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0 Zusammenfassung

0 Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Simulation der Teilchendynamik in
Radiofrequenz-Quadrupolen (RFQs) und mit der Durchführung von Strahlmessungen
an einer RFQ-Struktur, deren Ergebnisse mit der Simulation verglichen werden.

RFQs werden heute für viele unterschiedliche Projekte eingesetzt. Sie sind die
erste HF-Beschleunigerstruktur bei fast jedem modernen Linearbeschleuniger (Linac).
Ihre Aufgabe besteht darin, den Gleichstromstrahl der Ionenquelle zu fokussieren, zu
Teilchenpaketen zu formen (bunchen) und für die Injektion in folgende Strukturen
vorzubeschleunigen. Die Endenergie kann dabei zwischen 100 keV/u und mehreren
MeV/u liegen. RFQs bestehen im Wesentlichen aus vier Stäben (Elektroden), die
einen Quadrupol bilden. Um einen longitudinalen Feldanteil zu erhalten, ist auf den
Elektroden eine sinusoidale „Störung” (Modulation) aufgebracht.

Bei Untersuchungen zur Teilchendynamiksimulation in RFQs wurden ver-
schiedene Programme verglichen und Unterschiede gefunden. Dies ist der Grund,
das vorhandene Programm zur Simulation der Teilchendynamik um wesentliche Funk-
tionen zu erweitern, um so zusätzlich die Unterschiede und Abweichungen zu Ex-
perimenten erklären zu können. Der Kern dieser Erweiterung stellt ein Multigrid
Poisson-Solver dar, der sowohl für die Berechnung der genauen HF-Felder, als auch
zur Berechnung der Raumladung unter Berücksichtigung von Bildladungen auf den
leitenden Oberflächen verwendet werden kann. Bis dahin wurden die HF-Felder über
eine Multipolentwicklung und die Raumladung über eine 2D-Routine mit Näherungen
für die Bildladung näherungsweise berechnet.

Das zweite Kapitel dieser Arbeit führt in die Funktionsweise von RFQs ein. Es
werden verschiedene Resonatorkonzepte dargestellt und verglichen, mit denen die in
der Teilchendynamik gefundenen Geometrien der Elektroden in reale HF-Strukturen
umgesetzt werden können. Anschließend werden zwei Strategien vorgestellt, mit de-
nen die Struktur der Elektroden entworfen werden kann. Zum einen handelt es sich
um die klassische Methode, die am Los Alamos National Laboratory in den 1980ern
entwickelt wurde und zum anderen um das so genannte „Equipartitioning”, bei dem
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die Raumladungseffekte des Strahls schon während des Designvorgangs berücksichtigt
werden, um ein Ausbalancieren der freien Energie zwischen den verschiedenen Frei-
heitsgraden zu erreichen, sodass eine Minimierung des Emittanzwachstums erzielt wer-
den kann. Anschließend werden die elektrischen Felder, die zwischen den Elektroden
entstehen, ausgehend von der Laplace-Gleichung in Zylinderkoordinaten hergeleitet.
Da die Elektroden den wesentlichen kapazitiven Teil des HF-Resonators darstellen
und keine (wesentlichen) Ströme auf den Elektroden auftreten, ist der Teil um die
Strahlachse frei von magnetischen Feldern und das Vektorpotential kann vernachlässigt
werden. Aus Symmetriegründen können etliche Koeffizienten der Multipolentwicklung
weggelassen werden. Der einfachste Fall benutzt nur noch zwei Terme (Zwei-Term-
Potential) und wurde lange Zeit wegen der eingeschränkten Rechenleistung vorhan-
dener Computer zur Simulation von RFQs eingesetzt. Später wurde die Anzahl der
Koeffizienten auf acht erhöht (Multipol-Potential). Unabhängig von der Anzahl der
Multipole bleibt der Bereich, in dem dieses Verfahren eine adäquate Darstellung der
Felder ist, eingeschränkt. Bei der Simulation von Hochstromanwendungen sowie bei
Anwendungen mit kleiner Apertur (lokaler minimaler Abstand Elektrode-Strahlachse)
verlassen Teilchen diesen Bereich und erfahren falsche Kräfte. Für kritische Anwen-
dungen wie zum Beispiel IFMIF, wo die transversale Fokussierung wegen des hohen
Strahlstroms groß ist und bei denen eine Aussage über die Orte der Teilchenverluste
getroffen werden soll, ist eine möglichst genaue Beschreibung der Felder unausweich-
lich.

Im dritten Kapitel werden die Funktionsweisen des Multigrid Poisson-Solvers
und dessen Komponenten erläutert. Zuerst wird das Gauß-Seidel-Verfahren beschrieben,
welches ein iteratives, infinites Differenzenverfahren zur Lösung von Differentialglei-
chungen auf einem Gitter darstellt. Das Mehrgitterverfahren zeigt ein deutlich besseres
Konvergenzverhalten als diese Methode. Wichtig ist, dass das Gauß-Seidel-Verfahren
die Eigenschaft hat, die hochfrequenten Anteile des Fehlers auf dem Gitter schnell
und effektiv zu dämpfen, während die tieffrequenten Anteile kaum reduziert werden
und dadurch zum eingeschränkten Konvergentverhalten beitragen. Für den Multi-
grid Poisson-Solver wird nun ausgenutzt, dass bei dem Übergang von einem feinen
Gitter auf ein gröberes der tieffrequente Anteil des feinen Gitters zu einem hochfre-
quenten Anteil auf dem groben Gitter wird. Mit der Kombination erhält man einen
leistungsstarken Solver. Eine typische Multigrid Iteration kann wie folgt aussehen:
Zuerst wird das Potential auf dem feinsten Gitter mit Hilfe von n Durchläufen des
Gauß-Seidel-Verfahrens (typisch: n=4) geglättet und der Defekt (Abweichung der
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linken von der rechten Seite der Poissongleichung) bestimmt und auf ein gröberes Git-
ter übertragen, wobei für den Defekt wieder eine Differentialgleichung gilt, die die
gleiche Form hat wie die Poissongleichung, sodass genauso verfahren werden kann wie
zuvor: n Durchläufe des Gauß-Seidel-Verfahren zur Glättung. So wird verfahren bis
das gröbste Gitter erreicht wird, welches genau gelöst werden muss. Dabei bietet sich
wiederum das Gauß-Seidel-Verfahren an, das nun sehr schnell ist, da das Gitter deut-
lich weniger Gitterpunkte aufweist. Anschließend wird das Ergebnis des gröbsten Git-
ters mit Hilfe des Prolongationsoperators auf das nächst feinere Gitter übertragen und
verrechnet, um anschließend wiederum mit n Durchläufen des Gauß-Seidel-Verfahrens
geglättet zu werden. So wird bis zum feinsten Gitter verfahren. Typischerweise sind
fünf solcher Multigriditerationen notwendig, um das Potential um die Strahlachse
eines RFQs mit ausreichender Genauigkeit zu bestimmen. Es werden abschließend
verschiedene Routinen beschrieben, mit den der Übergang von einem Gitter auf ein
anderes realisiert werden kann, sowie verschiedene Reihenfolgen der Gitter mit ver-
schiedenen Auflösungen.

Da die Felder in RFQs komplex sind, werden zur Überprüfung der Funk-
tionsweise und des Verhaltens des entwickelten Multigrid Poisson-Solvers im vierten
Kapitel dieser Arbeit verschiedenen Testprobleme betrachtet. Diese lassen sich in
zwei verschiedene Kategorien unterteilen: Probleme ohne Raumladung, bei denen
das Potential durch die Randbedingungen (Elektroden) bestimmt wird und Probleme
mit einer zusätzlichen Raumladung. Erste sind vergleichbar mit der Berechnung der
externen HF-Feldern und zweite mit der Raumladungsbetrachtung der Ionen. Den
ersten Test stellt eine einfache Box mit Potential 1 auf den Oberflächen und einem
verschwindenden Potential innerhalb der Box als Ausgang für den Solver dar, der
innerhalb weniger Schritte die richtige Lösung (homogenes Potential 1) erhält. An-
schließend wird das Potential einer kleinen geladenen Kugel in einer geerdeten Box
betrachtet, um festzustellen, ob solche kleinen starken Übergänge ein Problem für
den Poisson-Solver darstellen. Als letztes Beispiel in dieser Kategorie wurde das Feld
eines kleinen Plattenkondensators berechnet, der sich wiederum in einer geerdeten Box
befindet. Auch hier wurde innerhalb weniger Rechenschritten das erwartete Potential
erhalten. In der zweiten Kategorie wurden zuerst Raumladungsdichten mit der Form
eines Zylinders und mit einer Kugel in einem geerdeten größerem Zylinder betrachtet.
Dies entspricht in etwa der Situation eines Gleichstromstrahls, der in eine RFQ injiziert
wird und später im Verlauf der Struktur zu einem Teilchenpaket „gebuncht” wurde.
Der größere geerdete Zylinder minimiert die Bildladungen. Auch diesen Anforderung-
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en kann der implementierte Multigrid Poisson-Solver schnell und effektiv entsprechen.
Anschließend wurde die Fähigkeit zur Berechnung von Bildladungen genauer unter-
sucht. Dazu wurde eine Punktladung vor einer geerdeten Platte gesetzt und das
erhaltene Potential mit dem Potential von zwei Punktladungen gleicher Ladung je-
doch mit unterschiedlichem Vorzeichen verglichen, die sich im doppeltem Abstand
Platte Punktladung befanden. Die Potentiale stimmen überein. Abschließend wur-
den jeweils wieder die Potentiale von Ladungsdichten mit der Form eines Zylinders
und einer Kugel, die in einem unmodulierten Quadrupolkanal platziert wurden, be-
trachtet. Dabei wurde die Apertur variiert und festgestellt, dass dies einen großen
Einfluss auf das entsprechende Potential hat und zwar über den kompletten Verlauf
von der Strahlachse bis zu den Elektroden hinweg.

Nachdem zunächst einfache Beispiele betrachtet wurden, werden nun im fün-
ften Kapitel die Auswirkungen der verschiedenen Methoden zur Berechnung der Hoch-
frequenz- und Raumladungsfelder in RFQ-Beschleunigern auf die Transmission einer
Gruppe von unterschiedlichen RFQs untersucht. Diese RFQs wurden mit demsel-
ben Verfahren generiert und unterscheiden sich in ihrer minimalen Apertur, um so
festzustellen, ob die Wahl dieses Parameters von dem verwendeten Simulationspro-
gramm/Routine abhängt. Zuerst werden die wesentlichen Strukturparameter der
RFQs dargestellt und diskutiert. Es handelt sich dabei um IFMIF-ähnliche Designs.
Im folgendem Abschnitt werden sowohl die transversalen wie auch die longitudinalen
HF-Felder für verschiedene Zellgeometrien illustriert und diskutiert. Danach werden
die Potentiale, die durch den Multigrid Poisson Solver berechnet wurden, mit denen
von der Multipolentwicklung verglichen. Während im Bereich der Strahlachse beide
Methoden zu sehr ähnlichen Potentialen kamen, unterschieden sich diese weiter von der
Stahlachse entfernt jedoch zunehmend, wie aus den Grafiken für die relativen und ab-
soluten Unterschiede hervorgeht. Analog zum Potential wurden die einzelnen Kompo-
nenten des elektrischen Feldes der verschiedenen Methoden untereinander verglichen.
Während normalerweise mit 104 bis 106 Teilchen gerechnet wird, wurde der Einfluss
der Unterschiede in den Feldern auf die Dynamik einzelner Teilchen untersucht. Dazu
wurde zuerst das Verhalten des Synchronteilchens betrachtet, wobei kleine Unter-
schiede zu erkennen waren, die daher kommen, dass der Poisson Solver die Randfelder
vor den Elektroden berechnet und die andere Methode dies nicht kann. Als weiteres,
einzelnes Teilchen wurde ein beliebiges Teilchen gewählt und die Impulsänderungen
entlang der Struktur mit guter Übereinstimmung gegenübergestellt. Nun wurde der
Einfluss auf die Transmission der Test-RFQs mit 104 Teilchen untersucht, wobei fest-
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gestellt wurde, dass die Kurven der beiden Methoden bis auf diejenigen RFQs gut
übereinstimmen, die eine kleine Apertur aufweisen und bei denen viele Teilchen den
Elektroden näher kommen. Abschließend zur Betrachtung der HF-Felder wurde die
Empfindlichkeit des Solvers auf die Wahl der Gitterauflösung und die der Anzahl von
Multigrid Iterationen und Glättschritten untersucht, um festzustellen welche Mindest-
werte eingehalten werden müssen. Für die Raumladungsberechnung wurde analog
verfahren, wobei nun sowohl zwischen einer alten Raumladungsroutine als auch zwis-
chen dem Multigrid Poisson Solver mit und ohne Bildladung unterschieden wurde.
Die Betrachtung des Verhaltens eines einzelnen Teilchens ergab auch hier gute Übere-
instimmungen. Für den Vergleich der Transmission der verschiedenen RFQs wurden
zuerst nur Simulationen ohne Bildladung betrachtet. Insgesamt wurde der Multigrid
Poisson Solver mit zwei bekannten Raumladungsroutinen verglichen, wobei die 2D
Vergleichsroutine etwas niedrigere Transmissionen vorhersagt, aber die anderen bei-
den Routinen liegen dicht beieinander. Weiterer Vorteil des Multigrid Poisson Solvers
ist die deutlich kürzere Rechendauer. Auch hier wurde wieder die Empfindlichkeit
des Multigrid Solvers auf die Wahl der oben genannten Parameter untersucht. Im
letzten Teil des Kapitels wurde der Effekt der Bildladungen auf den Elektroden un-
tersucht. Dafür wurden nur die Randbedingungen des Gitters auf die Form der Elek-
troden abgeändert. Zuerst wurden die entstandenen Felder und Potentiale verglichen.
Dabei wird deutlich, dass der Effekt der Bildladungen erstens in der Nähe der Elek-
troden sehr groß ist und zweitens auch über den gesamten Bereich beeinflussend ist.
Dies wird in der Transmission der Gruppe von Test-RFQs besonders deutlich. Die
Transmission wurde bei allen RFQs reduziert, wenngleich der Effekt für RFQs mit
kleiner Apertur besonders groß ist (∼ 10%). Dies ist deutlich mehr, als durch an-
dere Methoden, die den Strahl durch Punkt- und Linienladungen darstellen und den
Effekt durch Näherungen berechnen, bestimmt wurde. Dies kann erklären, warum
Hochstrom-RFQs oftmals eine geringere Transmission haben, als durch Simulationen
vorhergesagt wurde.

