Figure S1: Splice variants of the NANOG1 and NANOG2 gene

1. NANOG1 variants

Abstract

NANOG1A (E3-E4-E5-E6): ATGAGTGTGGATCCAGCTTGTCCCCAAAGCTTGCCTTGCTTTGAAGCATCCGACTGTAAAGAATCTTC ACCTATGCCTGTGATTTGTGGGCCTGAAGAAAACTATCCATCCTTGCAAATGTCTTCTGCTGAGATGC СTCACACGGAGACTGTCTCTCCTCTTCCTTCCTCCATGGATCTGCTTATTCAGGACAGCCCTGATTCT TCCACCAGTCCCAAAGGCAAACAACCCACTTCTGCAGAGAAGAGTGTCGCAAAAAAGGAAGACAAGGT CCCGGTCAAGAAACAGAAGACCAGAACTGTGTTCTCTTCCACCCAGCTGTGTGTACTCAATGATAGAT TTCAGAGACAGAAATACCTCAGCCTCCAGCAGATGCAAGAACTCTCCAACATCCTGAACCTCAGCTAC AAACAGGTGAAGACCTGGTTCCAGAACCAGAGAATGAAATCTAAGAGGTGGCAGAAAAACAACTGGCC GAAGAATAGCAATGGTGTGACGCAGAAGGCCTCAGCACCTACCTACCCCAGCCTTTACTCTTCCTACC ACCAGGGATGCCTGGTGAACCCGACTGGGAACCTTCCAATGTGGAGCAACCAGACCTGGAACAATTCA ACCTGGAGCAACCAGACCCAGAACATCCAGTCCTGGAGCAACCACTCCTGGAACACTCAGACCTGGTG САСССААТССТGGAACAATCAGGCCTGGAACAGTCCCTTCTATAACTGTGGAGAGGAATCTCTGCAGT ССТGСATGCAGTTCCAGCCAAATTCTCCTGCCAGTGACTTGGAGGCTGCCTTGGAAGCTGCTGGGGAA GGCСTTAATGTAATACAGCAGACCACTAGGTATTTTAGTACTCCACAAACCATGGATTTATTCCTAAA CTACTCCATGAACATGCAACCTGAAGACGTGTGA

NANOG1Ba (E1-E2-E3 (+3)-E4-E5-E6):
GACACAATGGGACAGGGAGCGGGGGATGGGGGAATTCAGCTCAGGCTTTTATGCAAAGACCCCCTTCT GCAAAGAACAAAGCTTCTGGTACCTGCCCTTTGGAGAGCTGCGGGCAAGCTCAGCCTCGAAACACACA CACCCACACGAGATGGGCACGGAGTAGTCTTGAAAGACATGACAAATCACCAGACCTGGGAAGAAGCT AAAGAGCCAGAGGGAAAAAGCCAGAAGTCGACTACCTGGGAGGAGGGATAGACAAGAAACCAAACTAA AGGAAACTAAGGAGTGTGGATCCAGCTTGTCCCCAAAGCTTGCCTTGCTTTGAAGCATCCGACTGTAA AGAATCTTCACCTATGCCTGTGATTTGTGGGCCTGAAGAAAACTATCCATCCTTGCAAATGTCTTCTG CTGAGATGCCTCACACGGAGACTGTCTCTCCTCTTCCTTCCTCCATGGATCTGCTTATTCAGGACAGC CСTGATTCTTCCACCAGTCCCAAAGGCAAACAACCCACTTCTGCAGAGAAGAGTGTCGCAAAAAAGGA AGACAAGGTCCCGGTCAAGAAACAGAAGACCAGAACTGTGTTCTCTTCCACCCAGCTGTGTGTACTCA ATGATAGATTTCAGAGACAGAAATACCTCAGCCTCCAGCAGATGCAAGAACTCTCCAACATCCTGAAC СTCAGCTACAAACAGGTGAAGACCTGGTTCCAGAACCAGAGAATGAAATCTAAGAGGTGGCAGAAAAA CAACTGGCCGAAGAATAGCAATGGTGTGACGCAGAAGGCCTCAGCACCTACCTACCCCAGCCTTTACT СTTССТАССАССAGGGATGCCTGGTGAACCCGACTGGGAACCTTCCAATGTGGAGCAACCAGACCTGG AACAATTCAACCTGGAGCAACCAGACCCAGAACATCCAGTCCTGGAGCAACCACTCCTGGAACACTCA GACCTGGTGCACCCAATCCTGGAACAATCAGGCCTGGAACAGTCCCTTCTATAACTGTGGAGAGGAAT CTCTGCAGTCCTGCATGCAGTTCCAGCCAAATTCTCCTGCCAGTGACTTGGAGGCTGCCTTGGAAGCT GCTGGGGAAGGCCTTAATGTAATACAGCAGACCACTAGGTATTTTAGTACTCCACAAACCATGGATTT ATTCCTAAACTACTCCATGAACATGCAACCTGAAGACGTGTGA

