtn
0
kσ, (6.27)

an interesting result, in that it vanishes at half filling (n↑ = n↓ = 0.5) too.
It also follows Z−

k = Z+
k = gt, i.e., a particle-hole symmetric QP weight

renormalization.

These results show that the coherent QP weight does not cause a particle-hole
asymmetry, thus, indicating that the incoherent background is responsible for
the bias in the STM results. The symmetric coherent weight is also seen in
the calculations for the Hubbard model (include transformation e−iS) [7, 194].
However, the RMFT results for Z̃+

k = Z+
k u2

k and Z̃+
k = Z+

k u2
k does not exactly

match recent VMC calculations [197], which directly evaluate Z̃+
k and Z̃+

k

(see section 7.1). Nevertheless, the general doping dependence of above QP
weight qualitatively agrees with VMC results and with the coherent weight
seen in ARPES measurements [7].
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Figure 6.1: Renormalization Zk of the Gutzwiller-Bogoliubov nodal quasi-
particle as a function of doping x. The model parameters are t = −t′/4 and
U = 12t. RMFT results for the Hubbard and the t-J model are compared
with VMC data for the Hubbard model (from [128]) and with the SBMFT
result in the t-J model. From [7].

6.3 Quasiparticle weight for the Hubbard model

in the strong coupling limit

In the previous section we illustrated how one can determine the QP within
the GA. In this section we follow [7, 194] and extend above calculation to the
Hubbard Hamiltonian, in analogy to the extensions of the RMFT discussed
in section 4.3. By using a re-transformed ground state, |Ψ〉 ≡ e−iSPGPN|Ψ0〉
as well as re-transformed excited states,

|ΨN±1
kσ 〉 ≡ e−iSPGPN±1γ

†
kσ|Ψ0〉 , (6.28)

we can systematically study the QP weight renormalization within the Hub-
bard model in the strong coupling limit. Evaluating the canonical transfor-
mation e−iS in order O(t/U) gives the following particle-hole symmetric QP
weight renormalization [7], Zk = Z+

k = Z−
k ,

Zk ≈ gt +
g3

U

(
1− x2

2
ε0
k +

3− x

L

∑

k′
v2
k′ε

0
k′

)
, (6.29)

with ε0
k = 2t(cos kx + cos ky) + 4 t′ cos kx cos ky. Equation (6.29) also includes

corrections from the next nearest neighbor hopping term t′. The renormal-
ization Zk of the nodal QP weight is plotted as a solid line in figure 6.1,
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Figure 6.2: (a) Quasiparticle weight Zkn
0
kσ and (b) momentum distribution

〈nkσ〉 of the Gutzwiller-Bogoliubov quasiparticle for different doping x; The
corresponding Fermi surface, ξk = 0, is shown in the inset of (a). The model
parameters are t = −t′/4 and U = 12t. From [7].

and agrees well with VMC results for the Hubbard model [128]. The dashed
line corresponds to the RMFT result for the t-J model, Zk = gt, which is
compared to the dotted line, Zk = x, from slave boson mean field theory
(SBMFT).

The spectral weight of the coherent peak, measured in ARPES, is related
to the QP weight Z̃−

k = Z−
k n0

kσ; it is shown in figure 6.2(a) along the di-
rections, (0, 0) → (π, 0), (π, 0) → (π, π), and (π, π) → (0, 0) for different
x. As seen in the figure, the QP spectral weight is severely modified by
Gutzwiller projection. It decreases with doping, and vanishes at half filling.
This causes a shift of spectral weight to an incoherent background as seen in
the momentum distribution function, 〈nkσ〉 ≈ Zk v2

k + ninc
kσ +O(t/U)2. While

the first term corresponds to the coherent QP weight, the second gives the
distribution of the incoherent part. We obtain,

ninc
kσ ≈

(1− x)2

2(1 + x)
+

∑
τ

tτ
2U

cos(kτ)

[
(1− x)3

1 + x
+

(
3gs + 1

2

− g3
3 + x

2

)
|∆̃τ |2 +

(
3gs − 1

2
− g3

3− x

2

)
ξ̃2
τ

]
, (6.30)

which is a smooth function of k, where ∆̃τ and ξ̃τ are the pairing and
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Figure 6.3: Doping dependence at the antinodal point, k = (π, 0): (a) QP
renormalization Zk the unrenormalized QP weight, n0

kσ = v2
k, and the renor-

malized coherent QP weight Zkv
2
k; (b) coherent weight Zk v2

k compared with
the experimentally determined Superconducting Peak Ratio (SPR, ratio of
coherent spectral weight relative to the total spectral weight) for Bi2212 [26];
see also figure 1.8. The model parameters are t = −t′/4 and U = 12t. From
[7].

hopping amplitudes between nearest and next nearest neighbor sites, τ =
(±1, 0), (0,±1), (±1,±1), as defined in section 4. Results are shown in fig-
ure 6.2(b) . The incoherent weight is spread over the entire Brillouin zone,
and overlies the coherent part from the Gutzwiller-Bogoliubov quasiparticles.
At half-filling, all weight becomes incoherent. Above results are in qualita-
tively agreement with calculations for the t-J model, which is recovered by
neglecting the t/U -corrections in above equations.

6.3.1 Non monotonic behavior of the QP weight at
(π, 0)

In this subsection we consider the coherent QP weight Zkv
2
k at the antin-

odal point k = (π, 0) within the Hubbard model in the strong coupling limit
(U = 12t). As seen in figure 6.2(a) and figure 6.3, it exhibits a non monotonic
behavior as a function of doping. Within above theory, this effect arises from
a combination of the effects due to the Gutzwiller projection and to the topol-
ogy change [see insert of figure 6.2(a)] of the underlying Fermi surface (FS);
figure 6.3(a) illustrates this clearly. While the QP weight renormalization,
Zk, increases with increasing doping, n0

k = v2
k, decreases due to the topology

change, which occurs at x ≈ 0.15 − 0.20 for the present choice of hopping
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Figure 6.4: The magnitude of the current |j(k)| along the nodal direc-
tion, (0, 0) to (π, π). (a) VMC calculations on a 10 × 10-lattice (data
taken from [196]) and (b) RMFT results are compared for the doping levels
x = 0.01, 0.05, 0.09, 0.17 (increasing magnitude). From [10].

parameters (t′ = −t/4). The change of the FS seems to be a generic feature
of hole doped Cuprates [208, 209], although the exact doping concentration
x, for which this occurs, is sensitive to the ratio between various hopping
parameters. The combined effect of strong correlations and topology change
leads to a maximum of the QP weight for the doping level, x, at which the
underlying FS changes topology. Indications for such a behavior have already
been published [26, 210]. Feng, et al. [26] extracted the superconducting peak
ratio [SPR, illustrated in figure 6.3(b)] which is proportional to the coherent
QP spectral weight, Zk v2

k. They found that the SPR increases with small x,
attains a maximum value around x ≈ 0.2 where it begins to decrease. Ding,
et al. [210], reported similar results from ARPES. Although the topology
change does not influence the stability of the superconducting state within
RMFT, the superconducting pairing parameter Φ (related to Tc) and the QP
weight Zkv

2
k show some similarity as a function of doping. However, we em-

phasize that this similarity does not result from any direct relation between
these two quantities.

