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The choice of threshold values for excitatory (TE
max) and inhibitory units (T I

max) plays an important
role in determining the dynamics of a random reservoir network. In the following experiments we
consider 10 networks with NE = 100 (Fig. 1) or NE = 200 (Fig. 2) for 15 different settings of
TE

max and T I
max. We compare static reservoirs to SORNs following 50,000 steps of plasticity in the

presence of a temporally patterned input (counting task with n = 8). We simulate each network for
5,000 time steps of activity (frozen weights and thresholds for SORNs) and monitor the following
aspects of the network dynamics:

• Rate H0 - defined as the mean fraction of firing neurons per unit of time.

• Inactive neurons - defined as the fraction of units which are silent during simulation.

• Criticality of network dynamics - assessed through a perturbation analysis. For every
state x(t), we perturb the activation of a randomly chosen excitatory neuron (from active to
inactive or from inactive to active) creating an altered state x̃(t). The Hamming distance
between x(t) and its perturbed version x̃(t) is one (d(t) = 1). We calculate the successor
states of x(t) and x̃(t) by applying (1) and obtain x(t + 1) and x̃(t + 1) with the Hamming
distance d(t+ 1). If the average distance d̄(t+ 1) > 1 the network amplifies perturbations and
is in a supercritical regime. If d̄(t+ 1) < 1 the network has self-correcting properties and is in
a subcritical dynamical regime. When d̄(t + 1) ≈ 1 the dynamics is said to be on the “edge
of chaos”.

• One-step prediction performance - A readout is trained in a supervised fashion to predict
the next input (U(t)) based on the network’s internal state (x′(t)) after presentation of the
preceding letter (U(t− 1)). We use the Moore–Penrose pseudoinverse method that minimizes
the squared difference between the output of the readout neurons and the target output value.
The quality of the readout (test performance) is assessed on a second sample of 5000 steps of
activity using an independent input sequence.

The results prompt us to the following observations:

• For static reservoirs, small network rates correspond to high fractions of inactive neurons. For
SORNs, IP successfully spreads the network activity across all neurons.

• Static reservoirs with critical dynamics score highest in prediction performance when com-
pared to static networks in supercritical or subcritical dynamical regimes. In contrast, SORNs
settle into a subcritical regime and exhibit a nearly optimal performance.

This analysis allows us to identify the static networks with critical dynamics and high prediction
performance. In our experiments, we challenge SORNs to outperform these highly tuned static
reservoirs. A less careful choice of initial threshold settings results into a similar or larger perfor-
mance advantage for SORNs compared to static networks.
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Figure 1: Influence of different initial thresholds on network dynamics: static reservoirs with NE =
100, NU = 10%×NE, λW = 10 are compared to their corresponding SORNs with HIP = 20%×NE.
Error bars indicate standard error.
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Figure 2: Influence of different initial thresholds on network dynamics: static reservoirs with NE =
200, NU = 10%×NE, λW = 10 are compared to their corresponding SORNs with HIP = 20%×NE.
Error bars indicate standard error.
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