[^0]GGAAGGCCTTAATGTAATACAGCAGACCACTAGGTATTTTAGTACTCCACAAACCATGGATTTATTCC TAAACTACTCCATGAACATGCAACCTGAAGACGTGTGA

Abstract

NANOG1BC (E1-E2-E3(+17)-E4-E5-E6): GACACAATGGGACAGGGAGCGGGGGATGGGGGAATTCAGCTCAGGCTTTTATGCAAAGACCCCCTTCT GCAAAGAACAAAGCTTCTGGTACCTGCCCTTTGGAGAGCTGCGGGCAAGCTCAGCCTCGAAACACACA CACCCACACGAGATGGGCACGGAGTAGTCTTGAAAGACATGACAAATCACCAGACCTGGGAAGAAGCT AAAGAGCCAGAGGGAAAAAGCCAGAAGTCGACTACCTGGGAGGAGGGATAGACAAGAAACCAAACTAA AGGAAACTAAGCTTGTCCCCAAAGCTTGCCTTGCTTTGAAGCATCCGACTGTAAAGAATCTTCACCTA TGCCTGTGATTTGTGGGCCTGAAGAAAACTATCCATCCTTGCAAATGTCTTCTGCTGAGATGCCTCA \bar{C} ACGGAGACTGTCTCTCCTCTTCCTTCCTCCATGGATCTGCTTATTCAGGACAGCCCTGATTCTTCCAC CAGTCCCAAAGGCAAACAACCCACTTCTGCAGAGAAGAGTGTCGCAAAAAAGGAAGACAAGGTCCCGG TCAAGAAACAGAAGACCAGAACTGTGTTCTCTTCCACCCAGCTGTGTGTACTCAATGATAGATTTCAG AGACAGAAATACCTCAGCCTCCAGCAGATGCAAGAACTCTCCAACATCCTGAACCTCAGCTACAAACA GGTGAAGACCTGGTTCCAGAACCAGAGAATGAAATCTAAGAGGTGGCAGAAAAACAACTGGCCGAAGA ATAGCAATGGTGTGACGCAGAAGGCCTCAGCACCTACCTACCCCAGCCTTTACTCTTCCTACCACCAG GGATGCCTGGTGAACCCGACTGGGAACCTTCCAATGTGGAGCAACCAGACCTGGAACAATTCAACCTG GAGCAACCAGACCCAGAACATCCAGTCCTGGAGCAACCACTCCTGGAACACTCAGACCTGGTGCACCC AATCCTGGAACAATCAGGCCTGGAACAGTCCCTTCTATAACTGTGGAGAGGAATCTCTGCAGTCCTGC ATGCAGTTCCAGCCAAATTCTCCTGCCAGTGACTTGGAGGCTGCCTTGGAAGCTGCTGGGGAAGGCCT TAATGTAATACAGCAGACCACTAGGTATTTTAGTACTCCACAAACCATGGATTTATTCCTAAACTACT CCATGAACATGCAACCTGAAGACGTGTGA

2. NANOG2 variants

NANOG2D1: (E3-E4-E5-E6)
ATGAGTGTGGATCCAGCTTGTCCATAAAGCCTGCCTTGCTCCAAAGCATCTGACTGTAAAGACTGGTC ACCTATACCTGTGATTTGTGGGCCTGAAGAAAACCATCCATCCTTGCAAATGTCTTCTGCTGAGATGC СTСАСАСАGAGACTGTCTCTCCTCTTCCTTCCTCCATGGATCTGCCTATTCAGGACAGCCATGATTCT TCCACCAGTCCCAAAGGCAAACAACCCACTACTGCAGAGAAGAGTGCCACAAAAAAGGAAGACAAGGT CCCGGTCAAGAAACAGAAGACCAGAACTGTGTTCTCTTCCACCCAGCTGTGTGTACTCAATGATAGAT TTCAGAGACAGAAATACCTCAGCCTCCAGCAGATGCAAGAACTTTCCAACATCCTGAACCTCAGCTAC AAACAGGTGAAGACCTGGTTCCAGAACCAGAGAATGAAATCTAAGAGGTGGCAGAAAAACAACTGGCT GAAGAATAGCAATGGTGTGACGCAGGGATGCCTGGTGAACCCGACTGGGAACCTTCCAATGTGGAGCA ACCAGACCTGGAACAATTCAACCTGGAGCAACCAGACCCAGAACATCCAGTCCTGGAGCAACCACTCC TGGAACACTCAGACCTGGTGCACCCAATCCTGGAACAATCAGGCCTGGAACAGTCCCTTCTATAACTG TGGAGAGGAATCTCTGCAGTCCTGCATGCAGTTCCAGCCAAATTCTCCTGCCAGTGACTTGGAGGCTG ССTTGGAAGCTGCTGGGGAAGGCCTTAATGTAATACAGCAGACCACTAGGTATTTTAATACTCCACAA ACCATGGATTTATTCCTAAACTACTCCATGAACATGCAACCTGAAGACGTGTGA