Das letzte Kapitel dieser Arbeit befasst sich mit der experimentellen Arbeit
an einem RFQ-Beschleuniger. Dazu wird zunächst ein kleiner Überblick über die
wesentlichen HF-Parameter gegeben: Resonanzfrequenz, Güte und Rp-Wert. Danach
wird das MAFF (Munich Accelerator for Fission Fragments) Projekt beschrieben, für
welches die RFQ gebaut wurde. Die Maschine wurde am IAP an einem Teststand
aufgebaut, aber es konnte zunächst kein beschleunigter Strahl am Ausgang der RFQ
gemessen werden. Die Fragestellung war, warum die Struktur nicht beschleunigt und

9



0 Zusammenfassung

ob es strahldynamische Gründe dafür gibt, die mit Hilfe des Programms, das im ersten
Teil dieser Arbeit beschrieben wurde, analysiert und gefunden werden können. Dafür
war es notwendig, den Zustand der Maschine hinreichend genau zu messen, um andere
mögliche Fehlerquellen ausschließen zu können. Es wurde der Rp-Wert, der angibt, wie
effektiv die eingekoppelte HF-Leistung in Beschleunigungsspannung umgesetzt werden
kann, mit unterschiedlichen Methoden gemessen. Bei der Gammaspektroskopie bei
unterschiedlichen Leistungspegeln wurde eine Schwachstelle der Maschine gefunden,
die die Feldverteilung im Resonator störte. Dies wurde durch Simulationen nachvoll-
zogen. Im nächsten Schritt wurde ein Energiespektrum des beschleunigten Strahls
aufgenommen. Es wurde festgestellt, dass die RFQ Protonen zu der Designenergie
beschleunigen kann. Die Transmission der Maschine wurde mit einem Heliumstrahl
gemessen und zu etwa 75% bestimmt. Zum Schluss wurden die Messergebnisse mit
denen der Simulation verglichen. Im Rahmen der Messgenauigkeit konnte eine gute
Übereinstimmung festgestellt werden.

Mit Hilfe des in dieser Arbeit integrierten Multigrid Poisson Solvers konnte die
Genauigkeit der Strahldynamikrechnungen vor allem bei Hochstromanwendungen und
bei RFQ-Beschleunigern mit kleiner Apertur deutlich verbessert werde. Es stellte sich
heraus, dass der Einfluss der Bildladungen bisher unterschätzt wurden. Mit den Pro-
grammentwicklungen lässt sich die Teilchendynamik zukünftiger RFQs realistischer
simulieren und hilft damit bessere Designs zu entwerfen mit kleinem Emittanzwachs-
tum und hoher Transmission.
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1 Introduction

Accelerators are spread all over the world and are used for many different applications.
They are designed to deliver ion beams of a certain energy, species, current, brilliance
etc. They consist of an ion source, which produces the ions for accelerations, accelera-
tion structures, transport sections, diagnostic modules and a target area depending on
the purpose of the accelerator. There are two main type of applications: fundamental
research and secondary applications making use of high energy ion beams.

To gain information about an object in small scales the interaction between
the object and radiation can analyzed. The resolution scales with the wavelength and
therefore with the energy of the radiation. Accelerators are used to produce high en-
ergy beams with small wavelength to analyse the configuration of matter by observing
the scattered beam after passing through the sample.

On the other side accelerators are used as synchrotron light sources to pro-
duce light with special characteristics such as high brightness, high intensity and low
emittance as well as high level polarization. Free electron lasers (FEL) are used to
produce coherent light of high power of a wide range of wavelength. The XFEL is
designed to produce x-rays of about 1 nm.

In nuclear physics and atomic physics, accelerators are needed for a wide
range of different research areas such as interaction between nucleus and electron
cloud, nuclear reaction up to high energies, verification of the standard model, study
and generation of exotic nuclei, antiprotons and high compressed matter, exact mass
measurements, or to generate a quark-gluon plasma, just to mention a few. Another
exciting application of accelerators is to build a neutron source, which then can be
used in many ways. An example for an existing neutron source is the Spallation Neu-
tron Source (SNS) at the Oak Ridge National Laboratory in Tennessee, USA which
provides neutrons for a variety of experiments and material improvements. At the IAP
in Frankfurt a neutron source is currently under development and will be used e.g. for
the analysis of neutron capture processes, which is important for the understanding
of the nucleo synthesis in stars and especially in red giants and to study the n-capture
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1 Introduction

cross-sections of elements which part of radioactive waste more accurately [MCM+06].
Two further neutron source projects should be mentioned as well: the International
Fusion Materials Irradiation Facility (IFMIF) and the European research programme
for the transmutation of high level nuclear waste in an accelerator driven system (Eu-
rotrans). The aim of the first project is to simulate neutron fluxes similar to the one
expected in fusion reactors to find material which can resist these fluxes.

Another field where accelerator are commonly used are commercial applica-
tions such as application in medicine, doping of semiconductors, sterilization, and
material analysis. In the medicine they are for treatments e.g. brain tumors and for
various diagnostics.

As the wide range of applications suggest, the different demands on the ac-
celerator in terms of ion species (or electrons), energy, beam current and quality,
operating frequency and much more will lead to completely different designs depend-
ing on the purpose of the machine. Designing and building such machines or even
parts of such machines is therefore a quite challenging task. Moreover, the boundary
of realizable machines is continuously pushed to higher levels.

This thesis deals with one accelerator structure which is normally used as
the first stage of a linear hadron accelerator: the radio-frequency quadrupole (RFQ).
It bunches, focuses and accelerates particles from some 1 − 100 keV/u up to several
MeV/u. The first part of this thesis covers the development of a fast, accurate tool
to simulate the particle dynamics inside the fields of an RFQ which is very impor-
tant, since the design cannot be readjusted once the machine is built. Therefore an
existing program (PteqHI) was used and the description of the electric field as well
as the space and image charge fields was enhanced from a semi analytic description
with numerically calculated coefficients to a multigrid Poisson solver, which takes the
exact boundaries into account. The effects of a more realistic description of the field
inside the RFQ will be presented. Especially the image effects have been underes-
timated by the old routines. For high energy and high current applications such as
neutron sources a precise knowledge of the behavior of the beam inside the structure
is needed to reduce losses in the high energy part of the RFQ to avoid activation of the
accelerating structure. Accurate simulations are needed as well to determine suitable
designs, which reduce beam losses and emittance growth compared to existing designs
while shorten the overall length of the RFQ.

The first chapter gives a small introduction to radiofrequency quadrupole ac-
celerators. Different types of resonator structures are described as well as two different
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design strategies. Afterwords, the potential and the electric field needed for the beam
dynamic calculations in an RFQ are discussed. In chapter 3 the concept of a multigrid
Poisson solver is described, which has been implemented as a part of this thesis. In the
following chapter some basic (test) problems are used to test the solver. In chapter 5 a
set of 12 different RFQs (designs), which have been generated following the same rules
with one parameter varied, is used to analyze effects of a more accurate description
of the fields. It is shown that the accuracy of the old multipole expansion method is
limited for the RF fields and that the old space charge routines are restricted as well.
The advantages of the new Poisson solver are explained. The new implemented multi-
grid Poisson solver is for both (RF field and space charge field (with image effect)) a
better representation of the actual field especially for critical high current applications
and for precise loss estimations.

The last chapter deals with experimental work at an existing RFQ. After a
small introduction to the MAFF project for which the RFQ was designed, some basic
RF parameters are introduced and measurements at the MAFF-IH RFQ including the
transmission, output energy, and shunt impedance of the structure is presented. The
experimental results will then finally be compared to the particle dynamic simulations
of that RFQ.

13
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2 Radiofrequency Quadrupole

The radio frequency quadrupole (RFQ) was invented in 1969 by Kapchinsky and
Teplyakov at the Moscow Experimental and Theoretical Physics Institute (ITEP)
[KT70]. This idea led to the first operating prototype in 1974 in the UDSSR. In
1978 physicists at the Los Alamos National Laboratory (LANL) picked up the idea of
the RFQ and made major contributions in terms of investigation on beam dynamics
including space charge effects leading to the program PARMTEQ which is widely
used today. The outstanding features of the RFQ were demonstrated in a “proof
of principle” experiment in 1980 [CSW79], [Kle83]. In the following years the RFQ
became so popular that many laboratories and universities throughout the world built
and commissioned RFQs; especially in Frankfurt at the IAP, where a different type
of resonance structure was invented [Sch90]. The RFQ has the ability to replace
the electrostatic accelerators which were used as injectors for further RF-accelerators
(DTLs) and therefore to reduce the length of the accelerator and to increase beam
current. The main function of an RFQ is to bunch an incoming DC beam of particle
and to accelerate the beam to an energy up to ∼ 5 MeV/u. Over the whole structure
the beam is kept focused by alternating gradient focusing. These three functions are
realized with the RF fields only.

2.1 Principle of an RFQ

Figure 2.1 shows a set of four electrodes forming an electrical quadrupole. The po-
larity of the electrodes alternates with time. The variation of the voltage and the
movement of particles along the beam axis lead to an alternating gradient focusing
similar to magnetic/electrostatic quadrupole lenses. Particles injected into the elec-
tric quadrupole have an initial correlation (phase) to the applied RF voltage. As the
particles travel through the channel, their position and the electric field change. If
the longitudinal velocity of the particles remains unchanged, each position can be as-
sociated with a certain electric field and the longitudinal periodicity depends on the
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Figure 2.1: Quadrupole with time varying polarity.

velocity of the particle and the wavelength of the RF field (βλ)
In the first half of an RF period the particle is exposed to a focusing field in

one plane and to a defocusing field in the other plane. In the second half of the RF
period the polarity of the field has changed and therefore the focusing field of the first
plane has changed to a defocusing field. If the electric field and therefore the forces
are chosen suitably, a overall focusing of the particles can be achieved. This is the
situation of the alternating gradient focusing without the longitudinal end effects like
in static quadrupoles.

Because the geometry of the electrodes described above does not introduce
any longitudinal field components, this setup can not be used to form bunches and to
accelerate. In order to generate longitudinal field components the quadrupole symme-
try of the electrodes needs to be disturbed. This is shown in Figure 2.2. When the
vertical electrode has a distance a from the beam axis, the horizontal electrode has a
distance of a ·m from the axis. a is known as the aperture and m is the modulation
which is typically varied between 1 and 3. After a certain distance cL the perturbation
has changed, so that vertical electrode has a distance of a · m and the horizontal of
a from the beam axis. If the distance cL is synchronized to the RF field and the
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Figure 2.2: Quadrupole with time varying polarity and modulation.

particle’s velocity

cL =
βλ

2
(2.1)

the particle sees a net accelerating field in every cell. This is the key idea of the RFQ
principle. Typical values for the cell length cL are between 1 cm and 10 cm. A setup
of electrodes like the one shown in Figure 2.2 is now able to bunch and accelerate
particles longitudinally and to keep them focused in the transverse plane at all time.

Due to the nature of the Gauss’s law

∇E =
ρ

ε0
(2.2)

it is not possible to form a focusing electrical field in all three planes at the same times
if no charge is involved to form the field (ρ = 0). (Gauss’s law can be used, since the
situation of a particle moving in time with a electromagnetic wave is virtually static
(d � λ).) That is why a longitudinal field will lead to a so called transverse RF
defocusing force. So the parameters of the RFQ have to be chosen to assure that the
beam remains well focused over the complete structure.
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2.2 Resonator Concepts

The frequency range of RFQs starts from some 10s MHz and goes up to several
100sMHz and for different frequencies, different resonator concepts are used to achieve
well working machines. The first RFQs were four vane type RFQs shown in Figure
2.3. The four vane RFQ is a cavity resonator with four vanes mounted inside which
form the quadrupole. In order to generate the correct field, a quadrupole symmetric
electrical transverse mode has to be excited. The TE210 mode is applied. The third
index indicates that the longitudinal field distribution has no fluctuation. Since the
four vane RFQ is a cavity resonator, the geometric size of the structure scales with
the resonance frequency and for low frequencies the structure becomes unpractically
large in diameter (a 100 MHz four vane structure has a diameter of about 1 m).

Figure 2.3: Four vane type RFQ [CSW79].

The split coaxial type RFQ is shown in Figure 2.4. It is mostly used for low
frequencies (below 100 MHz), because it is a relatively compact machine in this fre-
quency range [AFM+89], [LLD+89].

The four rod type RFQ shown in Figure 2.5 is made up of strong coupled
λ
4
-resonators. The λ

4
-resonators are capacitively shortened with the electrodes forming

the capacity. The support plate and the ground plate form the inductance [Sch90].
Since the four rod RFQ is a line resonator, the tank has only minor influences on the
RF behavior of the structure compared to other types. Another advantage is that
they are easy to access and to adjust.
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Figure 2.4: Split coaxial type RFQ [Mül79].

Figure 2.5: Four rod type RFQ.
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The last type of RFQs is the IH-type RFQ shown in Figure 2.6. It is a cavity
resonator in which the TE111 mode is excited. The electrodes are placed on rings
which are mounted on the supports [Rat98] [Rat96].

For high frequencies above 300 MHz a four vane type RFQ is normally pre-

Figure 2.6: IH type RFQ (36 MHz machine at GSI) [Rat96].

ferred, because this type of resonator has than feasible dimensions and good RF per-
formance.

If the frequency is lower than 100 MHz the dimensions of a four vane type
RFQ becomes impractically big and the four rod or the IH type RFQ result in smaller
structures. In between, the four rod, four vane or the IH type RFQ can be used.

2.3 Design Strategies

There are many different strategies to design RFQs and to achieve suitable RFQs.
Every RFQ has its own purpose and has to meet its own requirements which differ
from one machine to another. Contrary to the assumption that a high transmission is
the main goal in designing RFQs, there are many different considerations to balance.
Reducing the overall length of the RFQ will lead to a proportional cheaper and easier
to machine structure. If the intervane voltage is reduced, less RF power is needed to
achieve its working point. There are a variety of different parameters, which interact,
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and can be chosen freely to some extent. The goal of designing an RFQ is to determine
the shape of the vanes inside the RFQ, when parameters like ion species, initial and
final energy, frequency and intervane voltage (which can also be varied along the
structure) or the desired space-charge physics focusing characteristics are given. The
shape is described with the following geometric functions: aperture a(z), modulation
m(z), cell length cl(z) (respectively phase φs(z)), where z is the axial distance along
the structure. Two different design strategies will be described in more detail.