6.4 Quasiparticle current renormalization2

An important issue in the phenomenology of the high temperature super-
conductors is the role played by nodal quasiparticle (NQP) excitations in
suppressing the superfluid density ρs. As pointed out by several authors

2This section follows a recent article of Edegger, et al. [10].
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[211, 212, 213], the proliferation of NQPs at finite temperatures decreases
ρs(T ), presumable by [211],

ρs(T )

m
=

ρ
(0)
s

m
− 2 ln 2

π
α2

(
vF

v2

)
T , (6.31)

where vF and v2 are the NQP velocities in the longitudinal and transverse
directions respectively, and ρ

(0)
s , the zero temperature superfluid density. The

renormalization factor α (also called effective charge [213]) relates the current
carried by the quasiparticle to its velocity,

j(k) = −eαv(k) .

Assuming that superconductivity is destroyed by thermal NQPs , Tc is de-
termined by simply setting (6.31) to zero, i.e., determining the temperature
at which the superfluid density vanishes [211, 212]. The behavior of Tc as a
function of doping is then governed by the doping dependencies of the vari-
ous quantities in (6.31). The latter can be calculated within the framework
of the Resonating Valence Bond theory. Numerical [128] calculations show

that ρ
(0)
s → 0 as x → 0. The nodal velocity vF is approximately constant

[7], whereas the transverse velocity v2 increases as the insulator (x = 0) is
approached. The situation is rather unclear for the renormalization factor
α. While some theories argue for a constant α [213], recent experimental
(measurement of the superfluid density [214]) as well as theoretical results
[10, 196] seem to support the conclusion that α decreases as x → 0.

To clarify this issue, we follow Edegger, et al. [10] and use RMFT to calcu-
late the current renormalization for the t-J model with J = t/3. For the
superfluid density at zero temperature, RMFT yields a doping dependence
of,

ρ(0)
s ∼ gt ≡ 2x

1 + x
, (6.32)

where we applied [174],

ρ(0)
s ∼

〈∑
σ

tτ (c
†
i+τ,σci,σ + c†i,σci+τ,σ)

〉

Ψ

, (6.33)

and evaluated (6.33) by the Gutzwiller approximation. Here, we used τ = x̂, ŷ
and neglected corrections due to the re-transformation e−iS of the wave func-
tion to the Hubbard model, i.e., we set e−iS = 1. Using linear response theory
for the superfluid density [174] and restricting ourselves to low temperatures,
we recover (6.31) within RMFT [10]. The renormalization factor α can be
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derived by considering the current carried by the Gutzwiller projected Bo-
goliubov quasiparticle states |Ψkσ〉,

j(k) ≡ i e 〈
∑

〈ij〉,σ
tij

(
c†i,σ cj,σ − c†j,σ ci,σ

)
〉Ψkσ

. (6.34)

By invoking the Gutzwiller renormalization scheme, we find,

j(k) = − e gt
d

dk
ε0(k), (6.35)

where ε0(k) is the unrenormalized tight binding dispersion relation; again we
set e−iS = 1 for simplicity, i.e., we neglect any t/U -corrections in (6.34) and
(6.35). Combining (6.32) and (6.35) allows us to extract α. At the nodal
point, we get α = gtv

0
F /vF , where v0

F is the unrenormalized Fermi velocity.
The results are shown in figure 6.4 and figure 6.5, where we compare them
with VMC data taken from [196]. The results are in excellent agreement
and show that the renormalization factor α → 0, as x → 0. We may now
analyze the x dependence of dρs(T )/dT ∝ α2vF /v2. We show the results for
this quantity in figure 6.6(a). Note that vF /v2 ∝ vF /∆SC already shows a
significant x-dependence and may explain the experimentally observed dop-
ing dependence of dρs(T )/dT [214]. However, multiplication by α2 leads to
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a slope dρs(T )/dT that vanishes as x → 0, i.e., as x → 0, the effective NQP
charge vanishes faster than the superfluid density does. Therefore, we get an
useless estimate for Tc by setting (6.31) to zero as shown in figure 6.6.

This problem was noted by Lee and Wen [211, 212] in the context of the
U(1) gauge theory of the t-J model. They argued that an SU(2) formulation
may resolve the problem, yielding a constant α. However, a constant α does
not completely agree with the experimentally observed x-dependence of the
superconducting dome either [maximal Tc at x ≈ 0.08, see figure 6.6(b)].
There are several possible reasons for the discrepancy. It may be that the
RMFT result for α is indeed correct, in which case, the issue can be resolved
by more experiments explicitly extracting α in the underdoped regime. This
would automatically mean that Tc is not determined by NQPs, i.e., (6.31),
and one needs to look for other possibilities such as vortex proliferation as
mechanisms that set the scale for Tc.

Another possibility is that the theoretical framework behind the Gutzwiller
RVB theory misses a crucial ingredient in the derivation of (6.31) and the
calculation of the effective current renormalization α. Indeed, the applica-
bility of the standard Kubo formula for ρs [174] in a projected Hilbert space
may be questioned and one needs to reexamine this calculation carefully to
check whether (6.31) is indeed correct.

A recent more phenomenological approach argues that the overall tempera-
ture dependence of the superfluid density at low dopings is well described by
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a three-dimensional strongly anisotropic weakly interacting Bose gas [215].
However, more work is necessary to clarifying if these arguments are valid
on a microscopic basis.

6.5 Determining the underlying Fermi sur-

face of strongly correlated superconduc-

tors

We present a study of the underlying Fermi surface (FS) in the HTSC as
published within one of our recent papers [9]. The results shed light on the
meaning of a FS in a superconducting state and make connection to the its
definitions in a normal Fermi liquid. The conclusions from [9] were confirmed
by a more recent study of Sensarma, et al. [216].

The notion of a FS is one of the most ingenious concepts developed by solid
state physicists during the past century [217]. It plays a central role in our
understanding of interacting electron systems. Extraordinary efforts have
been undertaken, both by experiment and by theory, to reveal the FS of
the high temperature superconductors (HTSC), the most prominent class of
strongly correlated superconductors. Here, we discuss some of the prevalent
methods used to determine the FS and show that they lead generally to er-
roneous results close to half filling and at low temperatures, due to the large
superconducting gap (pseudogap) below (above) the superconducting tran-
sition temperature. Below findings provide a perspective on the interplay
between strong correlations and superconductivity and highlight the impor-
tance of strong coupling theories [11, 45, 76] for the characterization as well
as the determination of the underlying FS in ARPES experiments.