NANOG2D2a (E1-E3 (+3)-E4-E5-E6 (+48))
GACGCAATGGGACAGGGAGCGGGGGATGGGGGAATTCAGCTCAGGCTTTTATGCAAAGTCCCCCTTCA GCAAAGAACAAAGCTTCTGGTACCTGCCCTTTGGACAGCTGCGGGCAAGCTCAGCCTCGGAGTGTGGA TCCAGCTTGTCCATAAAGCCTGCCTTGCTCCAAAGCATCTGACTGTAAAGACTGGTCACCTATACCTG TGATTTGTGGGCCTGAAGAAAACCATCCATCCTTGCAAATGTCTTCTGCTGAGATGCCTCACACAGAG АСТGTСТСТССТСТTССТTССТССАTGGATCTGCCTATTCAGGACAGCCATGATTCTTCCACCAGTCC CAAAGGCAAACAACCCACTACTGCAGAGAAGAGTGCCACAAAAAAGGAAGACAAGGTCCCGGTCAAGA AACAGAAGACCAGAACTGTGTTCTCTTCCACCCAGCTGTGTGTACTCAATGATAGATTTCAGAGACAG AAATACCTCAGCCTCCAGCAGATGCAAGAACTTTCCAACATCCTGAACCTCAGCTACAAACAGGTGAA GACCTGGTTCCAGAACCAGAGAATGAAATCTAAGAGGTGGCAGAAAAACAACTGGCTGAAGAATAGCA ATGGTGTGACGCAGGGATGCCTGGTGAACCCGACTGGGAACCTTCCAATGTGGAGCAACCAGACCTGG AACAATTCAACCTGGAGCAACCAGACCCAGAACATCCAGTCCTGGAGCAACCACTCCTGGAACACTCA GACCTGGTGCACCCAATCCTGGAACAATCAGGCCTGGAACAGTCCCTTCTATAACTGTGGAGAGGAAT СTCTGCAGTCCTGCATGCAGTTCCAGCCAAATTCTCCTGCCAGTGACTTGGAGGCTGCCTTGGAAGCT GCTGGGGAAGGCCTTAATGTAATACAGCAGACCACTAGGTATTTTAATACTCCACAAACCATGGATTT ATTCCTAAACTACTCCATGAACATGCAACCTGAAGACGTGTGA

NANOG2D2b (E1-E3 (+6)-E4-E5-E6 (+48))
GACGCAATGGGACAGGGAGCGGGGGATGGGGGAATTCAGCTCAGGCTTTTATGCAAAGTCCCCCTTCA GCAAAGAACAAAGCTTCTGGTACCTGCCCTTTGGACAGCTGCGGGCAAGCTCAGCCTCGTGTGGATCC AGCTTGTCCATAAAGCCTGCCTTGCTCCAAAGCATCTGACTGTAAAGACTGGTCACCTATACCTGTGA TTTGTGGGCCTGAAGAAAACCATCCATCCTTGCAAATGTCTTCTGCTGAGATGCCTCACACAGAGACT GTСТСТССТСтТССтTССТССАTGGATCTGCCTATTCAGGACAGCCATGATTCTTCCACCAGTCCCAA AGGCAAACAACCCACTACTGCAGAGAAGAGTGCCACAAAAAAGGAAGACAAGGTCCCGGTCAAGAAAC AGAAGACCAGAACTGTGTTCTCTTCCACCCAGCTGTGTGTACTCAATGATAGATTTCAGAGACAGAAA TACCTCAGCCTCCAGCAGATGCAAGAACTTTCCAACATCCTGAACCTCAGCTACAAACAGGTGAAGAC CTGGTTCCAGAACCAGAGAATGAAATCTAAGAGGTGGCAGAAAAACAACTGGCTGAAGAATAGCAATG GTGTGACGCAGGGATGCCTGGTGAACCCGACTGGGAACCTTCCAATGTGGAGCAACCAGACCTGGAAC AATTCAACCTGGAGCAACCAGACCCAGAACATCCAGTCCTGGAGCAACCACTCCTGGAACACTCAGAC CTGGTGCACCCAATCCTGGAACAATCAGGCCTGGAACAGTCCCTTCTATAACTGTGGAGAGGAATCTC TGCAGTCCTGCATGCAGTTCCAGCCAAATTCTCCTGCCAGTGACTTGGAGGCTGCCTTGGAAGCTGCT GGGGAAGGCCTTAATGTAATACAGCAGACCACTAGGTATTTTAATACTCCACAAACCATGGATTTATT CСTAAACTACTCCATGAACATGCAACCTGAAGACGTGTGA