2.3.1 LANL Four-Section Design

The standard design of an RFQ to control the beam was developed at LANL in the
1980s. The RFQ is subdivided into four sections performing different tasks depend-
ing on the shape of the beam at the current stage. The sections are radial matching
section, shaper, gentle buncher, and accelerating section. They will described here in
more detail.

In order to obtain these functions, certain rules need to be formulated. Kapchin-
sky and Teplyakov already proposed to keep the longitudinal phase advance for zero
current σl0 and the spatial length of the separatrix ZB constant.

ZB =
βλψ

2π
(2.3)

where ψ is the angular length of the separatrix, which is related to the synchronous
phase φs by:

tanφs =
sinψ − ψ
1− cosψ

(2.4)

The idea of Kapchinsky and Teplyakov was to keep the charge density distribution
approximately constant, while accelerating and bunching the beam, which should re-
duce space charge effects like radial emittance growth. A constant charge density can
be achieved by constant ZB and constant σt0 The invariance of ZB determines φs with
equations 2.3 and 2.4. The function A(z) (defined in equation 2.43) is then determined
by equation 2.66 and therewith the aperture a(z). The disadvantage of this method is
that the function A(z) takes on small values especially for large synchronous phases,
which leads to long structures, particularly as the input synchronous phase approaches
−90◦. To avoid this the initial synchronous phase has to be changed which reduces the
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capture efficiency of the RFQ. In order to overcome this problem two new invariants
are defined to replace σl0 and ZB:

ε =
−2πσl0
σ2
l0

(2.5)

α = σl0Z
2
b . (2.6)

A positive ε yields to a decreasing σl0 with a constant percentage rate and therefore
the separatrix length ZB slowly increases. The advantage of this approach is the
ability to compress and expand a charge density in its size depending on the choice of ε
[CSW79]. With the described procedure the beam can be bunched without introducing
a high radial emittance growth. Therefore this section is referred to as the gentle
bunching section [Wan98]. In order to increase the capture efficiency, another section
is added in front of the gentle bunching section, which has a synchronous phase of φs =

−90◦, where the separatrix has the largest phase width and therefore best longitudinal
acceptance, and an initial value for the acceleration efficiency A = 0 . This section
is referred to as the shaper section. Following the gentle bunching section a fourth
section is added, which keeps the exit value of the gentle bunching section constant
to accelerate the particles further. Hence, it is called accelerator section. The last

Figure 2.7: The acceptance of an RFQ with and without a Radial Matching Section.

problem to be solved is to inject a DC beam into a time-varying focussing/accelerating
channel, which has a time depending acceptance, since the matched ellipse parameters
of the shaper section do not depend on the RF phase and are relatively independent of
the position along the RFQ. This is done in the radial matching section by tapering the
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electrodes at the input of the structure, in the manner that the focussing strength χ
changes from almost zero to its full value at the start of the Shaper Section after some
focussing periods [Cra84]. There is no modulation (m = 1) in the radial matching
section, so it is purely quadrupole symmetric. The acceptance of an RFQ with and
without a radial matching section is shown in Figure 2.7. A secondary advantage of
the radial matching section is that it reduces fringe field effects for both longitudinal
and transverse motions by increasing the aperture at the beginning of the RFQ. A
typical LANL design is shown in Figure 2.8, indicating how the parameters change in
an RFQ of this type and the different sections.

Figure 2.8: Example of a LANL design for a 425 MHz [CSW79].

The LANL design strategy can be improved by allowing more variation of the
parameters to gain shorter RFQs with small emittance growth. For instance B is kept
constant over nearly the whole RFQ in the LANL concept, but rising B linearly and
keeping the geometric length of the bunch constant can lead to compact RFQs with
high transmission [Sch96].

2.3.2 Equipartitioning Design Strategy

While designing an RFQ according to the classic LANL approach described above, the
behavior of the beam in terms of beam sizes and space charge effects is not fully taken
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into account. The consequence is that the matched conditions of the beam are not
always satisfied causing beam halo formation and radial emittance growth especially
in high current machines, when the beam dynamics is dominated by space charge
effects [Jam93]. In the case of a matched beam, the beam-density contours coincide
with the ellipses corresponding to the particle trajectories that requires a smooth and
coordinated change of the parameters [ZJZ+08]. The matching equations according
to the smooth approximation theory are

ε2tn =
a4
tγ

2σ2
t

λ2
(2.7)

ε2ln =
a4
l γ

6σ2
l

λ2
, (2.8)

where ε is the normalized RMS emittance, σ is the phase advance with beam current,
at and al are the transverse and longitudinal RMS beam radii (assuming an ellipsoidal
particle distribution). The idea of the equipartitioning design is to balance the internal
energies in the beam between the transverse and longitudinal degrees of freedom.
Doing so, the free energy that could course emittance growth, is minimized and the
beam is in equilibrium [Jam81]. If that is the case the following equation is satisfied

εlnσl
εtnσt

=
εlnat
εtnal

= 1 (2.9)

Figure 2.9: Example of an equipartitioning design [ZJZ+08].
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An equipartitioning design is achieved by combining equations 2.7, 2.8 and 2.9 to
gain rules for the choice of the parameters a(z), m(z) and φs(z). An example of
the evolution of the main parameters of an RFQ designed with the equipartitioning
strategy is shown in Figure 2.9.

2.4 Description of the RF field in an RFQ

All different types of RFQ structures have in common that there is no magnetic field
in the region close to be beam axis. Only the electric field is present there and acts
on the particles. This concurs with the fact that the area around the beam axis refers
to the capacitive component of the RF-structure. Therefore, the vector potential A
of the Maxwell equation

E = −∇Ψ− ∂A

∂ t
(2.10)

can be neglected and the electric field is then a pure function of a scaler potential Ψ

E = −∇Ψ. (2.11)

The benefit from the neglection of the vector potential is that the beam dynamics can
be studied independently of the electrodynamic behavior of the structure. Only the
solution of the electrostatic Laplace equation has to be known.

∆Ψ = 0 (2.12)

The time dependency is a pure sinusoidal one.

Ψ = Φ · sin(ωt− φ) (2.13)

So in order to find the field in the useful region of an RFQ near the beam axis, the
Laplace equation has to be solved taking the electrodes as the boundary conditions
into account. Three options are possible: the first is to solve the equation analytically
and to machine the electrodes to fit the analytical answer. It has to be noted that it
is not possible to machine electrodes following the exact analytical shape due to high
peak fields which will lead to sparking and therefore prohibit reliable operation. The
electrodes will be machined somewhat close to the analytical answer and show directly
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one disadvantage of this method. The second method is to approximate the field near
the beam axis by a cylindrically symmetric analytical approximation; this method was
derived by Kapchinsky and has been the primary method of use. The third option is
to solve the Laplace equation numerically on a grid for given and realizable shape of
the electrodes. The implementation of this method is part of this thesis.

2.4.1 Multipole Coefficient Approximation of RFQ Field

The symmetry of the RFQ suggests to describe the Laplace equation (2.12) in cylindric
coordinates [Jac62]:

1

r

∂

∂ r

(
r
∂Φ(r, θ, z)

∂ r

)
+

1

r2

∂ 2Φ(r, θ, z)

∂ θ2
+
∂ 2Φ(r, θ, z)

∂ z2
= 0. (2.14)

To solve equation 2.14 an ansatz is chosen where Φ is the product of three functions
depending on r, θ, and z respectively

Φ(r, θ, z) = R(r) ·Θ(θ) · Z(z). (2.15)

Inserting equation 2.15 into equation 2.14 leads to

1

r

(
∂R

∂ r
+ r

∂ 2R

∂ r2

)
ΘZ +

1

r2

∂ 2Θ

∂ θ2
RZ +

∂ 2Z

∂ z2
RΘ = 0 (2.16)

Then multiplying by 1
RΘZ

1

R

∂ 2R

∂ r2
+

1

r ·R
∂R

∂ r
+

1

Θ · r2

∂ 2Θ

∂ θ2
+

1

Z

∂ 2Z

∂ z2
= 0 (2.17)

⇒ 1

R

∂ 2R

∂ r2
+

1

r ·R
∂R

∂ r
+

1

Θ · r2

∂Θ

∂ θ
= − 1

Z

∂ 2Z

∂ z2
(2.18)

Since, equation 2.18 needs to be true for arbitrary r, θ, and z, both sides of the
equation have to be constant and equal:

− 1

Z

∂ 2Z

∂ z
= k2 (2.19)

1

R

∂ 2R

∂ r2
+

1

r ·R
∂R

∂ r
+

1

Θ · r2

∂ 2Θ

∂ θ2
= k2 (2.20)
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Equation 2.19 describes the z-dependency of the potential Φ:

∂ 2Z

∂ z
± k2Z = 0, (2.21)

where k is an arbitrary constant. The solution of equation 2.21 depends on the sign
of the constant k. The solution for the three cases are:

k < 0 : Z(z) = A · sinh(kz) +B · cosh(kz) (2.22)

k > 0 : Z(z) = A′ · sin(kz) +B′ · cos(kz) (2.23)

k = 0 : Z(z) = A′′ · z +B′′ (2.24)

Equation 2.20 can be converted to:

r2

R

∂ 2R

∂ r2
+
r

R

∂R

∂ r
− r2 · k2 = − 1

Θ

∂ 2Θ

∂ θ2
(2.25)

Following the same argument as for equation 2.18, one obtains:

r2

R

∂ 2R

∂ r2
+
r

R

∂R

∂ r
− r2 · k2 = m2 (2.26)

1

Θ

∂ 2Θ

∂ θ2
= m2 (2.27)

The solution for the angular dependency of the potential is of the same kind as the
solution for the longitudinal dependency:

m < 0 : Θ(θ) = A · sinh(mθ) +B · cosh(mθ) (2.28)

m > 0 : Θ(θ) = A′ · sin(mθ) +B′ · cos(mθ) (2.29)

m = 0 : Θ(θ) = A′′ · θ +B′′, (2.30)

where m is a constant. For the solution of equation 2.26 the signs of k and m have
to be taken into account. For the cases k < 0 ∧m < 0 and k < 0 ∧m = 0 (and for
k > 0 ∧m < 0, if m is replaced by i ·m) the solution for the radial component of the
potential is:

R(r) = a · Im(kr) +B · I−m(kr) + C ·Km(kr) +D ·K−m(kr), (2.31)
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where I±m and K±m are the modified Bessel functions of the first respectively second
class and of m order. For the cases k < 0 ∧ m > 0 and k > 0 ∧ m = 0 (and for
k,m > 0, if m is replaced with i ·m) the solution of equation 2.26 is:

R(r) = A · Jm(kr) +B · J−m + C · Ym(kr) +D · Y−m(kr), (2.32)

where J±m and Y±m are the Bessel functions of the first respectively second class and
of m order. For the case, where k = 0, the dependency of the radial component has
the following form:

m < 0 : R(r) = A · rm +B · r−m (2.33)

m > 0 : R(r) = A′ · cos(m · log(r)) +B′ · sin(m · log(r)) (2.34)

m = 0 : R(r) = A′′ · log(r) +B′′ (2.35)

The general solution of the potential Φ in cylindric coordinates is a linear combination
of the single solutions [Dup00].

Taking the symmetry of the quadrupole into account, m needs to be
an even number with the consequence that Im(kr) and I−m(kr) are identical. If it is
assumed that the structure is periodic in z, which means that the change in modulation
is neglected, then k → n · k with k = 2π

βλ
, where n is an even number. Therefore, the

potential has the following form:

Φ(r, θ, z) =
V0

2

[
∞∑
m=0

A′0mr
2m cos(2mθ) +

∞∑
m=0

∞∑
n=1

A′nmIm(kr) cos(2mθ) cos(nkz)

]
.

(2.36)

Two Term Potential

In practice equation 2.36 will not be used directly, but with a reduced number of
coefficients. The simplest choice is to just use the first two coefficients, which leads
to the so called two term potential. Back in the 1980s when the first simulation tools
were implemented a two term potential approach was used. It has to be noted that
real electrodes cannot be machined following this formula, due to practical reasons
and peak surface fields. So making use of the two term potential for beam dynamics is
an approximation of the fields inside the structure near the beam axis, which has been
a good solution back in the days when calculating capacity of computers was limited.
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The first two coefficients of equation 2.36 are the A0 and the A10 term and
the potential is then [CWY+05]:

Φ(r, θ, z) =
[
A0r

2 cos(2θ) + A10I0(kr) cos(kz)
]
. (2.37)

The values of the coefficients A0 and A10 are determined from the boundary conditions
appropriate to the electrode geometry. A0 term refers to a pure quadrupole term being
responsible for the transverse field and therefore the transverse AG focusing of the
RFQ. The A10 term is a monopole term which is responsible for the longitudinal field.
The potential can be rewritten in the following sense. At a certain time of the RF
period the potential of the horizontal and vertical electrodes are +V0

2
and −V0

2
. At

the longitudinal position z = 0 the horizontal vane tip has a distance r = a from the
beam axis and the angle θ = 0

+
V0

2
= A0a

2 + A10I0(ka). (2.38)

for the vertical vane tip (θ = π/2) the displacement r = m · a

− V0

2
= A0(ma)2 + A10I0(kma). (2.39)

Solving equations 2.38 and 2.39 for A0 and A10 leads to

A0 =
V0

2a2

I0(ka) + I0(kma)

m2I0(ka) + I0(kma)
, (2.40)

and

A10 =
V0

2

m2 − 1

m2I0(ka) + I0(kma)
. (2.41)

Now, two dimensionless constants can be defined:

χ =
I0(ka) + I0(kma)

m2I0(ka) + I0(kma)
(2.42)

A =
m2 − 1

m2I0(ka) + I0(kma)
(2.43)
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These constants correspond to the old ones

A0 = χ · V0

2a2
(2.44)

A10 = A · V0

2
. (2.45)

The full time dependent two term potential can now be written

Ψ =
V0

2

[
χ
r2

a2
cos(2θ) + AI0(kr) cos(kz)

]
sin(ωt+ φ) (2.46)

Substituting x = r cos θ and y = r sin θ the two term potential in Cartesian coordinates
is found

Ψ =
V0

2

[
χ
x2 − y2

a2
+ AI0(kr) cos(kz)

]
sin(ωt+ φ). (2.47)

For the beam dynamic simulation the components of the electric field have to be known
and not the scalar potential. The field can be found by taken the partial derivative of
the potential. Doing so, the components of the electric field in cylindric coordinates
are:

Er(r, θ, z) = −∂Φ

∂ r
= −χV0r

a2
cos(2θ)− V0Ak

2
I1(kr) cos(kz) (2.48)

Eθ(r, θ, z) = −1

r

∂Φ

∂ θ
=
χV0r

a2
sin(2θ) (2.49)

Ez(r, θ, z) = −∂Φ

∂ z
=
AV0k

2
I0(kr) sin(kz), (2.50)

The time dependency is of course sinusoidal again (sin(ωt + φ)). The first term of
equation (2.48) describes the quadrupole focusing whose strength depends on the term
V0χ
a2

. The second term of the same equation corresponds to the RF defocusing, which
occurs when a longitudinal field component is introduced. If the electrodes have no
modulation (A(m = 1) = 0) this term vanishes. In the course of the structure when
the modulation increases, the RF defocusing increases as well and the quadrupole
strength (∼ χ) decreases. This leads to the assumption that the two parameters χ
and A are coupled. The equation

A = 1− χ · I0(ka). (2.51)
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shows this coupling. Again, this means that the sum of the focusing strength and
the accelerator factor is equal to a constant and therefore an accelerating force always
results in a smaller transverse focusing. Consequently, the modulation has an upper
limit, when the transverse focussing of the RFQ becomes too small. To accelerate
ions to higher energies the modulation can be held constant at some practical value
from a certain point on. With higher energies the velocity of the particles increase and
therefore the cells get longer and achieving the longitudinal field becomes inefficient
leading to high RF power consumption. Therefore an RFQ structure is not suitable
to accelerate ions to very high beam energies.