During the last decade ARPES has emerged as a powerful tool [13, 14] to
study the electronic structure of the HTSC. This is also because ARPES is
a direct method to probe the FS, the locus in momentum space where the
one electron excitations are gapless [217]. However, since the low tempera-
ture phase of the HTSC has a superconducting or pseudogap with d-wave
symmetry, an FS can be defined only along the nodal directions or along
the so-called Fermi arcs [13, 14, 29, 30, 31], respectively. The full “under-
lying FS” emerges only when the pairing interactions are turned off, either
by a Gedanken experiment, or by raising the temperature. Its experimen-
tal determination presents a great challenge since ARPES is more accurate
at lower temperatures. Since the FS plays a key role in our understanding
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of condensed matter, it is of importance to know what is exactly measured
by ARPES in a superconducting or in a pseudogap state. The problem be-
comes even more acute in HTSC due to the presence of strong correlation
effects [11, 45, 76]. Hence, it is desirable to examine a reference d-wave su-
perconducting state with aspects of strong correlation built explicitly in its
construction. Motivated by these considerations, we consider the FS of a
strongly correlated d-wave superconductor [7, 76] and discuss the results in
the context of ARPES in HTSC.

6.5.1 Fermi vs. Luttinger surface

We begin by highlighting the differences between a Fermi and a Luttinger
surface. The FS is determined by the poles of the one electron Green’s
function G(k, ω), viz., by Re G(k, ω = 0) ≡ ±∞ [217]. The Luttinger surface
is defined as the locus of points in reciprocal space, where the real part of the
one particle Green’s function changes sign [218]. In the Fermi liquid state
of normal metals, the Luttinger surface coincides with the FS. In a Mott-
Hubbard insulator the Green’s function changes sign due to a characteristic
1/ω-divergence of the single particle self energy [219, 220] at momenta k of
the non-interacting Fermi surface. In the HTSC the gapped states destroy
the FS but only mask the Luttinger surface. Hence, it seems natural to
relate the Luttinger surface of the superconducting and of the pseudogap
states with the concept of an “underlying FS”, and ask if such a surface can
be determined by ARPES.

The single particle Green’s function is given by,

G(k, ω) ≡
∑

n

|〈n|c†kσ|0〉|2
ω − (En − E0) + i0+

+
∑

n

|〈n|ckσ|0〉|2
ω + (En − E0) + i0+

, (6.36)

where En are the eigenvalues corresponding the eigenstates |n〉 of the Hamil-
tonian; the ground state and its energy are given by |0〉 and E0, respectively.
In order to perform explicit analytic calculations we approximate the coher-
ent part of (6.36) by the RMFT results for the Hubbard model (see section 4.3
and section 6.3). In analogy to section 6.1.2 for the spectral function A(k, ω),
we use, Zku

2
k = |〈n|c†kσ|0〉|2, Zkv

2
k = |〈n|ckσ|0〉|2, and, Ek = En − E0. Thus,

we find the RMFT result for the coherent part of the Green’s function,

G(k, ω) ≈ Zku
2
k

ω − Ek + i0+
+

Zkv
2
k

ω + Ek + i0+
. (6.37)
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Within RMFT the elementary excitations in the superconducting d-wave
ground state are given by the dispersion relation,

Ek =
√

ξ2
k + ∆2

k , (6.38)

where ξk and ∆k are determined by (4.19) and (4.20), respectively. We can
now evaluate Re G(k, ω = 0) by (6.37) and find,

Re G(k, ω = 0) =
Zk

Ek

(v2
k − u2

k) = −Zk

E2
k

ξk , (6.39)

where the right hand side follows from the mean field relation, v2
k= 1− u2

k =
(1− ξk/Ek)/2 [see (4.8)]. The poles of Re G(k, ω = 0), which determine the
FS, are therefore given by

Ek ≡ 0 . (6.40)

However, for a d-wave superconductor, equation (6.40) is fulfilled only at
the nodal points; consequently a FS is well defined solely at these points.
Alternatively, we can consider the Luttinger surface, defined by sign changes
in the Green’s functions at ω = 0. From (6.39), we find sign changes whenever

ξk ≡ 0 . (6.41)

From above equations, we conclude that the Luttinger surface is determined
by the condition ξk ≡ 0, which is also the definition of the normal state FS
when ∆k ≡ 0. In the following, we discuss two methods commonly used to
determine the underlying FS, viz., the Luttinger surface, of the HTSC by
ARPES [13, 14, 221].

6.5.2 Fermi surface determination

In the so-called “maximal intensity method” the intensity of ARPES spectra
at zero frequency is used to map out the underlying FS. This quantity is
determined by A(k, ω = 0) = − 1

π
Im G(k, ω = 0), which becomes

∼ Γk

E2
k + Γ2

k

, (6.42)

if we replace 0+ by a finite broadening Γk in (6.37). The Γk is determined
both by the experimental resolution and the width of the quasiparticle peak.
When the momentum dependence of Γk is small compared to that of Ek (as
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Figure 6.7: The zero frequency spectral intensity (deduced from the inverse
of Ek) in the first Brillouin zone for hole dopings x = 0.05 (left) and x =
0.25 (right). The color coding blue/red corresponds to the low/high zero
frequency spectral intensity. The ridges of maximal intensity are indicated by
the (dashed) red and (dashed-doted) orange lines respectively, the Luttinger
surface by the black line. From [9].

is usually the case), the maximal intensity is given by the set of momenta h̄k
for which Ek is minimal.

To examine the accuracy of this method in determining the underlying FS,
we calculate this quantity for a strongly correlated d-wave superconducting
state. All calculations are done with model parameters for HTSC using the
renormalized mean field theory (RMFT) [7, 76], for which the quasiparticle
dispersion Ek retains the form of (6.38). In figure 6.7, we show results for
the spectral intensity at zero frequency as well as the locus of the Luttinger
surface. The former is deduced from the inverse of Ek.

For large hole doping, x = 0.25, the superconducting gap is small and the
Luttinger surface is close to the points in momentum space for which the
zero frequency intensity is maximal. But for smaller doping, x = 0.05, the
gap is substantial and the Luttinger surface deviates qualitatively from the
maximal intensity surface due to the momentum dependence of ∆k (see ridges
in figure 6.7). We have verified that this behavior persists for a wide range
of |∆k|, and not just the values estimated from RMFT. Figure 6.7(left) also
reveals that the maximum intensity splits into two ridges (orange inner, red
outer). Although not widely discussed in the literature, this splitting may
be deduced from experimental data, e.g., the intensity plots in E − k space
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Figure 6.8: The gradient of the momentum distribution function, |nk|, in the
first Brillouin zone, for hole dopings x = 0.05 (left) and x = 0.25 (right).
The color coding is blue/red for small/large values of |∇knk|. The ridges
of maximal |∇knk| are indicated by the (dashed) red and (dashed-doted)
orange lines respectively, the Luttinger surface by the black line. From [9].

along symmetric lines (0, 0) → (π, 0) → (π, π) in [209]. It follows that
when the gap or the pseudogap is large, the criterion of maximal spectral
intensity alone does not suffice to identify the correct FS and it is necessary
to supplement the analysis of the zero frequency ARPES intensity, (6.42),
with a dispersion relation such as (6.38). These considerations explain why
the (outer) maximal intensity ridges seen in ARPES (at low temperatures
in the underdoped regime) may yield an underlying FS whose volume is too
large. In particular, this effect is seen in Ca2−xNaxCuO2Cl2 [222], which also
exhibits quite a large pseudogap [223].

Another method used in extracting the Luttinger surface is the “maximal
gradient method”. The method is based on the fact that the FS is given by
the set of k-values for which the momentum distribution function nk shows a
jump discontinuity. When this discontinuity is smeared out, say, by thermal
broadening or a small gap, the gradient of nk, |∇knk|, is assumed to be
maximal at the locus of the underlying FS.