NANOG2D2c (E1-E3(+17)-E4-E5-E6(+48))
GACGCAATGGGACAGGGAGCGGGGGATGGGGGAATTCAGCTCAGGCTTTTATGCAAAGTCCCCCTTCA GCAAAGAACAAAGCTTCTGGTACCTGCCCTTTGGACAGCTGCGGGCAAGCTCAGCCTCGCTTGTCCAT AAAGCCTGCCTTGCTCCAAAGCATCTGACTGTAAAGACTGGTCACCTATACCTGTGATTTGTGGGCCT GAAGAAAACCATCCATCCTTGCAAATGTCTTCTGCTGAGATGCCTCACACAGAGACTGTCTCTCCTCT TCCTTCCTCCATGGATCTGCCTATTCAGGACAGCCATGATTCTTCCACCAGTCCCAAAGGCAAACAAC CCACTACTGCAGAGAAGAGTGCCACAAAAAAGGAAGACAAGGTCCCGGTCAAGAAACAGAAGACCAGA ACTGTGTTCTCTTCCACCCAGCTGTGTGTACTCAATGATAGATTTCAGAGACAGAAATACCTCAGCCT CCAGCAGATGCAAGAACTTTCCAACATCCTGAACCTCAGCTACAAACAGGTGAAGACCTGGTTCCAGA ACCAGAGAATGAAATCTAAGAGGTGGCAGAAAAACAACTGGCTGAAGAATAGCAATGGTGTGACGCAG GGATGCCTGGTGAACCCGACTGGGAACCTTCCAATGTGGAGCAACCAGACCTGGAACAATTCAACCTG GAGCAACCAGACCCAGAACATCCAGTCCTGGAGCAACCACTCCTGGAACACTCAGACCTGGTGCACCC AATCCTGGAACAATCAGGCCTGGAACAGTCCCTTCTATAACTGTGGAGAGGAATCTCTGCAGTCCTGC ATGCAGTTCCAGCCAAATTCTCCTGCCAGTGACTTGGAGGCTGCCTTGGAAGCTGCTGGGGAAGGCCT TAATGTAATACAGCAGACCACTAGGTATTTTAATACTCCACAAACCATGGATTTATTCCTAAACTACT CCATGAACATGCAACCTGAAGACGTGTGA

NANOG2D2* (E1*-E3(+77)-E4-E5-E6(+48))
GACGCAATGGGACAGGGAGCGGGGGATGGGGGAATTCAGCTCAGGCTTTTATGCAAAGTCCCCCTTCA GCAAAGAACAAAGCTTCTGGTACCTGCCCTTTGGACAGCTGCGGGCAAGCTCAGCCTCGGTGAGTCTT GGTGGCCTTGACAGCCCCCACTTAACACACTGTGCTGATTAAGAGAGACAGGAGGGCAAGTTTTTCCC TTTTTTAAAGAAATCATCCTCGACATGGACTACCTGCCTTGAAGCATGATCTATCTAGTTCCACTTAC СТССТССССGACGCCCCCATTCTGACTCTTCTCCAGAGTGGAGGTCTGTGATTTGTGGGCCTGAAGAA AACCATCCATCCTTGCAAATGTCTTCTGCTGAGATGCCTCACACAGAGACTGTCTCTCСTСTTССТТС CTCCATGGATCTGCCTATTCAGGACAGCCATGATTCTTCCACCAGTCCCAAAGGCAAACAACCCACTA CTGCAGAGAAGAGTGCCACAAAAAAGGAAGACAAGGTCCCGGTCAAGAAACAGAAGACCAGAACTGTG TTCTCTTCCACCCAGCTGTGTGTACTCAATGATAGATTTCAGAGACAGAAATACCTCAGCCTCCAGCA GATGCAAGAACTTTCCAACATCCTGAACCTCAGCTACAAACAGGTGAAGACCTGGTTCCAGAACCAGA GAATGAAATCTAAGAGGTGGCAGAAAAACAACTGGCTGAAGAATAGCAATGGTGTGACGCAGGGATGC CTGGTGAACCCGACTGGGAACCTTCCAATGTGGAGCAACCAGACCTGGAACAATTCAACCTGGAGCAA CCAGACCCAGAACATCCAGTCCTGGAGCAACCACTCCTGGAACACTCAGACCTGGTGCACCCAATCCT GGAACAATCAGGCCTGGAACAGTCCCTTCTATAACTGTGGAGAGGAATCTCTGCAGTCCTGCATGCAG TTCCAGCCAAATTCTCCTGCCAGTGACTTGGAGGCTGCCTTGGAAGCTGCTGGGGAAGGCCTTAATGT AATACAGCAGACCACTAGGTATTTTAATACTCCACAAACCATGGATTTATTCCTAAACTACTCCATGA ACATGCAACCTGAAGACGTGTGA

NANOG2E (E1-E4-E5-E6(+48))
GACGCAATGGGACAGGGAGCGGGGGATGGGGGAATTCAGCTCAGGCTTTTATGCAAAGTCCCCCTTCA GCAAAGAACAAAGCTTCTGGTACCTGCCCTTTGGACAGCTGCGGGCAAGCTCAGCCTCGTCTCTCCTC TTССТTССТССАTGGATCTGCCTATTCAGGACAGCCATGATTCTTCCACCAGTCCCAAAGGCAAACAA