The components of the electric field can also be expressed in Cartesian coor-
dinates [Wan98]

Ex = −χV0

a2
x− kAV0

2
I1(kr)

x

r
cos(kz) (2.52)

Ey =
χV0

a2
y − kAV0

2
I1(kr)

y

r
cos(kz) (2.53)

Ez =
kV0A

2
I0(kr) sin(kz). (2.54)

With

F = qE (2.55)

and the equation of motion of particles traveling through an RFQ can be formed

ẍ+ x
q

m

(
XV0

a2
x+

kAV0

2
I1(kr)

x

r
cos(kz)

)
sin(ωt− φ) = 0 (2.56)

ÿ + y
q

m

(
−XV0

a2
x+

kAV0

2
I1(kr)

x

r
cos(kz)

)
sin(ωt− φ) = 0 (2.57)

z̈ − kV0A

2
I0(kr) sin(kz) sin(ωt− φ) = 0. (2.58)

For a further analysis the modified Bessel functions are approximated by I0(kr) ≈ 1

and I1(kr) ≈ kr/2. One obtains for the transverse equation of motion

ẍ+ x

(
qXV0

ma2
+
qk2AV0

4m
cos(kz)

)
sin(ωt+ φ) = 0. (2.59)

The longitudinal coordinate of the particles can be expressed by kz = ωt. Doing so
the second term of equation 2.59, which describes the RF defocussing, depends on
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cos(kz) sin(kz − φ). This can be averaged over one cell length l = βλ
2

2

βλ

βλ/2∫
0

cos(kz) sin(kz − φ)dz = − 2

βλ
sin(φ)

βλ/2∫
0

cos2(kz)dz ≈ −1

2
sinφ. (2.60)

Replacing the independent variable t by the dimensionless variable τ = 1/2(ωt − φ)

one finds that the transverse equation of motion is the well known Mathieu’s Equation:

∂ x

∂ τ 2
+ (∆RF +B sin 2τ)x = 0 (2.61)

with:

∆RF =
qAV0 sinφ

2mc2β2
(2.62)

B =
2qχV0

ma2ω2
, (2.63)

where ∆RF is the RF defocussing factor, and B is the transverse focussing factor.
In fact, B is a more frequently used physical quantity than the focussing efficiency
χ. β is the relativistic velocity of the particle. ∆RF is proportional to the frequency
and A (acceleration efficiency). B is proportional to the applied voltage and to the
reciprocal aperture square (∝ U

a2
). For a strong transverse focusing a small aperture

and a high voltage at the sparking limit is chosen. Since sinφ < 0 for longitudinal
stability, the RF defocussing factor is normally ∆RF < 0 increasing the divergence of a
particle away from the beam axis [Sta90]. In order to keep the transverse motion of the
particles stable, the parameters of the RFQ need to be chosen in such a manner that
the solution of the Mathieu’s differential equation is within the stable region [Zha05].

For the longitudinal equation of motion one finds

∂ 2z

∂ τ 2
− 2Bz = 0 (2.64)

The particles perform longitudinally a simple oscillation about a synchronous particle.
This oscillation is demonstrated in Figure 2.10. When a particle is ahead of the
synchronous particle, it arrives earlier at the cell center when the RF field has not yet
its full value, so it es exposed to a weaker field than the synchronous particle and will
be less accelerated. Consequently it falls back to the synchronous particle. A particle
which arrives at the center of a cell after the synchronous particle will see a bigger
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Figure 2.10: Longitudinal phase focussing.

field and will therefore catch up to the synchronous particle. Particles having a phase
difference more than a certain value, can not be brought back to the synchronous
particle and will therefore leave the bucket.

The oscillation of the particle around a synchronous particle in both transverse
and longitudinal plane can be expressed by phase advances (per RF period or per
another unit length, such as meters or cell length). These quantities give information
of how much the phase relative to the synchronous particle change over one unit length
[YJL+06]. For zero current and unit length of one RF period, they are defined by

σ2
t0 = ∆RF +

B2

8π
(2.65)

σ2
l0 = −2∆RF . (2.66)

When considering a beam with non neglectable current the phase advances are damped
by a space charge term as follows

σ2
t = ∆RF +

B2

8π
− Iλ3(1− ff)

a3bγ3
k (2.67)

σ2
l = −2∆RF −

2Iλ3ff

a3bγ3
k, (2.68)

where a and b are transverse and longitudinal rms beam radii respectively, λ is the
RF wavelength, I is the beam current, ff is the ellipsoid form factor, γ and β are the
relativistic gamma and beta, and k = 3·10−6z0q

8πm0c2
with z0 = 376.73Ω [LJDK96].

An example of a programm using the two term potential is RFQSIM based
on early PARMTEQ-versions maintained at IAP which has the advantage that appli-
cations like funneling and deceleration can be simulated [Thi07], [Dei87].
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Eight Term Potential

The usefulness of the 2-term potential is limited by practical machining considera-
tions for some cell geometries. It is also easier to machine a sinusoidal longitudinal
profile instead of Bessel function profile, and this profile has also the advantage of a
somewhat higher accelerating gradient. Therefore a more practical vane shape has
commonly been adopted, as shown in Figure 2.11 (circular vane tip, sinusoidal lon-
gitudinal modulation). Eight terms of Equation 2.36 are used to approximate the

Figure 2.11: Example of the evolution of the position of a vane tip (the beam velocity
is not changing in this section).

central region fields. In PARMTEQM the multipole coefficients are interpolated from
data files, which contain coefficients for different cell configurations. They have been
calculated following

Anm =
16

πV I2m(nka)Lc

π/2∫
0

Lc∫
0

U(a, θ, z) cos(2mθ) cos(nkz)dθdz, (2.69)
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where U(a, θ, z) is the numerical solution of the potential found by Poisson solver
(CHARGE 3D in case of PARMTEQM) [Dup00]. The integration path is a cylinder
with the radius of the minimum aperture around the beam axis and a length of the cell
length. Therefore the eight term multipole expansion is only accurate in this region
and gives imprecise values beyond the cylinder.

Limitations of the Multipole Representation

The accuracy of the representation is (strictly) limited to the radial region less than
the minimum aperture a as shown in Figure 2.12, by the cylindrical symmetry of
Equation 2.36. Figure 2.13 shows the difference between the field calculated from

Figure 2.12: Accurate region of the eight term multipole expansion is only with a circle
with the radius of the minimum aperture a around the beam axis. The
modulation m = 3.

the eight term multipole representation and from a numerical solution of the Laplace
equation for a typical vane shape. The large error in the region between a and ma,
where particles that might tend to be lost would travel, prompted the development of
the Poisson/Laplace solver of this thesis. The Poisson solver is now feasible because
of the computing power available with modern computers.
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(a) Absolute electric field from multigrid Poisson solver

(b) Absolute electric field from multipole expansion method

Figure 2.13: Fields from eight term multipole expansion and multigrid Poisson solver
at the dashed area in Figure 2.12.
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3 Poisson Solver

For accurate beam dynamic simulation, the electric field of the useful region inside the
RFQ has to be known. Therefore the Poisson equation (2.12) as described in chapter
2 has to be solved. One method which can be used to solve the Poisson equation is
the finite difference method. The differential equation is discretized on a suitable grid
(or mesh). The simplest type of grid for calculation of the field inside an RFQ is an
isotropic Cartesian grid in 3D. Generally, it is not necessary to have the same grid
spacing in the longitudinal and in the transverse plane, so an anisotropic Cartesian
grid would be a reasonable choice. An anisotropic grid has the disadvantage that the
Poisson solver becomes more complex (and slower).

The general notation of the Poisson equation with boundary conditions is

LΩu(x) = fΩ(x) (x ∈ Ω) (3.1)

LΓu(x) = fΓ(x) (x ∈ Γ := ∂Ω) ,

where u donates the potential, x = (x, y, z) ∈ Ω in our case, LΩ is a linear differential
operator on some domain Ω ⊂ R3 and LΓ (Γ := ∂Ω) is a boundary operator. fΩ and
fΓ are the given source functions (charge density) of the Poisson equation. In short,
equation 3.1 will be written as

Lu = f (3.2)

For the 3D case it can again be rewritten as

∂ 2u

∂ x2
+
∂ 2u

∂ y2
+
∂ 2u

∂ z2
= f (3.3)

ui+1 − 2u+ ui−1

∆x2
+
uj+1 − 2u+ uj−1

∆y2
+
uk+1 − 2u+ uk−1

∆z2
= f
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This can be solved for u and with α = ∆z
∆x

and β = ∆z
∆y

and r = f
∆z2

.

uijk =
1

2(1 + α2 + β2)

(
α2(ui+1 + ui−1) + β2(uj+1 + uj−1) + uk+1 + uk−1 − r

)
So the value for one grid point can be expressed by the values of its surrounding points.
With this method only the next neighbor points will be considered. A more complex
stencil would take more grid points into account (e.g. four in each direction). The
simplest finite difference method is the Jacobi iteration solver where new values are
calculated for all grid points using the old values.

zm+1
ijk =

1

2(1 + α2 + β2)

(
α2(umi+1 + umi−1) + β2(umj+1 + umj−1) + umk+1 + umk−1 − r

)
um+1 = zm+1

ijk

where m refers to the m-th iteration and um to the old approximation and um+1 to
the new approximation. With this schema every grid point becomes recalculated after
one another.

By introducing a relaxation parameter ω this simple iteration method can be
generalized:

um+1 = um + ω(zm+1
ijk − u

m) (3.4)

This is often referred to the ω-damped Jacobi relaxation (ω-JAC). For ω = 1, the
ω-JAC and the Jacobi iteration correspond.

A second type of iterative solver is the Gauss-Seidel method which uses the
value of the new grid point as soon as it is calculated

zm+1
ijk =

1

2(1 + β2γ2)

(
α2(umi+1 + um+1

i−1 ) + β2(umj+1 + um+1
j−1 ) + umk+1 + um+1

k−1 − r
)
.

A good choice for the overrelaxation parameter ω will lead to a good reduction
of the error and therefore a good convergence rate. The following characteristic of
either one of the two solvers is very important for the multigrid idea: After applying
a few iteration steps, the error of the approximation does not necessary become much
smaller, but it becomes smooth. The smoothing capability of the solver is equivalent
to the reduction of the high frequency part of the error of the approximation. The
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low frequency part of the error is much more difficult to reduce. This is illustrated in
Figure 3.1. The initial values are randomly spread between 0 and 1. After a few cycles
the high frequencies are damped and only low frequency variations on the grid remain.
The smoothing factor of the iterative smoother strongly depends on the overrelaxation
parameter ω. A good choice for ω is between 0.8 and 1.

Figure 3.1: Initial values and approximation after 1, 3, and 10 cycles. The high fre-
quency components are sufficiently reduced, whereas the low frequency
components remain.

3.1 Multigrid Solver

A classical reference on Poisson equation solution by grid methods is Hockney [HE88].
The best modern method is to use multiple grids - the multigrid method - as presented
in [TOS01], which includes a good summary of how the multigrid method absorbs and
extends the earlier methods.

The first concept of the multigrid idea is that an iterative solver such as the
Gauss-Seidel solver smoothes the error of an approximation within a few iterations and
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can therefore be used as a smoother. The second concept is the so called coarse grid
principle [TOS01]: If an error is well smoothed it can be approximated on a (much)
coarser grid without loosing information. The low frequency components of the fine
grid are transferred to high frequency components on the coarse grid. The error can
be further reduced on the coarser grid with less computational effort, since the number
of grid points is reduced.

The error vmh of an approximation umh of the solution u is defined by

vmh := u− umh (3.5)

and can generally be expressed by an Fourier expansion

vmh (x) =
n−1∑
i,j,k=1

αi,j,k sin(iπx) sin(jπy) sin(kπz) (3.6)

The error can not be calculated directly, since the solution u of the Poisson equation
is not known at any time. Therefore it is useful to define the defect or residual of the
approximation umh by

dmh := fh − Lhumh . (3.7)

The defect is a measure of how much the Laplacian of a given approximation differs
from the source term of the Poisson equation. It can therefore be used to determine
the quality of the solver and its ability to converge. The defect equation

Lhv
m
h = dmh (3.8)

is equivalent to the definition of the error

u = umh + vmh . (3.9)

The discrete eigenfunctions of the discrete Laplace operator Lh are

ϕi,j,k(x) = sin(iπx) sin(jπy) sin(kπz) (i, j, k = 1, ..., n− 1). (3.10)
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ϕi,j,k(x) can be split into two components: one high frequency part, which means that
n/2 ≤ max(i, j, k) < n and one low frequency part for max(i, j, k) < n/2, where n is
the number of grid points per direction. Equation 3.6 can now be written as

v(x) =
n−1∑
i,j,k=1

αi,j,kϕ
i,j,k(x) =

n−1∑
n/2≤max(i,j,k)

αi,j,kϕ
i,j,k(x) +

n/2−1∑
i,j,k=1

αi,j,kϕ
i,j,k(x) (3.11)

The ability of the smoother to smooth the error within a few iterations means that
the high frequency components of error are reduced, whereas the low frequency com-
ponents remain comparably unchanged.