We calculated |∇knk| within RMFT and show our results in figure 6.7. We
see that the maximal gradient surface is very sensitive to the presence of even
small gaps. For example, the superconducting gap at x = 0.25 is quite small.
Nonetheless, the electron-like Luttinger surface (determined by ξk ≡ 0) is not
clearly revealed by the ridges in |∇knk|. Similar deviations of |∇knk| from the
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Figure 6.9: The deviation, nLutt − n, of the actual volume of the Luttinger
surface from the Luttinger sum-rule, as a function of hole-doping x. Cal-
culations are performed by RMFT (t′ = −t/4, U = 12t). The deviation is
minimal when the topology of the Luttinger surface changes from hole-like to
electron-like. Inserts (a) and (b): Model calculation for the renormalization
of the chemical potential, µSC−µFS, and the resulting nLutt−n as a function
of the d-wave order ∆, for various doping x. From [9].

underlying surface are also obtained from a high temperature expansion of the
t-J model [224] and dynamical cluster approximation in the Hubbard model
[225]. We conclude that the maximal gradient method alone cannot be used
to determine the underlying FS unambiguously from numerical [224, 225] or
ARPES data [226, 227].

The notion that the underlying FS of a pseudogapped or a superconduct-
ing state is identical to the Luttinger surface is only approximately correct
[218, 228]. In the Fermi liquid state of normal metals, the FS satisfies the
Luttinger sum rule; the volume enclosed by the FS is identical to the to-
tal number of conducting electrons. But, in a superconductor, the chemical
potential is generally renormalized and is a function of the superconducting
order parameter, µ = µSC(∆). The number of states nLutt(∆) enclosed by
the resulting Luttinger surface, ξk ≡ 0, then deviates from the true particle
number n, as the results in figure 6.9 show. However, this effect is small (a
few percent) and unlikely to be discerned experimentally. The discrepancy
between nLutt(∆) and n vanishes when particle-hole symmetry is present.
Further, it changes sign when the geometry of the Luttinger surface changes
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Figure 6.10: (a) Renormalization of the next nearest neighbor hopping am-
plitude, t′ → t̃′, as a function of hole doping concentration x for various
values of bare t′. All effective t̃′ are renormalized to zero at half filling by
the large Coulomb repulsion. We highlight the region for which we expect
the superconducting d-wave state to become unstable against antiferromag-
netism (AFM) due to the nearly perfect nesting of the Luttinger surface. (b)
The geometry of the Luttinger surface for the high temperature supercon-
ductors (t′ = −t/4). The change is non-monotonic for small doping x, when
the Luttinger surface is renormalized to perfect nesting due to the strong
Coulomb interaction. For x = 0.16, the topology of the Luttinger surface
changes from hole-like to electron-like. Calculations are performed for the
Hubbard model with U = 12t, using RMFT. From [9].

from hole-like to electron-like, as seen in figure 6.9.

6.5.3 Renormalization of the Fermi surface towards
perfect nesting

Finally, we focus on the influence of the strong electron-electron interactions
on the geometry of the Luttinger surface close to half filling. The Cu-O
planes of the HTSC are characterized by a nearest neighbor (NN) hopping
parameter t ≈ 300 meV and a next nearest neighbor (NNN) hopping param-
eter t′ ≈ −t/4. These parameters are the bare parameters, and determine
the dispersion relation,

εk = −2t( cos kx + cos ky )− 2t′
(

cos(kx + ky) + cos(kx − ky)
)

, (6.43)
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in the absence of any electron-electron interaction. On the other hand, true
hopping processes are influenced by the Coulomb interaction (here U = 12 t)
leading to a renormalization of the effective hopping matrix elements,

t → t̃ = t̃(U), t′ → t̃′ = t̃′(U). (6.44)

We extract t̃ and t̃′ from the RMFT dispersion ξk in (4.19), see section 4.3,
and find close to half-filling t̃ ∝ J = 4t2/U and t̃′ → 0, i.e., the NNN
hopping is renormalized to zero. This behavior is illustrated in figure 6.10.
The resulting Luttinger surface renormalizes to perfect nesting. A similar
behavior has been observed in recent variational studies of organic charge
transfer-salt superconductors [75].

At half filling the Hubbard model reduces to a spin-model with NN J = 4t2/U
and a frustrating NNN J ′ = 4(t′)2/U . The ground state wave function obeys
the so-called Marshall sign rule3 in the absence of frustration, J ′ = 0, viz.,
when the underlying Fermi surface is perfectly nested by the reciprocal mag-
netic ordering vector Q = (π, π) (in units of the inverse lattice constant).
Hence, any deviation from the Marshall sign rule as a function of the frus-
trating J ′ can be used to determine the degree of effective frustration present
in the ground state. We emphasize this is a qualitative statement of the
ground state wave function. A numerical study has found, that the Mar-
shall sign rule remains valid even for small but finite J ′, viz., the effective
frustration renormalizes to zero [230]. Such a behavior is in agreement with
the results presented in figure 6.10. This renormalization of the underly-
ing Fermi-surface to perfect nesting close to half-filling is unique to strong
coupling theories such as RMFT.

In summary, we showed that the accurate determination of the underlying
FS in underdoped HTSC is a demanding task and that a pictorial analysis of
the experimental data alone is often insufficient for an unambiguous determi-
nation of the FS. Commonly used methods like the zero frequency spectral
intensity or the gradient of nk can yield significant deviations from the true
Luttinger surface as shown in figure 6.7 and figure 6.8. Indeed, a clear dis-
tinction between electron- and hole-like underlying FS cannot be made solely
by analyzing the spectral intensity maps when the gaps are large and strongly
k-dependent. Such analyzes have to be supplemented by a minimal modeling
of the gapped states. Furthermore, the underlying FS in the pseudogapped

3Marshall [229] showed that the ground state of the spin- 1
2 Heisenberg Hamiltonian on

any bipartite lattice will be a singlet. Furthermore, the ground state wave function picks
up a sign whenever two antiparallel spins from different sublattices are interchanged. This
is the Marshall sign rule.
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or superconducting state fulfills Luttinger theorem only approximately, ow-
ing to the dependence of the chemical potential on the superconducting gap.
We also demonstrated that the strong correlations renormalize the ratio t̃′/t̃
near half filling, yielding a Luttinger surface which is perfectly nested. This
suggests in a very natural way that the strong coupling mean field super-
conducting state is unstable to antiferromagnetism at low doping. These
findings resulting from the combined effects of strong correlations and d-wave
superconductivity, allow for a more precise interpretation of experiments that
determine the FS of HTSC.



Chapter 7

Quasiparticle states within the
variational Monte Carlo scheme

VMC calculations for the QP weight in the t-J model only agree qualitatively
with the approximative RMFT results. Minor deviations from the RMFT
studies may explain a contribution of the coherent excitations to the distinct
particle-hole asymmetry seen in the STM spectra. Apart from the QP weight,
we also discuss excitation energies determined by VMC calculations, which
match well with previous RMFT results.