CCCACTACTGCAGAGAAGAGTGCCACAAAAAAGGAAGACAAGGTCCCGGTCAAGAAACAGAAGACCAG AACTGTGTTCTCTTCCACCCAGCTGTGTGTACTCAATGATAGATTTCAGAGACAGAAATACCTCAGCC TCCAGCAGATGCAAGAACTTTCCAACATCCTGAACCTCAGCTACAAACAGGTGAAGACCTGGTTCCAG AACCAGAGAATGAAATCTAAGAGGTGGCAGAAAAACAACTGGCTGAAGAATAGCAATGGTGTGACGCA GGGATGCCTGGTGAACCCGACTGGGAACCTTCCAATGTGGAGCAACCAGACCTGGAACAATTCAACCT GGAGCAACCAGACCCAGAACATCCAGTCCTGGAGCAACCACTCCTGGAACACTCAGACCTGGTGCACC CAATCCTGGAACAATCAGGCCTGGAACAGTCCCTTCTATAACTGTGGAGAGGAATCTCTGCAGTCCTG CATGCAGTTCCAGCCAAATTCTCCTGCCAGTGACTTGGAGGCTGCCTTGGAAGCTGCTGGGGAAGGCC TTAATGTAATACAGCAGACCACTAGGTATTTTAATACTCCACAAACCATGGATTTATTCCTAAACTAC TCCATGAACATGCAACCTGAAGACGTGTGA

NANOG2 F (E1-E3-E4(+39)-E5-E6(+48))
GACGCAATGGGACAGGGAGCGGGGGATGGGGGAATTCAGCTCAGGCTTTTATGCAAAGTCCCCCTTCA GCAAAGAACAAAGCTTCTGGTACCTGCCCTTTGGACAGCTGCGGGCAAGCTCAGCCTCGATGAGTGTG GATCCAGCTTGTCCATAAAGCCTGCCTTGCTCCAAAGCATCTGACTGTAAAGACTGGTCACCTATACC TGTGATTTGTGGGCCTGAAGAAAACCATCCATCCTTGCAAATGTCTTCTGCTGAGATGCCTCACACAG AGACTGGACAGCCATGATTCTTCCACCAGTCCCAAAGGCAAACAACCCACTACTGCAGAGAAGAGTGC CACAAAAAAGGAAGACAAGGTCCCGGTCAAGAAACAGAAGACCAGAACTGTGTTCTCTTCCACCCAGC TGTGTGTACTCAATGATAGATTTCAGAGACAGAAATACCTCAGCCTCCAGCAGATGCAAGAACTTTCC AACATCCTGAACCTCAGCTACAAACAGGTGAAGACCTGGTTCCAGAACCAGAGAATGAAATCTAAGAG GTGGCAGAAAAACAACTGGCTGAAGAATAGCAATGGTGTGACGCAGGGATGCCTGGTGAACCCGACTG GGAACCTTCCAATGTGGAGCAACCAGACCTGGAACAATTCAACCTGGAGCAACCAGACCCAGAACATC CAGTCCTGGAGCAACCACTCCTGGAACACTCAGACCTGGTGCACCCAATCCTGGAACAATCAGGCCTG GAACAGTCCCTTCTATAACTGTGGAGAGGAATCTCTGCAGTCCTGCATGCAGTTCCAGCCAAATTCTC CTGCCAGTGACTTGGAGGCTGCCTTGGAAGCTGCTGGGGAAGGCCTTAATGTAATACAGCAGACCACT AGGTATTTTAATACTCCACAAACCATGGATTTATTCCTAAACTACTCCATGAACATGCAACCTGAAGA CGTGTGA

All cloned and sequenced NANOG1 and NANOG2 transcript variants are summarized above. Exons are alternatively marked in red and in blue. Translation start and stop codons are indicated (underlined).

Figure S2: Identified splice sites in human NANOG1 and NANOG2

1. NANOG1

Exon 1a	intron	A
GCGAAGAATGTA \cdot gtaagtcggcct - cccttcccccag \cdot AAACACACACAC		
Exon 1b	intron	Exon 2
AGCTCAGCCTCG•gtgagtcttgtt - cccttcccccag \cdot AAACACACACAC		
Exon 1b*	intron	Exon 2
GTTTACTTTTCG•gtatggaagact - cccttcccccag AAACACACACAC		
Exon 2	intron	Exon 3
AAGGAAACTAAG•gtaggtgctgaa - ctatactaacAT•GAGTGTGGATCC		
- tactaacATGAG•TGTGGATCCAGC (+6)		
- GTGTGGATCCAG•CTTGTCCCCAAA (+17)		
Exon 3	intron	Exon 4
ACACGGAGACTG•gtaagaaagaaa - tgttcccaacag• TCTCTCCTCTTC		
Exon 4	intron	Exon 5
AGCTACAAACAG•gtaggcttgttt - tttttcctgcag•GTGAAGACCTGG		
Exon 5	intron	Exon 6
GGTGTGACGCAG•gtaacaggaaac - cttctctttcag•AAGGCCTCAGCA		
	- TC	TGGTG