Assume that we have two isotropic grids one with a grid spacing of h (Ωh) and
one with 2 · h (Ω2h). The low frequencies on Ωh are also visible on Ω2h and coincide
with high frequencies. Whereas the high frequencies on Ωh vanish on Ω2h (Figure 3.2).
This means that the low frequency part of the error on Ωh, which can not be damped
easily with a Gauss-Seidel smoother for example, can be converted to a high frequency
error on Ω2h. The high frequency error can then be damped easily using one of the
described smoothers. This is the basic concept of a multigrid solver (2 grid) [TOS01].

3.2 Ingredients of Multigrid Cycles

Generally, a multigrid iteration starts on the finest grid Ωh by applying some smoothing
cycles to the approximation umh to reduce the high frequency error. Then the defect
dmh is calculated by equation 3.7 and restricted to the coarser grid by a restriction
schema (dm2h). The equation

L2hṽ
m
2h = dm2h (3.12)

has to be solved on Ω2h, where L2h is the corresponding Laplacian on Ω2h. This can
be either done recursively with another multigrid approach since equation 3.12 has the
same form than the initial Poisson equation, or by a fast iterative solver. The defect
equation 3.12 does not need to solved exactly. A suitable approximation ṽm2h will work
as well without essential loss of convergence speed [TOS01]. After ṽ2h is computed it
will be interpolated to the fine grid ṽh (Ωh) and the new approximation is found by

um+1
h = umh + ṽmh . (3.13)
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Low frequency components.

High frequency components.

Figure 3.2: Low and high frequency components of the error on a grid Ω2h l for a
simple 1D example. Low frequency components are visible on Ω2h (first
row), whereas high frequency cannot be represented.

Finally, some postsmoothing steps will be performed to um+1
h . In the following, dif-

ferent structures of one multigrid iteration are discussed consisting of four grids. For
more or less grids simular structures are feasible. All structures start on the finest grid
and perform ν1 cycles to smooth the approximation umh . Then the defect is restricted
to the next coarser grid where again ν1 smoothing cycles are performed. This proce-
dure is repeated until the coarsest grid is reached. This grid is solved using an iterative
solver. From this point, the different cycle schema then differ from each other. The
V-cycle illustrated on Figure 3.3 solves the coarsest grid once and prolongates then
back stepwise to the finest grid performing ν2 smoothing cycles on the error of every
grid level. The W-cycle shown on Figure 3.4 is a more complicated structure. The
coarsest grid is now solved more than once and the computational effect for one full
W-cycle is higher than for one V-cycle, but the defect will be reduced stronger than by
one V-cycle iteration. So the total time versus reduction of the defect might be better
for the W-cycle. A last type of multigrid structure is the F-cycle shown in Figure
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Figure 3.3: V-cycle.

Figure 3.4: W-cycle.
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Figure 3.5: F-cycle.

3.5. It strongly depends on the type of problem, which multigrid structure and which
values for ν1 and ν2 result in a effective solver.

3.2.1 Restriction Operator

The purpose of the restriction operator I2h
h is to map grid functions on Ωh to grid

functions on Ω2h. The simplest restriction operator is the injection operator that
connects coinciding grid points directly. Grid points on Ωh which vanish on Ω2h will
not be considered

d2h(x, y, z) = I2h
h dh(x, y, z) = dh(x, y, z). (3.14)

More complex restriction operators are the half weighting (HW) operator and the full
weighting (FW) operator, which assign a combination of the neighbouring points to
the center grid point. The HW operator is for example defined by

d2h(x, y, z) = I2h
h dh(x, y, z) (3.15)
1

12
[6dh(x, y, z)

+dh(x− h, y, z) + dh(x+ h, y, z)

+dh(x, y − h, z) + dh(x, y + h, z)

+dh(x, y, z − h) + dh(x, y, z + h) ]
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The choice of the restriction operator depends on the actual problem. So it can not be
said in general that any restriction operator is superior. For the case of the field inside
an RFQ the injection operator was preferred, because it is most efficient in terms of
computation time and reduction of the defect.

3.2.2 Prolongation Operator

The purpose of the prolongation operator Ih2h is to map grid functions on Ω2h to grid
functions on Ωh. This can done by a trilinear interpolation that is illustrated in Figure
3.6. The prolongation operator is given by

Ih2hṽ2h(x, y, z) =



ṽh(x, y, z) for l

1
2

(ṽ2h(x, y, z + h) + ṽ2h(x, y, z − h)) for n

1
2

(ṽ2h(x+ h, y, z) + ṽ2h(x− h, y, z)) for m

1
2

(ṽ2h(x, y + h, z) + ṽ2h(x, y − h, z)) for p

(3.16)

Figure 3.6: Trilinear interpolation in 3D.
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4 Verification of the Multigrid
Solver

After the main ideas of the multigrid Poisson solver have been illustrated in chapter 3,
a verification of the solver will be covered in this chapter. Since the solver will be used
to calculated the external field as well as the internal field, two different types of test
problems will be considered: one with a charge density introducing the field (leading
to Poisson equation) and one without charges, where the field is only generated by the
boundary conditions (leading to Laplace equation).

4.1 Examples with no Charges

For the following test problems no charges are placed on the grid. The first test
problem is a simple box in three dimensions with potential φ = 1 on its surface and
starting values of zero on the grid. The solver should be able to increase the values
on the grid to their exact answer of φ = 1 ∀ x. Figure 4.1 shows the initial situation
and the potential on the indicated plane after one and three multigrid iterations. It
can be seen that the approximation is already within 20% of the exact answer after
one iteration. After six iterations the difference is less than 10−6. The oscillations on
the right hand side of the box are due to the running direction of the Gauß-Seidel-
Smoother, which updates those grid points first, which are closer to the origin. The
corresponding defects are shown in Figure 4.2. The absolute values of the defects
depend on the grid spacing and are therefore of no interest, instead the change of the
magnitude is the important measure. The defect was reduced by a factor of 105 within
six iterations. The shape of the defect coincides with the approximations minus the
solutions which is 1 in this case.

As a second test problem a conducting ball was chosen having zero potential.
In its center the potential is forced to be φ = 1. The cut through the initial potential
and the approximation of the potential after one and ten multigrid iterations at z = 0
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Figure 4.1: Box with φ = 1 on the surface and potentials after 1, 3, and 6 multigrid
cycles at the indicated plane.

Figure 4.2: Defect after 1, 3, and 6 multigrid iterations of a box with φ = 1 on the
surface.
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are shown in Figure 4.3. After one iteration the shape of the approximation is already
close to the one after ten iterations, so that just minor changes were applied. This
demonstrates the advantage of the multigrid method: the ability to reduce the error
within a few iterations. The corresponding defects are shown in Figure 4.4. Their

Figure 4.3: Box with charged ball and with vanishing potential on the boundary (the
marked boundaries are reflecting ones) and initial potential and potential
after 1 and 10 multigrid iterations on the indicated plane

maxima are located around the center where the potential φ = 1 and by the reflecting
walls at x = 0 and y = 0. The defect is reduced by a factor of 1012 within 10 iterations.

The last test problem of this kind is a parallel-plate capacitor placed inside a
grounded box. The initial potential and the approximations after one and ten multigrid
iterations are shown in Figure 4.5. On the initial approximation only the two plates
are of opposite potential and the remaining grid points have zero potential. After
one iteration the expected shape of the potential was observed. After ten iterations
the shape of the approximation has changed a little. This differs when looking at
the corresponding defects shown in Figure 4.6. The defect is further reduced after ten
iterations by approximately the same factor than in the other test problems mentioned
above. If the width of the plate is reduced, convergency of the solver becomes worse.
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Figure 4.4: Defect after 1, 3, and 10 multigrid iterations of a ball with vanishing po-
tential on the boundary and potential φ = 1 at the center.

This is due to too fine structures on the finest grid, which might vanish on a coarser
gird.

4.2 Examples with Charges

This section covers test problems involving nonzero charge densities and zero potential
on the boundaries. These type of problems will occur when calculating space charge
effects inside the RFQ. The boundaries are then forced to have zero potential, so that
effect of image charges is realizable as well. The principle of superposition allows to
compute the external and internal fields separately. In most applications a DC beam
is injected into the RFQ having the shape of a cylinder two cells long. Further down
in the accelerator the beam is bunched and of elliptic shape. It will be surrounded by
either the electrodes for the cases considering the image effect or by the cylinder with
zero potential and a certain distance to the beam axis for calculations neglecting the
image charges.
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Figure 4.5: Parallel-plate capacitor in a grounded box and initial potential and poten-
tial after 1 and 10 multigrid iterations on the indicated plane.

Figure 4.6: Defect after 1, 3, and 10 multigrid iterations of a parallel-plate capacitor
in a grounded box.

49



4 Verification of the Multigrid Solver

4.2.1 Examples with no Image Charge Effect

Again, to demonstrate the code, same test problems are described below which have
a cylindric boundary with zero potential in which the charges are placed. For space
charge simulations in an RFQ the radius of the cylinder needs to big enough to avoid
particles coming too close to the cylinder. Twice the maximum aperture (2ma) is
normally sufficient.

The first case discussed here is a charge density with the shape of a cylinder
placed inside a grounded cylinder. This is the situation of a DC beam injected into
the RFQ neglecting the image effect. The ratio of the grounded cylinder radius to
the beam radius is 5 to 1. A cut at y = 0 of the charge density as well as the
approximation of the potential is shown in Figure 4.7 and the corresponding defects
are shown in Figure 4.8. The potential has its maximum at the center of the cylinder
and falls off to the grounded cylinder. It does not show any longitudinal dependency
as expected so that no further steps are necessary to include neighbouring bunches.
The defect is reduced by a factor of 108 within 10 iterations.

Figure 4.7: Charge cylinder placed inside a grounded cylinder and charge density and
approximation of the potential after 1 and 10 multigrid iterations on the
indicated plane.
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Figure 4.8: Defect after 1, 3 and 10 multigrid iterations of a charge cylinder placed
inside a grounded cylinder.

A cut at y = 0 of the approximation of the potential as well as of the charge
density of a charged ball placed inside a grounded cylinder is shown in Figure 4.9. The
grid is periodic in the longitudinal direction, so that neighbouring bunches are fully
taken into account. The charged ball has a radius of 20 grid points, and the grounded
cylinder radius is 100 grid points. The potential has its maximum at the center of
the charged ball and falls of in all directions. In the transverse direction the potential
decreases to zero whereas in the longitudinal directions it does not fall down to zero,
since the neighbouring charge is taken into account and no conducting boundary is
present there. The solver reduces the defects shown in Figure 4.10 strongly by a factor
of 108 within ten multigrid iterations and is therefore sufficient for computing space
charge effects as well. It has to be noted that the maximum of the defect after some
iterations is not in the region where the charge is located, but at the edges of the grid
where grid points are reflected.
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Figure 4.9: Charged ball placed inside a grounded cylinder and charge density and
approximation of the potential after 1 and 10 multigrid iterations on the
indicated plane.

Figure 4.10: Defect after 1, 3 and 10 multigrid iterations of a charged ball placed inside
a grounded cylinder.
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4.2.2 Examples with Image Charge Effect

Charged particles placed inside an RFQ, will cause image charged on the electrodes
which effect the beam. In the following, test problems are described in which the im-
age charge effect is considered. The boundary therefore has the shape of the electrodes
of an RFQ and has zero potential, so that the external and the internal fields can be
calculated separately making use of the superposition principle.

A simple example of an image charge is the potential of a point charge placed
in front of a conducting plate at a distance d. It is equivalent to the situation of two
point charges of opposite charge with a distance of 2 · d between them. In Figure 4.11
the potential at a perpendicular line to the plate crossing the charge is shown, as well
as the potential of two charges with twice the distance. Both potentials have the same
shape as expected, so the solver can calculate the image effect correctly as well.

Figure 4.11: Potential of a charge placed in front of a grounded plate and potential of
two charges of opposite charge to demonstrate the image charge effect.

The charges used above are now placed inside a grounded quadrupole channel
with different apertures. Figure 4.12 shows the potential for the charged cylinder. The
maximum of the potential on the beam axis depends on the aperture; with a bigger
aperture the maximum increases. Both potentials fall off to zero at the vane tip but
in different shape (more stretched for the bigger aperture) and will therefore result in
different electric fields. A dependence on the longitudinal position can not be seen, as
expected from the reflected longitudinal boundary conditions.
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Figure 4.13 shows the potential of a charged ball placed inside a grounded
quadrupole channel for different apertures (0.2 cm - 0.8 cm). Just like the charged
cylinder the maximum of the potential increases with increasing aperture. The value
of potential at the beginning and at the end of the cell also depends on the aperture
in the same manner.

Figure 4.12: Potential after 10 multigrid iterations of a charged cylinder placed inside
a quadrupole channel with aperture of 0.4 cm and 0.5 cm.

The shape of the potential on the beam axis is also shown in Figure 4.14 to
illustrate the influence of the aperture on the potential. The curves for the smaller
apertures are shifted to lower values compared to the curves with bigger apertures.
The resulting longitudinal field components will therefore be somewhat close for the
different apertures, since the difference between the curves is mainly a constant, which
holds only for the longitudinal field. The black curve (aperture and the radius of the
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Figure 4.13: Potential after 10 multigrid iterations of a 0.2 cm radius charged ball
placed inside a quadrupole channel with apertures from 0.2 cm to 0.8 cm.
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Figure 4.14: Potential along the beam axis of a 0.2 cm radius charged ball placed inside
a grounded quadrupole channel with aperture from 0.2 cm to 0.8 cm.

ball are both 0.2 cm) differs in its shape a little from the other curves, since the vane
surface is placed directly in front of the charged ball and the image effect is therefore
stronger than in the cases having a bigger aperture. If the vane surface is far enough
away from the charge density the influence of the image effect is weaker and differ-
ences between axial potential decrease. The transverse field, which is the derivative
of the curves shown on Figure 4.15, inside the charged ball is quite independent of
the aperture, because the potentials (from the center to grid point 20) have the same
shape with a constant offset. The field outside the charge density then depends on the
aperture. For small apertures the potential must falls off steeper than for big aper-
tures. This results in higher transverse field component for small apertures, because
the boundary forces the potential to zero, so it will drop down more rapidly.