7.1 Direct calculation of the quasiparticle weight

RMFT together with GA is an useful tool to analyze QP features in strongly
correlated superconducting states. However, the RMFT and GA are ap-
proximative methods and it is desirable to check their predictions numer-
ically by VMC calculations. This consideration motivated several authors
[195, 196, 197, 198, 199, 200] to calculate the QP weight, (6.10) and (6.11)
directly via the evaluation of appropriate expectation values within the pro-
jected wavefunction |Ψ〉. These VMC studies confirm the RMFT prediction,
that the QP weight decreases towards half-filling, where it finally vanishes.
However, as we will show below, the VMC results reveal some limitations
of the RMFT concerning the determinination of the detailed doping- and
k-dependence of the QP weight. We note that most of the VMC calcu-
lations presented below do not include a re-transformed trial wave function
and describe observables in the t-J model. These calculations can be directly
compared to the RMFT results from section 6.2.
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Figure 7.1: VMC result for Gutzwiller projected d-wave BCS state on a
18 × 18 lattice with 42 holes (x ' 0.13) and ∆/t = 0.1. (a) Momentum
distribution function 〈nk〉. (b) Total QP weight Z̃tot

k . (c) QP weight in the
(0, 0)− (π, π) direction. (d) QP weight in the (0, 0)− (0, π) direction (total
Z̃tot

k , add Z̃+
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k ). Results correspond to the t-J model since the
re-transformation of the wave function was neglected. From [197].
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To calculate the QP weight within the VMC scheme, most authors use two
helpful exact relations for Gutzwiller projected wave functions. First, one
finds for the QP weight Z̃kσ of electron-like excitations, that [195, 196, 197,
198, 199],

Z̃+
kσ =

1 + x

2
− 〈nkσ〉ΨN , (7.1)

can be derived without any approximation and assumption. Thus Z̃+
kσ can

be calculated from the momentum distribution of the ground state |ΨN〉
[195, 196].

For the QP weight Z̃−
kσ, there is no exact relation corresponding to (7.1).

However, several authors showed [198, 199, 200] that Z̃+
kσ and Z̃−

kσ combined
satisfy the exact relation,

Z̃+
−k−σ · Z̃−

kσ =
| 〈ΨN|c†kσc

†
−k−σ | ΨN−2〉 |2

〈ΨN | ΨN〉〈ΨN−2 | ΨN−2〉 ≡ Pk . (7.2)

This relation is very useful, because the matrix elements contributing to Pk

only involve ground states with different particle numbers. The quantity Pk is
closely related to the off-diagonal long-range order in the pairing correlation
and can be calculated straightforward by VMC techniques (see, e.g., [198]).
Equation (7.2) was also confirmed numerically [200]. However, we note that
(7.1) and (7.2) are only valid for the projected wave functions PG|Ψ〉, and
become incorrect for the re-transformed wave function e−iSPG|Ψ〉, since the
canonical transformation e−iS does not commute with the electron and the
projection operators.

7.1.1 Momentum dependence of the quasiparticle weight

VMC results for the QP weights Z̃+
k (adding an electron) and Z̃−

k (removing
an electron), together with the total weight, Z̃tot

k = Z̃+
k +Z̃−

k , are summarized
in figure 7.1. These calculations show that Z̃tot

k is continuous over the whole
Brillouin zone, thus supporting the idea that Z+

k = Z−
k at the (underlying)

Fermi surface [197]. However, away from the Fermi surface, figure 7.1 also
exhibits some deviations from the simple RMFT calculations [Z̃+

k = gtu
2
k

and Z̃−
k = gtv

2
k with gt = 2x/(1 + x)]. For instance, inside the Brillouin zone

and along the nodal direction, RMFT gives a constant QP weight Z̃−
k (since

〈nkσ〉 = v2
k is constant along the nodal direction in the t-J model, see figure

7.2) whereas the VMC calculations [green triangles in figure 7.1(c)] clearly
show a non-constant behavior.
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Figure 7.2: The momentum distribution 〈nk〉 along the nodal direction
k = (k, k) for the Hubbard [black squares in (b)] and the t-J model [white
squares in (b)] from (a) RMFT and (b) VMC calculations, respectively. The
calculations are based on the full t-J Hamiltonian (2.6) with t′ = −t/4 and
U = 12t at a doping level x = 0.05. Expectation values for the Hubbard
model are evaluated within a re-transformed wave function, see (4.21b),
whereas these corrections are neglected in the t-J model. The RMFT calcu-
lations are based on the results from section 6.2 and section 6.3; the VMC
data are taken from [99].
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In the absence of a superconducting gap the quasiparticle weight at the Fermi
surface is determined by the jump in the moment distribution 〈nkσ〉, as dis-
cussed in section 5.3.2. Furthermore, Z̃+

k is generally related via (7.1) to
〈nkσ〉 for the t-J model. Due to this tight relation between 〈nkσ〉 and Z̃+

k

we re-consider the moment dependence of 〈nkσ〉 in the VMC and the RMFT
calculations. In figure 7.2 we show RMFT as well as VMC results for the
moment dependence of 〈nkσ〉 along the nodal direction determined within the
Hubbard and the t-J model, respectively. We note that expectation values
for the Hubbard model are obtained by applying a re-transformed wave func-
tion e−iS|Ψ〉, which can be evaluated in order O(t/U); see (4.21b) in section
4.3. In contrary, the re-transformation e−iS is neglected for the calculation of
observables in the t-J model. Figure 7.2(a) shows that, except of the jump
at the Fermi point kF , the RMFT gives a constant 〈nkσ〉 along the nodal
direction for the t-J model. However, VMC calculations at the same doping
level (x = 0.05) and for the same model parameters exhibit a non-monotonic
behavior near the Fermi point, see white squares in figure 7.2(b). This effect
comes from the correlated hopping nature of the electron in the projected
Hilbert space and is not covered by the RMFT result. This also explains
discrepancies between the RMFT and the VMC method in determining the
quasiparticle weight and reveals some limitations of the RMFT in calculating
moment dependent quantities. However, including the re-transformation of
the wave function for the Hubbard model, removes the non-monotonic be-
havior of 〈nkσ〉 in the VMC data, figure 7.2(b). Therefore, RMFT and VMC
results give a better qualitative agreement, when 〈nkσ〉 is calculated within
the Hubbard model, compare solid line in figure 7.2(a) with black squares in
(b).