2. NANOG2

```
Exon 1b intron Exon 3
AGCTCAGCCTCG•gtgagtcttggt - taatgacATGAG•TGTGGATCCAGC (+6)
    - GTGTGGATCCAG•CTTGTCCATAAA (+17)
Exon 1b*
CAGAGTGGAGGT ` ctgagaagaaaa - GGTCACCTATAC·CTGTGATTTGTG (+77)
Exon 3 intron Exon 4
ACACAGAGACTG•gtaagaaagaaa - tgtttccaacag•TCTCTCCTCTTC
                            - CTGCCTATTCAG•GACAGCCATGAT (+39)
Exon 4 intron Exon 5
AGCTACAAACAG•gtaggcttattt - tttttcctgcag•GTGAAGACCTGG
Exon 5 intron Exon 6
GGTGTGACGCAG•gtaacaggaaac - cttctctttgag·AAGGCCTCAGCA
    - TCCTACCACCAG·GGATGCCTGGTG (+48)
```

Exon sequences are marked in bold letters and are shown for both the NANOG1 and NANOG2 gene. Intronic sequences are in lower case letters. Exonic and intronic sequences were separated by a dot. All splice sites of all identified splice varinats were indicated.

Figure S3: Mass spectrometry data from NANOG1A protein

Figure S4: Immunohistology

Cytospinned SEM and RS4;11 cells were treated with HRP-conjugated antisera raised against NANOG, OCT4 and SOX2. Counterstainings were performed with a DAPI solution. Controls were treated with all solutions except the antisera. A few SEM cells seem to express NANOG, while OCT4 and SOX2 seem to be expressed in nearly all cells. RS4;11 cells seems to express NANOG and SOX2, while only few cells express OCT4.

Figure S5: QPCR-experiments to estimate the amount of NANOG1 variants

Q-PCR result:

Primer A-B: ~10.000 copies
Primer C-D: 1.000 .000 copies

Formula:

A-B: transcripts starting from
NANOG1 ex $1 \mathrm{~b}=\mathrm{a}$
C-D: transcripts starting NANOG1 ex 1b, NANOG1 ex 3, NANOG2 ex 1 b and NANOG2 ex $3=2 a+2 b$

Calculation:

if $\mathrm{a}=10.000$
and $2 \mathrm{a}+2 \mathrm{~b}=1.000 .000$
then $b=490.000$

Top: partial gene structure of NANOG1 and NANOG2 (exons 1-4). Nomenclature as in Figure 2 of the manuscript. QPCR-primer design: primer A binds to NANOG1/2 exon 1b, primer B to NANOG1 exon 2, primer C to NANOG1/2 exon 3 and primer D to NANOG1/2 exon 4. Lower left panel: Results of independent QPCR experiments made with reverse transcribed total RNA isolated from NTERA2 cells. The experiments were carried out as described in Material and methods. All experiments were carried out in parallel with logdiluted plasmid copies ($1-10^{6}$ copies) that encode the NANOG1Bb splice variant. Lower right panel: Primers AB create an amplimer specific for the NANOG1 gene, while primers CD are able to identify transcripts starting from both NANOG genes (4 different transcripts), we estimated roughly the relative amount of transcripts starting from NANOG1 ex1b in relation to NANOG1 ex3 about 1/50.

Figure S6: RNase protection experiments to validate the existence of novel NANOG1/2 transcripts