Without the image charge effect all of the curves shown above will have the
same shape independent of the aperture. Neglecting the image charges in the space
charge calculation, leads therefore to strong inaccuracies in the particle dynamic sim-
ulations especially for high current and high energy application where the apertures
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Figure 4.15: Potential on a line from the center of the 0.2 cm radius charged ball to
the vane surface.

is kept as small as possible to reduce RF power consumption. Image charges can fully
be taken into account by the multigrid Poisson solver and should be used for accurate
simulations.
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5 RFQ Simulation Results Using
the Multigrid Poisson Solver

In this chapter the influence of the multigrid Poisson solver on the simulations of the
particle dynamic in RFQs will be described. As the test case a set of 12 RFQs is used,
which were designed following the same rules with one parameter varied to find the
optimum for this specific parameter. In this case the parameter was the minimum
aperture at the end of the shaper section. It has to be mentioned that the goal of
designing these RFQs was not to obtain 12 good designs, but to have a wide range
of RFQs with differences in their geometry. The same set of RFQs has already been
used in [Jam07b] and [Mau08] to compare different simulation programs.

5.1 Description of the Set of Test-RFQs

The main characteristics of the RFQs are chosen to meet the criteria of IFMIF
[Jam07a] in terms of resonance frequency, ion species, beam current, et cetera. The
main parameters are listed in Table 5.1. The evolution of the aperture of the set of
RFQs is shown in Figure 5.1. The different RFQs are identified by the aperture-factor
which is proportional to the reciprocal value of the minimum aperture at the end of
the shaper section. From the shape of the curves one can tell that the equipartitioning
design strategy has been used to lay out the RFQs.

Figure 5.2 shows the evolution of the modulation along the RFQs. They all
start with no modulation (m = 1) in the radial matching section. The modulation is
then increased rapidly to the end of the shaper section, where the beam should reach
the equipartitioned, equilibrium condition. In the beginning of the gentle bunching
section the modulation is first held constant and then rises further, but with a smaller
slope than in the shaper section. The maximum of the modulation is reached at the
end of the accelerating section at the end of the RFQ. Even though the basic shapes
of the curves are similar for the different RFQs, the values, slopes and section lengths
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Frequency 175 MHz
Ion species deuteron
Input energy 95 keV
Output energy 5 MeV
Beam current 130 mA
Input emittance 150 mm mrad
Voltage 50− 200 kV
Modulation 1.0− 2.6
Aperture 0.25 - 1.5 cm

Table 5.1: Main parameters of the set of RFQs used for comparison.

Figure 5.1: Apertures as a function of the cell number for the set 11 RFQs.

differ from RFQ to RFQ.
The synchronous phase of the RFQs is shown in Figure 5.3. The synchronous

phase starts with the usual −90◦ to maximize the longitudinal acceptance for the un-
bunched beam and remains unchanged until a designated point in the shaper section,
from where it is smoothly increased to start the adiabatic bunching process. In the
following gentle bunching and accelerating section the synchronous phase is increased
to its final value of around −25◦. The slope depends again on the length of the struc-
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Figure 5.2: Modulation as a function of the cell number for the set 11 RFQs.

ture and therefore on the aperture factor, since the final synchronous phase is similar
for all RFQs.

Figure 5.4 pictures the evolution of the energy of the synchronous particle.
It starts with the initial input energy of 95 keV and remains unchanged until the end
of the gentle bunching section when the synchronous phase has increased. In the ac-
celerating section the synchronous energy is ramped up to its final output energy of
5 MeV.

The different cell lengths of the RFQs are shown in Figure 5.5. They are
directly corresponded to the synchronous energy since the frequency is fixed.

5.2 External Field

In this section the influence of the multigrid solver on the external field of the RFQ
will be analyzed and compared to the old multipole expansion method. First the
field will be illustrated, then the effects on the dynamics of a single particle will be
considered and finally, the effect on the particle ensemble will be described. All the
corresponding simulations were either done with zero current or with the same space
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Figure 5.3: Synchronous as a function of the cell number for the set 11 RFQs.

Figure 5.4: Synchronous energy as a function of the cell number for the set 11 RFQs.
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Figure 5.5: Cell length as a function of the cell number for the set 11 RFQs.

charge subroutine to make sure that the effect of space charge is treated in the same
way for multigrid and for multipole expansion runs.

5.2.1 Illustration of the Field

Since the generation of the mesh and the solving for the potential is always done in
the same way, a arbitrary RFQ can be chosen to illustrate the external field inside an
RFQ. The RFQ with an aperture factor of 48 was chosen, because it is somewhere in
the middle.

In the following the potential as well as the corresponding electric field com-
ponents are shown for different cells along the RFQ for two different planes. In Figure
5.7 the potential and the electric field for cell number 10 in the xy-plane are shown.
On the picture of the potential the electrodes at opposide potentials can be seen. The
beam axis has a zero potential, since the modulation at this position of the RFQ is very
small. The breakout angle ϕ (defined in Figure 5.6) of 10 degrees of the electrodes is
also visible. The second picture illustrates the x-component of the electric field (Ex).
At the beam axis Ex is equal to zero and it rises linearly up to its maximum value
by approaching the x-electrode. The transition from vacuum to electrode seems to be
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Figure 5.6: Definition of the breakout angle

Figure 5.7: XY-plane of the potential, Ex and Ez through cell 10.
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somewhat rough. There are two reasons for this kind of behaviour. For finding each
field component for one regular grid point, the two-sided derivative schema is used
and therefore the potential of each neighbouring grid point has to be known. When
the center grid point lies on the surface of the electrode (shifted grid point), the value
of one of the neighbouring grid points is equal to the center grid point and therefore
the one-sided derivative schema is used. The necessary change of the schema is not
perfectly smooth.

The second reason is due to shifting the last grid point to make sure that
there is always a (shifted) grid point lying on the surface of the electrode. This effect
is not taken into account while plotting the potential and field components. So the
surface plots look rougher than they actually are. This is the dominant effect.

The longitudinal field component Ez indicates a small longitudinal field at the
region close to the electrodes, with the amplitude lower than the transverse field by a
factor of 400. Again, there is only a very small modulation at this point.

Figure 5.8: XZ-plane of the potential, Ex and Ez at the center of cell 10.

Figure 5.8 shows the potential and the electric field components for the same
cell, but in the xz-plane. On the potential plot the electrode can be seen with its
constant potential. A little effect of the small modulation can be noticed. The Ex-
component of the field increases linearly from the beam axis to its maximum at the
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electrodes without any perturbation. The longitudinal field component is very small
around the beam axis, but it increases a little at the electrodes due to a very small
modulation. Along the beam axis as well as on any line parallel to the beam axis the
longitudinal field has a sinusoidal shape.

Figure 5.9: XY-plane of the potential, Ex and Ez at the center of cell 50.

The potential and field components for cell 50 for the xy- and xz-plane are
shown in Figures 5.9 and 5.10. The longitudinal field components have increased com-
pared to cell 10 as expected. Particles on the beam axis see some bunching forces
due to the on axis longitudinal field component, which increase smoothly up to the
electrodes with some remains of the shifted grid point effect. The transverse field
component has not changed much. On the xz-plane (Figure 5.10) the influence of the
modulation on the potential and the longitudinal field component can be seen. The
potential at the beam axis has a sinusoidal change in its amplitude, which results in a
non-zero longitudinal field component. The maximum is again at the region close to
the electrodes, but it is quite flat up to 2/3 of the aperture.

The last cell considered here is accelerating cell (400) with a modulation of
m = 1.8. The potential and the two components of the electric field are shown in
Figure 5.11 for the xy-plane and in Figure 5.12 for the xz-plane. In the transverse
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Figure 5.10: XZ-plane of the potential, Ex and Ez at the center of cell 50.

Figure 5.11: XY-plane of the potential, Ex and Ez at the center of cell 400.
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Figure 5.12: XZ-plane of the potential, Ex and Ez at the center of cell 400.

plane the potential at the beam axis is not zero any more, but pushed to a lower
values by the modulation. The displacement of the horizontal and vertical electrode
is quite different, changing the shape of the potential. The shape of Ex is basically
the same than in cell 50: linear increase towards the x-electrode. The potential along
the beam axis (Figure 5.12) has a sinusoidal shape, which is directly corresponding to
the modulation on the electrodes. The transverse field has also remained unchanged
(besides the modulation of the electrodes), but the longitudinal field has increased its
strength compared to the previously shown cell.

5.2.2 Comparison to Potential of Multipole Expansion
Method

One reason for implementing a Poisson solver was that the multipole expansion is only
accurate within the region of the minimum aperture, since it derives from the cylin-
drically symmetric approximation of equation 2.36 in chapter 2, and its coefficients
are calculated by integrating along an arc with a radius of the minimum aperture on a
field map found by another Poisson solver. Therefore a difference in the region beyond
the minium aperture is expected.
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Figure 5.13: Potential from the multipole expansion method at the center of cell 150
as a function of x and y.

Figure 5.13 shows the 8-term multipole potential in the xy-plane at the center
of a cell, truncated at the vane boundaries; the white areas at the top and bottom
indicate regions where the potential is higher than the positive vane voltage or lower
than the negative voltage. Apparently, there seems to be a second positive and nega-
tive electrode, which is due to the inaccuracy of this description of the potential. At
the region of the beam axis the potential has the expected shape.

Figure 5.14 shows the potentials from the two different methods at the same
position. In the useful zone at the beam axis the two potentials compare actually quite
well. Only further out the there are major differences. Only a few particles will never
go so far and therefore both methods can be reasonably be used. It has to be noted
that the modulation at this position is quite small (m = 1.16) and the potential at the
middle of the cell is shown where the displacement of the horizontal and the vertical
electrode is the same. So it is not surprising nor significant that the two methods give
similar potentials. It indicates that the Poisson solver finds a potential which com-
pares quite well to the potential from the multipole expansion method in a situation
where the multipole expansion method is a accurate description of the external field.
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(a) Multigrid Poisson solver (MG) (b) Multipole expansion method (MP)

Figure 5.14: XY-plane of the potential from the multigrid Poisson solver and from the
multipole expansion method at the center of cell 150.

Figure 5.15: Absolute difference of the potentials from the multipole expansion method
and from the multigrid Poisson solver at the center of cell 150.
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The absolute differences of the two potentials are shown in Figure 5.15. The
z range of the plot is ±2% of the vane voltage. It can be seen that there is a offset
of around 1.5% of the vane voltage. Beside that, the difference is relative smooth
and small. The point at the beam axis is missing, because the multipole expansion
method gives its potential normally in cylindrical coordinates and the transformation
to Cartesian coordinates involves an arctangent.

Figure 5.16: Relative difference (MG-MP)/MG of the potentials from the multipole
expansion method and from the multigrid Poisson solver at the center of
cell 150.

The last picture of cell 150 is the relative difference shown in Figure 5.16. The
problem on relative differences is that the potential crosses through zero and than the
relative values become big without any importance. Beside this effect the relative
difference at the beam axis is less than 10%.

Now, we consider a situation in which the limitation of the multipole ex-
pansion method is revealed. The potential at the end of a cell with a modulation of
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m = 2.3 for the two different methods is shown in Figure 5.17. Potentials that are
greater than the vane voltage have been cut off. Obviously, the shape of the electrodes
(white area) of the MP-potential is not even close to the shape of the electrodes. Close
to the beam axis the two method give simular potentials, but with increasing displace-
ment from the beam axis, differences increase as well. In between the electrodes, the
potential has to change from plus to minus the vane voltage. For the MP-potential
the distance between the electrodes has become very small compared to the actual
shape of the electrodes used in the MG-potential (potential from the multigrid Pois-
son solver), therefore the electric field calculated from the MP-potential will be higher
than it essentially is. Also the position of the horizontal vane in the MP-potential is
too far away from the axes and therefore the corresponding electric field is too low.
In Figure 5.18 the relative differences of the potentials are shown. At the beam axis

(a) Multigrid Poisson solver (MG) (b) Multipole expansion method (MP)

Figure 5.17: Potential from the multigrid Poisson solver and from the multipole ex-
pansion method at the end of cell 300.

the difference is again less than 10%, but as soon as the displacement from the axis
increases the difference become bigger than 40%. Towards the horizontal vane the
error of the MP-potential becomes even bigger.
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Figure 5.18: Relative difference (MG-MP)/MG of the potentials from the multipole
expansion method and from the multigrid Poisson solver at the end of
cell 300.

5.2.3 Comparison of Ex

Different potentials as shown in the previous section will lead to different electric fields.
The x-component of the electric field in the xy-plane for the multipole expansion
method and for the multigrid Poisson solver is shown in Figure 5.19. In the left
picture (MG-field) the electrodes are visible as those regions with a flat zero electric
field. The multipole expansion method does not have any information about the
electrodes. Starting from the x-axis in both plots the field components increases
linearly with equidistant equipotential lines. In the MG-case this incline stops at the
vertical electrode whereas it continues for the MP-case. This is not a problem, since
particles which touch the electrodes are considered transversely lost. In between the
electrodes the field component increases further for the MP-case. In the MG plot
there are some local maxima at the electrodes, which are not present in MP plot.
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(a) Multigrid Poisson solver (MG) (b) Multipole expansion method (MP)

Figure 5.19: X-component of the electric field (Ex) in the xy-plane at the end of a
accelerating cell.

Figure 5.20: Relative difference (MG-MP)/MG of the x-component of the electric field
(Ex) in the xy-plane at the end of a accelerating cell.
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The relative difference of the two plots is shown in Figure 5.20 and at the useful zone
around the beam axis the difference is less than 15% - this is, however, a very significant
difference in terms of achieving a physically correct and accurate simulation. Starting
from in between the electrodes the field starts to look quite different. Especially in
front of the electrodes there are effects that can not be represented by the multipole
expansion method.

The absolute value of the electric field at the same position is shown in Figure

(a) Multigrid Poisson solver (MG) (b) Multipole expansion method (MP)

Figure 5.21: Absolute value of the electric field (E) in the xy-plane at the end of
an accelerating cell for multigrid Poisson solver and multipole expansion
method.

5.21. The maximum electric field is in the region close to the electrodes and does not
appear on the field plot from the multipole expansion method. At bigger distances
away from the beam axis (lower left corner) the MP-field increases to its maximum
whereas the MG-field tends to decrease which is reasonable since the vane voltage
remains constant and the distance between the electrodes increase. Therefore a big
relative difference is expected with a minimum at the beam axis. Figure 5.22 showing
the relative difference of the absolute values of the field confirms this.
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Figure 5.22: Relative difference (MG-MP)/MG of absolute value of the electric field
(E) in the xy-plane at the end of an accelerating cell.