7.1.2 Doping dependence of the mean quasiparticle
weight

Some discrepancies between VMC and RMFT in the doping dependence of
the coherent QP weight have been discussed by Chou, et al. [198]. The
authors calculate the average coherent QP weight for removing an electron,

Z̃−
ave ≡

1

L

∑

k

Z̃−
kσ, (7.3)

by the VMC scheme and compare it with the RMFT results. As shown in
figure 7.3, VMC calculations give a significantly larger coherent QP weight
than RMFT at the hole side, which is directly related to a reduction of the
(average) incoherent background ninc

ave by the same amount.
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Figure 7.3: The doping dependence of average QP weights Z−
ave for removing

an electron in a d-wave state obtained by VMC calculations (12× 12 lattice,
t′ = 0) and by RMFT, respectively. The results are for the t-J model (no re-
transformation of the wave function). The squares (triangles) are the VMC
results for Z−

ave (ninc
ave = nave − Z−

ave) with nave = 1/L
∑

k〈nkσ〉Ψ = (1 − x)/2.
The dashed and dotted lines without data points represent results by RMFT.
From [198].
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On the other hand the average QP weight for adding an electron,

Z̃+
ave ≡

1

L

∑

k

Z̃+
kσ =

1 + x

2
− 1

L

∑

k

〈nkσ〉Ψ =
1 + x

2
− 1− x

2
= x , (7.4)

is exactly the same in the RMFT and the VMC scheme, where we used
(7.1) in (7.4). Thus, it was argued [198], that the increased coherent weight
at the hole side seen in the VMC calculations, can explain the particle-
hole asymmetry in the tunneling experiments. However, considering the
large asymmetry in the experiments and the predictions from sum rules, it is
probably that at least at higher energies a considerable part of the asymmetry
is caused by the incoherent background.

7.2 VMC calculations for the quasiparticle

energy

In the previous section, we have shown how one can determine the spec-
tral weight of Gutzwiller-Bogoliubov QP excitations with VMC calculations.
Now we turn to the corresponding excitation energies Ek. Similar to the QP
weight, Ek could deviate to some extent from the RMFT results (chapter
4). The amount of agreement can be checked by directly calculating the
energy corresponding to the excited state |ΨN±1

k,σ 〉, equations (6.7) and (6.8),
within the t-J model. Substracting the ground state energy, we obtain the
excitation energy,

E = 〈Ht−J〉ΨN±1
k,σ

− 〈Ht−J〉ΨN . (7.5)

We discuss now the VMC calculations of Yunoki, et al. [121], who also in-
cluded a Jastrow factors into the wave functions to improve the ground state
energy. Figure 7.4 illustrates a typical dispersion along the nodal direction
obtained by determining Ek = |E| for every k-point separately. As shown in
the figure, a tight-binding dispersion fits well to the numerical data, and it
is possible to extract interesting quantities like the nodal Fermi velocity vF

or the nodal Fermi point |kF |.
By repeating the calculation from figure 7.4 for various electron densities, one
can determine the doping dependence of vF and |kF |. Figure 7.5(a) illustrates
that the Fermi velocity only slightly decreases when approaching half-filling
as already seen from RMFT ([7], section 4.3). The results of Yunoki, et
al. also agree with previous VMC calculations utilizing the moments of the
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Figure 7.4: Dispersion E in the nodal direction for the 2D t-J model with
J/t=0.3 and t′/t=−0.2 at x=0.099. (a) Full dispersion for L=162 (triangles)
and 242 (circles). The electron removal (addition) spectrum is denoted by
open (solid) symbols. The dashed lines are tight binding fits. (b) Same as (a)
but focusing on the excitations near EF. In addition to the data for L=162
(open triangles) and 242 (open squares), results for L = 1250 (solid squares
and circles) are also plotted. From [121].
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Figure 7.5: (a) Nodal Fermi velocity vF, (b) bandwidth W , (c) nodal Fermi
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F (crosses) com-
pared to vF for the 2D t-J model with J/t=0.3 and t′/t=−0.2 at different x.
From [121].

spectral function ([128], section 5.3), as well as with ARPES experiments
[27, 131, 132, 133, 134]. In figure 7.5(c), we see the doping dependence of the
nodal Fermi point |kF |, which matches experimental and RMFT predictions.
The renormalized band width W is given in figure 7.5(b); it is tightly related
to vF . Figure 7.5(d) illustrates a comparison between the Fermi velocity
vF and the unrenormalized velocity v0

F , revealing the strong renormalization
effects due to the Gutzwiller projection. However, it is important to note
that, in contrast to the QP weight Z̃k, the Fermi velocity does not vanish in
the half-filled limit

While Yunoki et al. [121] only considers the nodal dispersion, Yunoki re-
cently extended these VMC calculations to the whole Brillouin zone [200].
His results fit quite well to the RMFT dispersion, giving further support for
the Gutzwiller-Bogoliubov QP picture. In conclusion, above VMC calcula-
tions for the spectral weight and the QP excitations, yield a good qualitative
agreement with RMFT. Two key features emerge consistently from these two
approaches; a finite and constant Fermi velocity contrasting with a vanishing
QP weight in the half-filled limit. In the underdoped regime some discrep-
ancies for the QP weights show up as discussed in the previous section.



Chapter 8

Summary and outlook

In this thesis we have summarized a large number of studies, which view
Gutzwiller projected wave functions as an appropriate way to describe high
temperature superconductivity in the Cuprates. We have shown that pro-
jected wave functions provide a straightforward implementation of the RVB
picture and describe many key features of the high temperature supercon-
ductors.

Numerical and analytical calculations within this Gutzwiller-RVB theory
successfully explain a superconducting state with d-wave pairing symme-
try. Incorporation of antiferromagnetic order and next-nearest neighbor
hopping then allows for a quantitative description of the Cuprate phase di-
agram within the t-J and the Hubbard model. Sophisticated variational
Monte Carlo calculations (VMC) give detailed information about the size
of the antiferromagnetic region and the stability against phase separation.
These ground state properties seen in the VMC technique were recently con-
firmed by various quantum cluster methods, giving further support to the
Gutzwiller-RVB picture.

Besides the VMC technique, the effect of projection can be treated by Gutz-
willer approximation, which then allows for a formulation of a renormal-
ized mean field theory (RMFT). The RMFT results agree in general with
VMC calculations and provide systematic analytic expressions for doping-
dependent features.

Within the Gutzwiller-RVB picture, high temperature superconductors are
viewed as doped Mott insulators, i.e., restriction to single occupied orbitals
due to strong correlation effects. That causes a significant decrease in the
mobility of electrons (holes) near half-filling as correctly described within

140



CHAPTER 8. SUMMARY AND OUTLOOK 141

above microscopic calculations. The resulting renormalization of the kinetic
energy explains the decrease of the superconducting order parameter, of the
superfluid density, and of the Drude weight when approaching half-filling.
RMFT and VMC calculations also explain the large superconducting gap
and the small quasiparticle weight in the underdoped Cuprates. Further, the
modeling of charge ordered states, impurity sites, or vortex cores qualitative
agrees with experiments.

While the quasiparticle weight Z vanishes in the half-filled limit, the nodal
Fermi velocity vF stays finite. We have shown that RMFT and VMC cal-
culations explain this interesting experimental observation by effects of the
superexchange interaction on the dispersion. However, in the half-filled limit,
such a behavior (Z → 0 and vF = const) immediately results in a divergence
of the ω- as well as of the k-dependence of the self-energy.

The consequences of these divergences for any Fermi liquid description at
finite doping are still controversial. While some authors think Gutzwiller
projected superconductors can be classified within Landau theory as BCS
liquids, Anderson suggested in a recent work [231] that projected wave func-
tions contain the essential physics to explain the non-Fermi liquid behavior
of the strange metal normal state.