A. Outline of the performed RNase protection experiments. Radiolabeled antisense RNA probes were generated with the MAXIscript Kit (AMBION). For NANOG1 we used a cloned exon 2-3 fragment ($\Delta 5$ splice variant); for NANOG2 we used a cloned exon 1-3-4 fragment ($\Delta 5$ splice variant). Both fragments were cloned in pGEM-T plasmid (Promega); plasmid were digest and subjected to SP6 polymerase transcription in the presence of ${ }^{32}$ P-UTP nucleotides. Radioactive labeled probes were separated on a 5% denaturating PAA gel. Gel slices were cut out and eluated over night at $37^{\circ} \mathrm{C}$. Eluated RNA probes were then precipitated and dissolved into $40.000 \mathrm{cpm} / \mu \mathrm{l}$.
B. RNase protection experimente were carried out as recommendend by the manufacturer (AMBION). Briefly, we used 10 and $30 \mu \mathrm{~g}$ total RNA from NTERA2 cells. About 80.000 cpm were co-precipitated with these RNAs. Appropriate controls were performed by suing yeast RNA.
B. NTERA cells express both the NANOG1 and NANOG2 gene. Due to our NANOG1-probe, 3 different protected species were expected. A 277 nucleotide-long species proves that transcripts spanned exons 2 and 3, while the shorter 130 nucleotide-long species represents transcripts starting upstream of NANOG exon 3 . The shortest 119 nucleotide-long species is indicative for a splice product from exon 2 to nucleotide +17 of exon 3. Thus, NANOG1 transcripts in NTERA2 cells are starting upstream of the 5' terminal nucleotide of the 277 protected fragment in exon 2 and predominantly splice to nucleotide +17 of exon 3 .
Due to our NANOG2-probe, 5 different protected species were expected. The longest protected fragment is indicative for the presence of NANOG2 transcripts coding for exons 1b, 3 and 4. The 223 nucleotide-long fragment represents NANOG2 transcripts starting upstream of NANOG exon 3 and containing exon 4 sequences. The 212 nucleotide-long species represents again a splice variant from NANOG2 exon 1b to nucleotide +17 of exon 3. The 146 nucleotide-long species are again transcripts starting upstream of exon 3 , but are alternatively splice to nucleotide +39 of exon 4 . The shortest protected fragment with 135 nucleotides represents transcripts starting from exon 1b that alternative splice to nucleotide +17 of exon 3 and alternatively to nucleotide +39 of exon 4 . Thus, transcripts starting upstream of NANOG exon 3 are predominantly used in NTERA2 cells.
In summary, this experiment validated independently the existence of NANOG1 exon 1b and 2 and NANOG2 exon 1b in transcripts deriving from both genes.

Figure S7: ChIP-experiments

A. Tested fragments I-III for NANOG1 and NANOG2 in ChIP experiments.
B. ChIP experiments. Chromatin was cross-linked with 1% formaldehyde at room temperature for 10 min in PBS. Cells were then washed twice with PBS, collected in SDS Buffer (100 mM NACI, 50 mM Tris pH 8.1, 5 mM EDTA pH 8.0, $0,5 \%$ SDS) and centrifuged for 6 min at 1.200 rpm . For sonication, cells were collected in IP Buffer ($100 \mathrm{mM} \mathrm{NaCl}, 67$ mM Tris $\mathrm{pH} 8.3,5 \mathrm{mM}$ EDTA pH 8.0, 1,7\% Triton X-100, $0,3 \%$ SDS) and sonicated 4×20
sec with an amplitude of 30% (Branson Digital Sonifier W-250 D, Danbury, CT) followed by centrifugation for 50 min at 20.000 x g at $4^{\circ} \mathrm{C}$. The chromatin was then pre-cleared with protein A/G-sepharose ($25 \mu \mathrm{l}$ of 50% slurry in TE buffer (Santa Cruz, CA), containing $2 \mu \mathrm{~g}$ of salmon sperm DNA (Trevigen USA), and $50 \mu \mathrm{~g}$ BSA) for $2-4 \mathrm{~h}$ at $4^{\circ} \mathrm{C}$. Immunoprecipitations were performed overnight at $4^{\circ} \mathrm{C}$ with specific antibodies (Abcam, UK: α RNA polymerase II, α Histone H3-trimethyl K4, α Histone H3-trimethyl K9, α Sox2; Santa Cruz, USA: α Oct-3/4 $\mathrm{C}-20, \alpha \lg \mathrm{G}$). After immunoprecipitation, $20 \mu \mathrm{l}$ protein A-Sepharose with $1,6 \mu \mathrm{~g}$ of salmon sperm DNA and $40 \mu \mathrm{~g}$ BSA were added and the incubation was continued for another 2-3 h . Precipitates were washed sequentially three times with wash buffer (WB) $1(150 \mathrm{mM} \mathrm{NaCl}$, 200 mM Tris pH 8.1, 50 mM EDTA pH 8.0, $5,2 \%$ sucrose, 1% Triton X-100, 0,2\% SDS), two times with WB 2 ($0,1 \%$ deoxycholic acid, 1 mM EDTA, 50 mM HEPES $\mathrm{pH} 7,5,500 \mathrm{mM} \mathrm{NaCl}$, 1% Triton X-100), two times with WB 3 ($0,5 \%$ deoxycholic acid, 1 mM EDTA, 250 mM LiCl , $0,5 \%$ NP-40, 10 mM Tris pH 8.0) and one time with TE Buffer. DNA was eluted by incubating the protein A-sepharose in $300 \mu \mathrm{l}$ of 1% SDS, $0,1 \mathrm{M} \mathrm{NaHCO} 3$ overnight at $65^{\circ} \mathrm{C}$, shaking. Proteins were removed by incubation with $60 \mu \mathrm{~g}$ of Proteinase K for 60 min . DNA fragments were purified with a QIAquick Spin Kit (Qiagen, Germany). The recovered DNA was then analyzed by PCR. All PCR experiments were performed in $50 \mu \mathrm{l}$ reactions with the following setting: initial denaturation with 2 min at $94^{\circ} \mathrm{C}$, followed by 35 cycles with 30 sec at $94^{\circ} \mathrm{C}, 30$ sec at $60^{\circ} \mathrm{C}$ and 30 sec at $72^{\circ} \mathrm{C}$. A final elongation step (3 min at $72^{\circ} \mathrm{C}$) was used for all reactions. The following oligonucleotides were used: NANOG1 fragment I (5'-cagggtaccatctgctcactaagtgttag-3'; 5'-cagaagcttgttaaaatgagctaacggct-3'); NANOG1 fragment II (5'-cagggtacccgtgcccagccgttag-3'; 5'-cagaagcttctttgcataaaagcctgag-3'); NANOG1 fragment III (5'-cagggtaccatcccattcctgttga-3'; 5'-cagaagcttctggatccacactcatgt-3'); NANOG2 fragment I (5^{\prime} '-cagggtaccatctgctcactaagtgttag-3'; 5^{\prime} '-cagaagcttgttaaaatgagctaacaatttag-3'); NANOG2 fragment II (5'-cagggtacctcaactctactaaattgttag-3'; 5'-cagaagcttctttgcataaaagcctgag-3'); NANOG2 fragment III (5'-cagggtaccgtgctggaacccaactct-3'; 5'-cagaagcttctggatccacactcatgt3 ').