5.2.4 Influence on the Single Particle Dynamics

As the next step, the influences on single particle dynamics is now analyzed. The first
particle analyzed is the synchronous particle shown in Figure 5.23. As there is no true
synchronous particle in the time code, a particle that remains on-axis transversely,
receives only the accelerating force, and is not affected by space charge is added for
diagnostics. Here the phase of that particle is plotted as function of the cell number
for three different RFQs. The black curve is the design synchronous phase, the red
curve comes from a run using the multipole expansion method for representing the
electric field and the blue curve is the one from external field of the Poisson solver. In
all three RFQs the behavior of the MP-phase (multipole expansion method) compares
very well to the design phase. This is due to the usage of the multipole expansion
method in the design procedure. So the synchronous particles is excited to the same
external field, ideally, with which the RFQ was designed. When the Poisson solver is
used to calculate the external field the behavior of the synchronous particle changes.
For small apertures (a-factor=63) the difference is small and increases with increasing
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Figure 5.23: Synchronous phase as function of the cell number for different RFQs (30
,48 ,63) and different method for the external field (MG: multigrid Poisson
Solver; MP: multipole expansion method).

apertures. For big apertures the phase of the synchronous particle oscillates around the
design phase in the beginning of the structure. With increasing phase this oscillation
is damped. The graphs do not indicate which behaviour is right, but it clarifies that
the dynamic of the particles depend on the chosen method for the external field.

Secondly, an arbitrary particle was chosen and the two different approaches
were set up to determine the longitudinal kicks (change in momenta) of that particle
along the RFQ, but only one method was driving the particle, to make sure that the
positions for the two setups remain the same. The transverse kicks along the complete
structure are shown in Figure 5.24. The blue curve indicates the difference of the kicks
from multipole expansion method and Poisson solver. The oscillation of the RF (high
frequency) as well as the betatron oscillation of the single particle through the bunch
(low frequency oscillation) can be seen. The betatron oscillation frequency seems to
decrease along the RFQ, which is due to the energy gain of the particle: classic betatron
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Figure 5.24: Transverse kicks from multipole expansion method and multigrid Poisson
solver on a single particle ∆rStart = 0.5 · rrms along the RFQ (MG:
multigrid Poisson Solver; MP: multipole expansion method).

damping. In general the amplitude of the MP-kicks is bigger than the MG-kicks, but
the difference is not very big in the main part of the RFQ. In the beginning of the RFQ
the difference it a little bigger than in the rest of the structure and hence the transverse
kicks for the first 20 cm are shown in Figure 5.25. The multipole expansion method
does not have an accurate representation of the fringe field region and it starts in our
case directly with the first cell of the radial matching section, whereas the multigrid
Poisson solver starts with a grounded plate (representing the tank wall) followed by
an empty cell and then the electrodes start. This gives a more realistic picture of the
real machine. For further studies a more precise map of this region can be drawn with
bore hole and a thick tank wall. Thus, the rise of the field is different from MP to MG.
The MP-kicks start with zero, since there is no fringe field effect taken into account,
but the multigrid Poisson solver assigns some non-zero kicks to the particle. In the
radial matching section the aperture changes quite rapidly and hence the multipole
coefficients need to be changed as well which does not happen. The Poisson solver on
the other hand finds the potential introduced by the actual shape of the electrodes
giving a more precise description of a real machine.
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Figure 5.25: Transverse kicks from multipole expansion method and multigrid Poisson
solver on a single particle along the beginning of the RFQ (MG: multigrid
Poisson Solver; MP: multipole expansion method).

In Figure 5.26 the evolution of the longitudinal kicks are shown for the same
particle. As for the transverse kicks, two different type of oscillations take place. One
is the oscillation of the RF and the other is the synchrotron oscillation of the particle
passing longitudinally through the bunch. In the beginning of the structure the kicks
oscillate about zero and the energy of the particle remains unchanged (only some
bunching takes place). After some cells inside the RFQ the longitudinal kicks oscillate
about a positive value and the particle gets accelerated. The shape of the curves from
the multigrid Poisson solver and from the multipole expansion method are again quite
similar in the main part of the RFQ.

In the beginning of the structure the differences are big compared to the
small longitudinal field components (Figure 5.27). After the radial matching section
the longitudinal kicks are very small and they increase slowly to form the bunch. In
the radial matching section however the longitudinal electric field is not equal to zero,
because the quadrupole geometry is perturbated by the change of the aperture. The
multipole expansion method obtains in this region a different field than the multigrid
Poisson solver which takes the actual shape of the electrodes into account.
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Figure 5.26: Longitudinal kicks from multipole expansion method and multigrid Pois-
son solver on a single particle (ϕ = 0◦) along the RFQ.

Figure 5.27: Longitudinal kicks from multipole expansion method and multigrid Pois-
son solver on a single particle along the beginning of the RFQ.
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5.2.5 Collective Effects

Figure 5.28: Transmission (xmsn) and percentage of accelerated beam (acc) for differ-
ent external fields (MG: multigrid Poisson solver; MP: multipole expan-
sion method) for the set of 11 test-RFQs.

The influence of the different descriptions of the external field on the trans-
mission are discussed in this section. The runs used here were both done with the
same space charge routine (SCHEFF) and different options for the external field. A
zero current run can not be considered due to the very high transmission for all the
RFQs and the behavior of the beam in the quadrupole channel is different. Figure
5.28 shows the transmission and the fraction of accelerated particles as a function
of the aperture factor. The wavelength over ((aperture factor)/10) gives the minium
aperture at the end of the shaper section. On the left hand side the aperture of the
RFQs is big and becomes smaller with increasing a-factor. The transmission curve for
the multipole expansion method and for the multigrid Poisson solver are very close
for the RFQs with a medium and big aperture. Once the aperture has become small
enough, the results from the two different method start to deviate from another. The
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multigrid Poisson solver gives higher values for the transmission. For the first three
large aperture (a-factor 25, 30 and 35) RFQs the fraction of accelerated is higher for
the MG cases than for the multipole expansion method.

This behavior of the transmission curve fits quite well in the considerations
so far. For big apertures, radial losses are not as large an effect, and the multipole
expansion method agrees more closely with the Poisson solver. For smaller apertures
the effects at the aperture and therefore at the edge of the area of validity of the mul-
tipole expansion method become important and the multigrid Poisson solver is a more
accurate description of the external field. There is a difference between the multipole
expansion method and the multigrid Poisson solver and a Poisson solver should be
used for precise simulations.

5.2.6 Sensitivity of the Poisson Solver

The next step is to analyzed the sensitivity of the multigrid Poisson solver. There are
two different type of parameters to be chosen. The first are the number of multigrid
iterations being executed and the number of smoothing cycles on every grid. Figure
5.29 shows the influence of these two parameter on the number of accelerated parti-
cles for the set of test-RFQs. All curves are very similar except the black curve (3
multigrid iterations with 4 smoothing cycles) which is the roughest setting used in this
comparison. As the standard settings 5 multigrid iterations and 4 smoothing cycles
on every grid (except when the ratio of dr and dz exceeds 4 (then 7)) is used; this is
the green curve in the plot. A further increase of the number of multigrid iterations
does not change the results for the transmission.

The second parameter which needs to be chosen is the grid resolution dr and
dz: the distance between two neighboring grid points. They are determined as a
fraction of the minimum aperture transversely and as a fraction of the cell length
longitudinally. In Figure 5.30 the influence of the denominator of the fractions on the
number of accelerated particles are shown. When the grid is too coarse (black and
red curve) the shape of the curve differ from the one with a finer grid. The values
obtained are too low. Once the grid is fine enough the number of accelerated particles
does not change, when the grid resolution is further increased. As a standard setting
a denominator of 20 is used which makes dr=aperture/20 and dz=celllength/20.
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Figure 5.29: Influence of the number of multigrid iterations (first number) and
smoothing cycles (second number and third for ratios of hx/dz greater
than 4) on the number of accelerated particles for the set of 11 test-RFQs.

5.3 Internal Field

As the next step, the space charge effect is now analyzed. First, routines are compared
that do not take the influence of image charges on the electrodes into account. The
first routine is the well known two dimensional SCHEFF routine (developed at Los
Alamos National Laboratory), in which the beam is represented by charged rings and
the effect of charged rings on rings can be calculated exactly analytically. The crux of
SCHEFF is how well a three dimensional charge density can be mapped onto a two
dimensional grid. The second routine used for comparison is PICNIC, a particle-in-cell
approach based on numerical calculation of the interaction between cubes [PLN98].
The last routine is the multigrid Poisson solver whose implementation is a part of this
thesis. The boundary of the mesh is a conducting cylinder with a radius of twice the
maximum aperture and with zero potential. Calculation time is quite bad for PICNIC
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Figure 5.30: Number of accelerated particles as a function of the grid resolution
(dr=aperture/x and dz=cell length/x) for the set of 11 test-RFQs.

(5 h), it becomes better with the multigrid Poisson solver (30 min) and it is best for
SCHEFF (10 min). Figure 5.31 shows the effect of the size of the grounded cylinder
on the MG-transmission. There is a little influence within the range of 0.2%. In the
MG routine the boundary conditions can easily be changed to have the shape of the
electrodes in order to take the effect of image charges on the electrodes into account.

The first two space charge routines only consider a single bunch of particles.
The effect of neighboring bunches is added later by superposition, thereby the neigh-
boring bunches are treated as point charges and up to 20 leading and trailing bunches
are taken into account in order to fully regard this effect. The multigrid Poisson solver
uses its boundary conditions to take care of the neighboring bunch effect. The length
of the space charge mesh is always set to twice the cell length with the bunch in its
middle. The boundary is not mirrored, but kept periodic in the sense that the n+1 grid
point and the first grid point have identical values. Doing so, the neighboring bunches
are fully taken into account except for the slight effect of changing vane parameters.
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Figure 5.31: Influence of the radius of the zero potential cylinder for the multigrid
Poisson solver as the space charge routine on the transmission.

5.3.1 Influence on Single Particle Dynamics

As for the external field an arbitrary particles was chosen and the space charge kicks
on the particles from different space charge routines were logged as it travels through
the quadrupole channel. In Figure 5.32 the evolution of the transverse space charge
kicks from SCHEFF and multigrid Poisson solver without image charges is shown as
well as the difference of the two (blue curve). The particle oscillates with its transverse
phase advance through the bunch, the resulting kicks show this kind of oscillation as
well. The phase advance is defined per focusing period and the geometric length of
this focusing period increases with the energy of the particle. Hence the oscillation
seems to be damped when plotting against the longitudinal z position. The shape
of the curves from SCHEFF and from the Poisson solver are close, but the extrema
are different. In the beginning (shown in Figure 5.33 in more detail) SCHEFF gives
somewhat higher kicks than the Poisson solver does. At the end of the structure it is
the other way around and the Poisson solver gives higher kicks. The micro structure
of the curve, when the particle is at the edge of the bunch, is also very similar in the
two curves. For this particle, which does not leave the bunch too far, the effect of
images charges is minor.

The picture for the longitudinal kicks (∆pz) is quite similar. The longitudinal
kicks are shown in Figure 5.34. Again, the shape of the curves is quite the same, but
the values from SCHEFF are higher for the whole structure. In the beginning of the
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Figure 5.32: Transverse space charge kicks from SCHEFF and multigrid Poisson solver
without image charge effect and the difference of the two (SCHEFF-MG)
along the RFQ.

Figure 5.33: Transverse space charge kicks from SCHEFF and multigrid Poisson solver
without image charge effect and the difference of the two (SCHEFF-MG)
for the first 2.5 m of the RFQ.
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Figure 5.34: Longitudinal space charge kicks from SCHEFF and multigrid Poisson
solver without image charge effect and the difference of the two (SCHEFF-
MG) along the RFQ.

RFQ the effect of space charge on the longitudinal dynamic of the beam is small,
because the input beam is DC and longitudinal forces cancels. This changes when the
beam becomes bunched.

5.3.2 Collective Effects

To compare the influence of the routines used to calculate the space charge effect
on the transmission, the set of RFQs was simulated using the same MG-routine for
the external field. The settings for the mesh in terms of the resolution of the mesh
for SCHEFF and for the Poisson solver were chosen equal. For PICNIC two differ-
ent settings were used (one with the longitudinal grid extent set at ± 3.5 times the
longitudinal rms beam size including smoothing, and with 5 times excluding smooth-
ing). The transmission curves for different space charge routines as a function of the
aperture-factor are shown in Figure 5.35. Roughly, the shape of the curves are simi-
lar. The peak of the transmission curves does not depend on the chosen space charge
routine. So finding the optimum is independent of the routine used in this case. Over-
all, SCHEFF gives the lowest transmission for every RFQ, but the difference to the
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Figure 5.35: Transmission (xmsn) and percentage of accelerated beam (acc) for differ-
ent routines for the internal field without image charges for the set of 11
RFQs (MG: multigrid Poisson solver; im off: image charge effect turned
off).

other routines becomes smaller at the peak. For the RFQs with a small aperture (big
a-factor) the routines PICNIC with both settings and the multigrid Poisson solver the
results are very close, only SCHEFF is 2.5% lower. On the right hand side of the plot
the situation is the same. In the middle with already high values for the transmission
the multigrid Poisson solver gives the highest results and stays high longer than the
other curves leading to a flatter plateau. The percentages of accelerated beam for
SCHEFF and PICNIC are very close over whole range, only the Poisson solver gives
higher values for RFQs with big apertures. The 3D PICNIC should be more correct
than SCHEFF, and the longitudinal boundary condition of the MG routine may be
more accurate than the SCHEFF/Picnic point-to-point neighboring bunch treatments.
So it appears justified to assert that the MG Poisson solution is preferred.
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5.3.3 Sensitivity of the Poisson Solver

Figure 5.36: Influence of the number of multigrid iterations (first number) and
smoothing cycles (second number and third for ratios of hx/dz greater
than 4) on the number of accelerated particles for the set of 11 RFQs.

The sensitivity of the Poisson solver has already be analyzed for the external
field which does not include a charge density on the grid. Because this has changed
for the internal field calculation, the sensitivity of the Poisson solver is analyzed again
but with a charge density introducing the field. Figure 5.36 illustrates the effect of the
number of multigrid iterations and the number of smoothing cycles on the number of
accelerated particles. All used settings produce simular curves which lie within 1%.
The standard settings are 5 multigrid iterations and 7 (10 for the ratio of dr/dz greater
than 4) smoothing cycles per gird (blue curve).

The influence of the grid resolution on the number of accelerated particles is
shown in Figure 5.37. It is stronger than the influence of the number of multigrid
iterations. With increasing grid resolution (from black to blue) the number of accel-
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Figure 5.37: Number of accelerated particles as a function of the grid resolution
(dr=aperture/x and dz=cell length/y) for the set of 11 RFQs.

erated particles decreases on both sides of the curve (small and large apertures) and
at the optimum for medium apertures the effect is much smaller and the values are
simular for the different settings. The red curve (dr=aperture/20; dz=celllength/40)
is a good compromise between running time and accuracy and is therefore chosen as
the standard settings for the solver.