Apart form the successes of Gutzwiller-RVB theory, the driving mechanism
in destroying superconductivity in the underdoped regime is still an open
question. Within Gutzwiller-RVB theory it is often argued that phase fluc-
tuations suppress superconductivity and result a pseudogap regime at low
doping concentrations. However also other mechanisms like the destruction
of the superfluid density by nodal excitations or the appearance of phase sep-
aration could, in principle, be consistent with the Gutzwiller-RVB picture,
which states that the ground state is an RVB superconductor (projected BCS
superconductor) with pairing mediated by the superexchange interaction J .

Above problem is tightly connected with the nature of the pseudogap state,
which we view as a precursor of superconductivity with still existing local
singlet pairing. Therefore, the pseudogap is described by an RVB liquid
phase, which breaks down at T ∗. Much support for this idea comes from the
experimental observation that the BCS ratio, ∆/(2kBT ∗), is constant and
in agreement with mean field theory for all doping levels, when we use the
onset temperature of the pseudogap T ∗ instead of Tc.

Since it is rather easy to explain T ∗, the key question remains the transition
from the superconducting to the pseudogap phase. Answering it would yield
to a better understanding of the high temperature superconductors and could
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explain puzzling features such as the presence of a Nernst phase. Thus,
more detailed extensions of the Gutzwiller-RVB picture to finite temperatures
should be a main issue of future work.



Appendix A

Deutsche Zusammenfassung

Diese Arbeit behandelt die Theorie der Hochtemperatursupraleitung vom
Gesichtspunkt stark korrelierter Elektronensysteme. Im Speziellen werden
Gutzwiller projizierte Wellenfunktionen diskutiert. Die dabei verwendete
Gutzwiller-Projektion eliminiert Doppelbesetzungen in Orbitalen mit starker
lokaler Abstoßung und ermöglicht dadurch die Behandlung starker Elektron-
Korrelationen.

Nach einem allgemeinen Überblick über die Hochtemperatursupraleitung dis-
kutieren wir Andersons “Resonating Valence Bond” (RVB)-Bild und seine
Implementierung mittels renormierter Molekularfeld-Theorie (RMFT) und
variationellem Monte Carlo (VMC). Es wird dabei ein detaillierter Überblick
über die RMFT and das VMC gegeben, wobei der Schwerpunkt bei unseren
kürzlich veröffentlichten Beiträgen [5, 6, 7, 8, 9, 10] liegt. Die dabei disku-
tierten Berechnungen basieren großteils auf dem zweidimensionalen Hubbard
und t-J Modell.

In unseren theoretischen Betrachtungen interessieren wir uns vor allem für
spektrale Eigenschaften von Gutzwiller-Bogoliubov Quasiteilchen, die über
die Konstruktion von angeregten Zuständen durch VMC and RMFT Tech-
niken behandelt werden können. Wir illustrieren wie sich mit Hilfe dieser
Methoden das Anregungsspektrum und das dazugehörende Quasiteilchen-
Gewicht bestimmen lässt. Die daraus gewonnen theoretischen Ergebnisse
stimmen sehr gut mit experimentellen Daten aus winkelaufgelöster Photoe-
missionsspektroskopie (ARPES) und Rastertunnelmikroskopie (STM) überein
und zeigen, dass Gutzwiller projizierte Wellefunktionen einen vielversprechen-
den Ansatz zur Beschreibung der Hochtemperatursupraleitung in den Cuprate-
Verbindungen liefern.
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Figure A.1: Allgemeines Phasendiagramm für die Cuprate-Hochtemperatur-
supraleiter (antiferromagnetischer Bereich AF, supraleitender Bereich SC).
Die Temperatur unter welcher die Supraleitung (der Pseudogap) beobachtet
wird, ist durch Tc (T ∗) gekennzeichnet.

Im Folgenden fassen wir die einzelnen Kapitel dieser Arbeit kurz zusammen
und geben damit einen Einblick in die jeweiligen Schwerpunkte und Ergeb-
nisse.

In der Einleitung (Kapitel 1) begründen wir das Dissertationsthema und
diskutieren grundlegende Ergebnisse aus dem Gebiet der Hochtemperatur-
supraleitung. Wir erläutern die Kristallstruktur der Cuprate, die im Allge-
meinen aus zweidimensionalen Kupfer-Oxid Ebenen besteht und betrachten
das Temperatur-Dotierung Phasendiagram (Figure A.1). Wie in Figure A.1
dargestellt, können in den Cuprate-Verbindungen bei geeigneter Dotierung
und Temperatur neben der Supraleitung weitere interessante Phasen auftreten.
Die undotierte Verbindung ist bis ungefähr 300 Kelvin ein antiferromagnetis-
cher Mott-Hubbard Isolator. Bei Dotierung mit Löchern oder Elektronen
kommt es bei tiefen Temperaturen zur Supraleitung. Im unterdotieren Bere-
ich (weniger als optimale Dotierung) kann auch ein so genannter Pseudogap
auftreten, der nicht supraleitend ist, jedoch (zumindest in einem gewissen
Teil der Brillouin-Zone) eine Anregungslücke besitzt. Der Zusammenhang
des Pseudogaps mit der Supraleitung ist noch relativ umstritten weshalb wir
im Laufe der Arbeit einige Male näher darauf eingehen.

In der Einleitung werden weiters experimentelle Ergebnisse für die unter-
schiedlichen Bereiche des Phasendiagramms diskutiert, wobei wir uns we-
gen der Relevanz für die späteren theoretischen Betrachtungen vor allem
auf ARPES und STM Resultate konzentrieren. Am Ende der Einleitung
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werden auch alternative theoretische Ansätze abseits der Gutzwiller-RVB
Theorie kurz diskutiert, um die Komplexität und Vielfältigkeit des Gebietes
aufzuzeigen.

Kapitel 2 widmet sich den Grundlagen der RVB Theorie [45], in der angenom-
men wird, dass der Grundzustand der Hochtemperatursupraleiter als eine
Flüssigkeit aus Spin-Singlets betrachtet werden kann. Dieser Zustand wird
auch RVB Zustand genannt und gibt eine sehr gute variationelle Energie
für das zweidimensionale Heisenberg Modell. Durch das Dotieren einer hal-
bgefüllten nichtleitenden Spin-Singlet-Flüssigkeit kann ein supraleitender RVB
Zustand entstehen. Die grundlegende Idee hinter diesem Mechanismus ist,
dass die magnetischen Paare bei endlicher Dotierung beweglich werden und
somit geladene supraleitende Paare formen.

In Kapitel 2 diskutieren wir auch mögliche Umsetzungen eines RVB Zus-
tandes in Festkörpern. Abseits der Hochtemperatursupraleiter könnte dieser
Zustand für Supraleitung in den Cobaltaten und in einigen organischen Ver-
bindungen von Relevanz sein. Es ist jedoch wichtig zu erwähnen, dass der
RVB Zustand im halbgefüllten Hubbard Modell gegenüber Antiferromag-
netismus, Inhomogenitäten und/oder “Valence Bond crystals” instabil ist.
Diese Instabilitäten können aber bei endlicher Dotierung überwunden wer-
den und ein supraleitender RVB Grundzustand kann sich ausbilden.