Figure S8: Luciferase reporter gene assays

A. Tested NANOG1/2 DNA fragments. Different reporter plasmids containing the NANOG1-I to III and NANOG2-I to III regions were cloned into the pGL3-Luciferase plasmid. The promoter-less pGL3-Basic vector was used as negative control.
B. Luciferase reporter assays. All constructs were transiently co-transfected in 1×10^{5} NTERA2 cells by using Lipofectamin-transfection. NTERA-2 cells were electroporated with 1 $\mu \mathrm{g}$ of each of the pGL-3 constructs together with 25 ng pGL3-Renilla plasmid (internal control). All experiments were performed independently 3 times in triplicates and all measurements were made 24 h after transfection.
These experiments revealed that the presence of an upstream promoter element for both tested NANOG genes.

Figure S9: Western blot experiments performed with leukemia patient material

Western blot experiment using patient biopsy samples from individual AML patients (2-5 x 10^{6} cells), along with soluble lysates prepared from NTERA2 and SEM cells. Blots were stained with the C-terminal antibody against NANOG. Only 4 out of 10 investigated leukemia samples had enough cells to perform this experiment. The displayed patients all express NANOG protein, most likely the NANOG2 protein.

[^0]: NANOG1Bb (E1-E2-E3 (+ 6) -E4-E5-E6):
 GACACAATGGGACAGGGAGCGGGGGATGGGGGAATTCAGCTCAGGCTTTTATGCAAAGACCCCCTTCT GCAAAGAACAAAGCTTCTGGTACCTGCCCTTTGGAGAGCTGCGGGCAAGCTCAGCCTCGAAACACACA СAСССАСАСGAGATGGGCACGGAGTAGTCTTGAAAGACATGACAAATCACCAGACCTGGGAAGAAGCT AAAGAGCCAGAGGGAAAAAGCCAGAAGTCGACTACCTGGGAGGAGGGATAGACAAGAAACCAAACTAA AGGAAACTAAGTGTGGATCCAGCTTGTCCCCAAAGCTTGCCTTGCTTTGAAGCATCCGACTGTAAAGA ATCTTCACCTATGCCTGTGATTTGTGGGCCTGAAGAAAACTATCCATCCTTGCAAATGTCTTCTGCTG AGATGCCTCACACGGAGACTGTCTCTCCTCTTCСTTCCTCCATGGATCTGCTTATTCAGGACAGCCCT GATTCTTCCACCAGTCCCAAAGGCAAACAACCCACTTCTGCAGAGAAGAGTGTCGCAAAAAAGGAAGA CAAGGTCCCGGTCAAGAAACAGAAGACCAGAACTGTGTTCTCTTCCACCCAGCTGTGTGTACTCAATG ATAGATTTCAGAGACAGAAATACCTCAGCCTCCAGCAGATGCAAGAACTCTCCAACATCCTGAACCTA GCTACAAACAGGTGAAGACCTGGTTCCAGAACCAGAGAATGAAATCTAAGAGGTGGCAGAAAAACACT GGCCGAAGAATAGCAATGGTGTGACGCAGAAGGCCTCAGCACCTACCTACCCCAGCCTTTACTCTTCC TACCACCAGGGATGCCTGGTGAACCCGACTGGGAACCTTCCAATGTGGAGCAACCAGACCTGGAACAA TTCAACCTGGAGCAACCAGACCCAGAACATCCAGTCCTGGAGCAACCACTCCTGGAACACTCAGACCT GGTGCACCCAATCCTGGAACAATCAGGCCTGGAACAGTCCCTTCTATAACTGTGGAGAGGAATCTCTG CAGTCCTGCATGCAGTTCCAGCCAAATTCTCCTGCCAGTGACTTGGAGGCTGCCTTGGAAGCTGCTGG