Die Gutzwiller-Näherung wird in Kapitel 3 behandelt. Es handelt sich dabei
um ein geradliniges Verfahren zum Auswerten von Erwartungswerten in Gutz-
willer projizierten Wellenfunktionen. Dabei werden die Effekte der Gutzwiller-
Projektion durch einen statistischen Gewichtsfaktor absorbiert, was eine an-
alytische Behandlung von stark korrelierten Wellenfunktionen ermöglicht.

Die Ableitung der Gutzwiller-Gewichtsfaktor (Renormierungsfaktoren) kann
durch Hilbert-Raum Zählargumente beziehungsweise durch Betrachtung des
Limes unendlicher Dimension erfolgen. Neben diesen zwei grundlegenden
Ansätzen zur Gutzwiller-Näherung, konzentrieren wir uns in Kapitel 3 vor
allem auf die Erweiterungen, die wir in den Arbeiten “Particle number renor-
malization in nearly half filled Mott Hubbard superconductors” [5] und “Eval-
uation of matrix elements in partially projected wave functions” [6] eingeführt
haben. Erstere [5] behandelt die Unterschiede zwischen den Gutzwiller-
Näherungen in kanonischen und groß-kanonischen Ensembles. Diese Unter-
schiede werden auch durch den Vergleich mit VMC Daten bestätigt. Die
zweite Arbeit [6] beinhaltet eine Erweiterung der Gutzwiller-Näherung auf
teilweise projizierte Wellenfunktionen, in denen ein so genannter Reservoir-
Gitterplatz von der Gutzwiller-Projektion ausgenommen ist. Diese Art der
Gutzwiller-Näherung wird bei Berechnungen für Gutzwiller-Bogoliubov Qua-
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Figure A.2: Schematische Darstellung der RMFT Methode. Die dar-
gestellten Schritte umfassen die kanonische Transformation vom Hubbard
zum t-J Modell, die Gutzwiller-Renormierung mit dem Einführen von
Renormierungsfaktoren gt (für die kinetische Energie) und gS (für den
Superaustauch-Term), die Molekularfeld-Näherung für den renormierten
Hamiltonian, sowie das Ableiten eines Grundzustandes |Ψ0〉, der dann für
eine projizierte Versuchswellenfunktion |Ψ〉 = PG|Ψ0〉 in der numerischen
Auswertung mittels variationellen Monte Carlo genutzt werden kann.

siteilchenanregungen notwendig, da in diesem Fall teilweise projizierte Wellen-
funktionen durch das Vertauschen der Elektronoperatoren mit dem Gutzwiller-
Projektionsoperator auftreten können. Eine solche Gutzwiller-Näherung wird
in Kapitel 6 verwendet.

Auf der Basis der Gutzwiller-Näherung (auch Gutzwiller-Renormierung ge-
nannt) lässt sich eine renormierte Molekularfeldtheorie (RMFT) für das t-J
Modell [76] entwickeln. In Kapitel 4 präsentieren wir einen Überblick über
diesen Ansatz, der eine zentrale Rolle in der Gutzwiller-RVB Theorie der
Hochtemperatursupraleitung spielt. Die wesentlichen Schritte der RMFT
Methode, die in Übereinstimmung mit experimentellen Beobachtungen in
den Hochtemperatursupraleitern einen d-Wellen Grundzustand liefert, sind
in Figure A.2 kurz zusammengefasst und werden in Kapitel 4 im Detail disku-
tiert.

Weiters betrachten wir in Kapitel 4 Erfolge und wichtige Ergänzungen der
RMFT. Dabei basiert ein wichtiger Teil auf unserer Arbeit, Edegger, et al.
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[7], in der die RMFT für das Hubbard Modell verwendet wird.

In Kapitel 5 wird die variationelle Monte Carlo (VMC) Technik, die eine
genaue Auswertung von Erwartungswerten in Gutzwiller projizierten Wellen-
funktionen ermöglicht, behandelt. Wir erläutern technische Details zu dieser
Methode und zeigen wie VMC für die variationelle Suche eines Grundzus-
tand im zweidimensionalen Hubbard und t-J Modell eingesetzt werden kann.
Wir diskutieren die Verbesserung der Versuchswellenfunktion durch den Ein-
bau neuer Ordnungen, z.B. Antiferromagnetismus oder Fluss-Zustände, sowie
auch durch die Verwendung von Jastrow-Faktoren. Desweiteren betrachten
wir dotierungsabhängige spektrale Eigenschaften projizierter Wellenfunktio-
nen, die sehr gut mit den experimentellen Ergebnissen für die Cuprate-
Hochtemperatursupraleiter übereinstimmen. Am Ende des Kapitels 5 disku-
tieren wir unsere numerische Studie, Edegger, et al. [8], die auf eine mögliche
spontane Brechung der Fermiflächen-Symmetrie im isotropen zweidimension-
alen t-J Modell hinweist.

Die Erweiterung der RMFT auf angeregte Zustände verlangt die Betrachtung
von Gutzwiller-Bogoliubov Quasiteilchen innerhalb des t-J und Hubbard
Modells. Wie in Kapitel 6 geschildert, ermöglichen Gutzwiller-Bogoliubov
Anregungen eine systematische Analyse (siehe auch Edegger, et al. [7]) der
Einteilchen-Spektralfunktion und erklären die impuls- und dotierungsabhän-
gigen Eigenschaften in ARPES und STM Experimenten. Abseits dieser
Schlüsselresultate diskutieren wir die Renormierung des von Quasiteilchen
transportierten Stroms und die Konsequenz für die Unterdrückung der “su-
perfluid density”. Als eine Anwendung obiger Quasiteilchenstudien folgen wir
Gros, et al. [9] und bestimmen die Fermifläche in einem d-Wellen Grundzus-
tand.

In Kapitel 7 werden die RMFT Ergebnisse für die Quasiteilchen-Eigenschaften
mit VMC Daten verglichen. Abgesehen von kleineren Abweichungen in der
detaillierten Dotierungs- und Impulsabhängigkeit zeigen die beiden Metho-
den gute Übereinstimmung. Dabei treten zwei Hauptergebnisse konsistent in
den RMFT und VMC Rechnungen auf; eine konstante Fermi-Geschwindigkeit
aber ein verschwindendes Quasiteilchengewicht bei Annäherung an Halb-
füllung. Dieses Verhalten, das mit den experimentellen Beobachtungen in den
Cupraten übereinstimmt, bewirkt Divergenzen in der Impuls- wie auch der
Energieabhängigkeit der Einteilchen-Selbstenergie. Das natürliche Auftreten
dieser Divergenzen überschreitet eine normale Fermi-Flüssigkeit Beschrei-
bung und unterstützt die hier diskutierte Gutzwiller-RVB Theorie.

Das letzte Kapitel der Doktorarbeit fasst die Schlüsselergebnisse zusammen
und gibt einen kurzen Ausblick auf zukünftige Forschungsfragen. Es wird
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aufgezeigt, dass die in dieser Arbeit betrachtete Gutzwiller-RVB Theorie
viele experimentelle Ergebnisse für die Hochtemperatursupraleiter richtig
beschreibt. Als eine offene Frage für die Zukunft wird die systematische
Erweiterung der Gutzwiller-RVB Theorie auf endliche Temperaturen ange-
sprochen.
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