5.3.4 Space Charge with Image Charge Effect

Now the influence of image charges on electrodes introduced by the beam will be de-
termined. The same multigrid Poisson solver is used for the space charge calculation,
with different boundary conditions as the only difference. For neglecting the image
charge, the transverse boundary of the grid is again a grounded cylinder with the
radius of twice the maximum aperture. Image charges are introduced to force the
potential on the conducting surfaces to a certain value. In the case of the electrodes
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(a) with image charges (b) without image charges

Figure 5.38: Space charge potential at a xz-plane with and without image charges.

of an RFQ the potential on the electrodes has to vanish, because the internal and the
external fields are treated separately and are combined by superposition.

The potential with and without image charges in the xz-plane of certain cell
in an RFQ is shown in Figure 5.38. On the left plot the position of the vane can be
seen as the region where the potential is equal to zero. The potential on the other
plot falls off smoothly. The shape of the two potentials along the beam axis are quite
similar. The maximum of the potential is in the region where the majority of the
particles is located.

The x-component of the potential is shown in Figure 5.39. In the center of
the bunch, at the middle of the z-axis, the Ex increases linearly to its maximum and
than falls off for the case without the image effect (right picture) or increases further
after a small plateau to maximum in front of the vane for the case with image charges.
On the axis the transverse electric field vanishes as expected. The field in front of the
vane is not very smooth and some steps are present, because of the shifted grid points.
Shifted gird points are not shifted for plotting and the effect is therefore smaller than
it appears, so the roughness there does not have any influence on the beam dynamic,
furthermore particle entering the electrodes are considered lost. The picture indicates
that the effect of image charges on the electrodes can be quite strong for particles
leaving the core.

In Figure 5.40 the corresponding longitudinal field Ez is shown. In the middle
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(a) with image charges (b) without image charges

Figure 5.39: Transverse field Ex from space charge at a xz-plane with and without
image charges.

(a) with image charges (b) without image charges

Figure 5.40: Longitudinal field Ez from space charge at a xz-plane with and without
image charges.

of the bunch, Ez is zero as expected and changes its value in both directions linearly
toward its extrema to fall off to zero again. The transition from vacuum to the vane
looks more rough and stepped than it actually is, because the plotting routine does
not take the shift of the gird points inside the electrodes into account.

The relative difference between the longitudinal field Ez with and without
image charges on the electrodes is shown in Figure 5.41. At the center of the bunch
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Figure 5.41: Relative difference (IMON-IMOFF)/IMOFF of the longitudinal field Ez
with and without image charges in the xz-plane.

Ez is zero and the relative values can become quite big. Beside that, the field with
image charge effect is as high as 10% in the useful zone at the beam axis. In front of
the electrodes the difference is quite big.

The influence of image charges placed on the surface of the electrodes on
the results of the simulation in terms of transmission and fraction of accelerated
particles for the set of RFQs is shown in Figure 5.42. The (black, red) curve is a
result of a simulation using the full multigrid Poisson solver without image charges
(grounded cylinder with a radius of twice the maximum aperture), which has already
been compared to in the examination of the pure space charge effect. For the runs
with image charges (blue, green) the same settings are used, but the boundary condi-
tions of the space charge Poisson solver was changed from the cylinder to the shape
of the electrodes. Including the image charges significantly lowers the transmission
for all simulated RFQs with some dependence of the aperture. For big apertures (left
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Figure 5.42: Transmission (xmsn) and percentage of accelerated beam (acc) illustrat-
ing the effect of image charges on the electrodes for the set of 11 RFQs.

hand side) the effect of image charges is smaller than for the small apertures on the
right hand side. This holds especially for the fraction of accelerated particles. The
position of the maxima as well as the basic shape of the curve has not changed with
the image charges. The difference for the best transmitting RFQs is about 5% and
increases for decreasing apertures to about 10%. This is a bigger effect than implied
by other (less accurate) routines (<2% in transmission) used in PARMTEQM for in-
stance [CWY+05].

To explain why the effect is stronger for smaller apertures, the percentage of
particles are plotted as a function of their minimum distance to the electrodes along
the structure in Figure 5.43. In the RFQ with a medium aperture (black curve) only
a few percent of the transmitted particles come closer to the electrodes than 10% of
the aperture. For an RFQ with a smaller aperture, 15% of the particles come closer to
the electrodes than 10% of the aperture. Closer than 20% of the aperture come 20%
of the particles for the medium aperture and more than 40% for the small aperture.
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Figure 5.43: Minimum distances of the particles to the vane as a function of the per-
centage of the beam that was accelerated.

For both RFQs the number of particles staying more than 40% of the aperture away
from the electrodes is very small. So the number of particles entering the region where
the effect of image charges has a strong influence on the field increases with smaller
apertures. Also the image charge effect is stronger in those cases, since the distance
between the beam introducing the image charges and the surface of the electrodes is
small. Because of the opposite charge of the image charges the image charge effect is
always defocusing in the transverse plane, but might have a small longitudinal focus-
ing effect on particles in front or behind the bunch. Summing up, a small aperture
will increase the strength of the image charge effect compared to a big aperture in two
ways and gives therefore an explanation of why the image charges on the electrodes
have such a strong influence on the transmission especially for small apertures.

This strong effect has not been predicted by other simulation programs e.g.
PARMTEQM, which uses some approximations to calculate the influence of image
charges on the beam. For precise simulations of high current RFQs which are dom-
inated by space charge forces, it is necessary to include the image charge effect as
accurate as possible. This can not be done by using some approximations, but it can
be simulated by using a 3D (multigrid) Poisson solver taking the exact boundaries
in form of the electrodes into account. Simulating the image effect correctly, helps
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to improve designs especially for high current, high frequency applications with small
apertures and when losses in the high energy part of the RFQ need to be minimized
to reduce radiation and to avoid activation of the machine.

This finding that the image forces in RFQs are stronger than previously
thought helps to resolve the observation that actual RFQs have usually demonstrated
lower transmission than predicted by simulation programs using approximate methods
[Jam97].
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6 Experiments with the MAFF
RFQ

In the previous chapters work on particle dynamic simulations has been presented. For
designing and building RFQs the particle dynamic is only one part that needs to be
taken care of. Other issues are the selection and the design of the resonance structure
(see 2.2 for an overview of different resonator concepts), the precise manufacture and
the assembling of the resonator as well as the tuning and the commissioning of the
RFQ. The following chapter deals with the commissioning and beam test of an RFQ.
The particle dynamic codes described in the first part of the thesis have been used
to test a given design of an RFQ under different conditions like unflatness, influence
of the input emittances, variation of the input energy et cetera. They are important
tools to understand the behaviour of the particles inside the structure especially for
error diagnostics and to eliminate the electrode layout as possible source of errors. So
the quantities which have been simulated are now measured at a real structure.

The Munich Accelerator for Fission Fragments (MAFF) was a plan for a
Radioactive Ion Beam (RIB) facility in Munich which was designed to use thermal
neutrons from the FRM-II to produce radioactive ions and to accelerate them for
various experiments. Most other RIB facilities use a driver accelerator to produce ra-
dioactive ions. MAFF was designed to accelerate very neutron-rich fission fragments
to a final energy from 3.7 up to 5.9 MeV/u. The beam intensity was limited to 3 ·1011

particles per second [HGA+03]. The machine was planned to be used for the creation
of super-heavy elements (100 ≤ Z ≤ 120) by fusion reactions, nuclear spectroscopy of
exotic nuclei and for other applications e.g. medicine.

The radioactive ions are produced by thermal neutrons induced fission of 235U

at a large cross section of 580 b. The production target consists of porous graphite
loaded with 235UC2 which is enclosed in a rhenium container with an inner lining of
vitreous carbon. The produced ions have a charge of one. For a sufficient acceleration

96



6 Experiments with the MAFF RFQ

a higher charge to mass ratio and therefore higher charge stages are needed. Charge
breeding can be done in either an electron beam ion source (EBIS) or electron cy-
clotron resonance ion source (ECRIS). For the MAFF project a maximum charge to
mass ratio of 6.3 was projected. The planned linac has a total length of about 20 m

and contains an IH-RFQ, three IH-structures and two identical 7-gap IH-resonators
for energy variation. It runs with a duty factor of 10% at a frequency of 101.28 MHz in
the first section and with 202.56 MHz in the high energy part. The energy variation is
done by turning the last IH-structure on and off and by using the last 7-gap structure
either to accelerate or to decelerate the beam. The energy spread at the target is
designed to be less than 0.2%. Over all, the MAFF linac is in low-energy part very
similar to the REX-ISOLDE linac [HAA+01], [HKS+98], [HKB+97].

Figure 6.1: Scheme of the test stand [BHF+06].

The concept of the RFQ for MAFF differs from many other projects since
it uses an IH-type cavity. Using an IH-type cavity should lead to a higher Rp-value,
which is a measure for the efficiency of transforming RF power to accelerating voltage,
compared to a 4-Rod structure like the REX-ISOLDE RFQ [SKH01]. The IH-RFQ
cavity is excited in the TE111-mode. The first IH-RFQ is the 36 MHz high current
injector (HSI) at GSI [Rat98]. The particle dynamics layout of the MAFF RFQ is very
similar to the REX-ISOLDE RFQ [Sie01]. It is designed to accelerate particles with
a mass to charge ratio of 6.3 from 3 keV/u to 300 keV/u with a maximum intervane
voltage of 70 kV. The structure with a length of 289 cm is divided into 7 individual
modules to allow fabricating the structure from bulk copper in order to increase rf
performance. The five inner modules are identical with a length of 400 mm and the
two end-modules have a length of 425 mm [PKHS]. The parts of the RFQ have been
manufactured at NTG Gelnhausen and the assembly took place at IAP in Frankfurt,
because the plan to built MAFF was abandoned, but the RFQ will be used for other
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applications. A first test stand was build in order to measure the performance of the
machine (Figure 6.1) [BHF+06]. As an ion source a filament driven volume ion source
[MPJ+00] has been set up followed by a electrostatic quadrupole triplet and horizontal
and vertical steerer. A helium beam (He+1) has been used, because mass to charge
ratio lies in the range of the accelerator and the ion source produces only one charge
state and one isotope.

6.1 Basics of RF-Structures

This section gives a short overview of RF parameters that are important in accelerator
context. The parameters will be used in the description of the experiments at the
MAFF IH-RFQ to describe the RF-structures: resonance frequency f , quality factor
Q and impedance.

6.1.1 Quality Factor Q

Resonators are oscillatory systems in which electric currents are exited by an injected
RF of a certain frequency f0 on the surface of the structure. In real systems energy is
dissipated during the oscillation. The amount of energy, which dissipates during one
period, is described by the quality factor Q0. The quality factor is defined by

Q0 =
ωW

P
, (6.1)

where ω is the angular frequency, W the energy stored in the resonator and P is the
dissipated power or the dissipated energy times the period T. Typical values for the
quality factor of normal conducting resonators are between 103 and 105 and for super-
conducting resonators between 108 and 1010 (in the frequency range 20 − 400 MHz)
[Pod08]. Since the skin depth decreases with higher frequencies, the volume in which
the current floats and therefore the quality factor also decrease.

Coupling RF into an resonator structure and varying the frequency around
the resonance frequency, the resonance curve can be obtained (Figure 6.2). The am-
plitude of the electric and magnetic field as the function of the frequency can then be
described with the Lorentz-curve, which is given by:

|A(ω)| =
|A0|√

1 +Q2
0(∆ω/ω0)2

, (6.2)
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where A(ω) is the amplitude of the field at the frequency ω, A0 is the amplitude of
the field at the resonance frequency ω0, and ∆ω = 2(ω − ω0) = ω2 − ω1 is twice the
difference between the driving and the resonance frequency. It has to be noted that
Q0 is the intrinsic or unloaded quality factor. This means that all losses take place in
the resonator and coupling effects of the coupling loop and losses in the amplifier and
beam loading are neglected. They will be considered in the external quality factor.
To measure the quality factor of a resonator the so called “3-dB-method” can be used.

Figure 6.2: Shape of a resonance curve around the resonance frequency ω0. The quality
factor can be determent by the width of the resonance curve where the
amplitude has decreased by a factor of

√
2.

The RF characteristics of a resonator can be approximated by three parameters: shunt
resistance R, capacitance C, and inductance L which form a parallel resonant circuit
(Figure 6.3). The quality factor can be rewritten:

Q0 = ω0
W

N
= ω0

1
2
LI2

L
1
2
RI2

R

= ω0

1
2
L U2

ω2
0L

2

1
2
RU2

R2

=
R

ω0L
= ω0CR (6.3)

The impedance Z of a parallel resonant circuit can be calculated from the single
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Figure 6.3: Equivalent parallel resonance circuit [Bec97].

impedances following

1

Z
=

1

Zr
+

1

Zc
+

1

ZL
(6.4)

=
1

R
+ j

(
ωC − 1

ωL

)
. (6.5)

In the case of a resonance the impedance becomes maximal and ωC = 1/ωL, which
leads to the Thomson formula ω0 = 1√

LC
. At the resonance frequency ω0 the con-

ductance value Y = 1/Z becomes real and the phase shift between the current and
the voltage vanishes. To determine the width of the resonance curve the frequency is
varied with δω around ω0 in equation 6.5 and substituted in equation 6.3:

1

Z
=

1

R
+ j

(
ω0C + δωC − 1

ω0L
+

δω

ω2
0L

)
(6.6)

=
1

R

(
1 + 2j

δω

ω0

Q0

)
(6.7)

1

Re(Z)
=

1

R

√
1 + 4Q2

0

(
δω

ω0

)2

(6.8)

When the frequency is changed by δω
ω0

= ± 1
2Q0

away from the resonance frequency the
amplitude of the voltage has decreased by a factor of 1√

2
and the power has decreased

be 1
2
. Now the quality factor can be written as

Q0 =
ω0

2δω
=

ω0

∆ω
=

f0

∆f
, (6.9)

where ∆ω and ∆f were the frequency variation when the voltage has dropped by a
factor of 1√

2
which is on a logarithmic scale 20 lg 1√

2
≈ −3 dB [Fis07].
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Figure 6.4: Equivalent circuit of RFQ and perturbation capacitance.

6.1.2 Shunt Impedance

The shunt impedance or Rp-value is a second important RF parameter of RFQ type
structures. It correlates the maximal Voltage Umax at the vane tips to the average
dissipated power N .

Rp,0 =
U2
max

N
. (6.10)

In the stationary case the average dissipated power is equal to the power delivered
from the amplifier with no beam loading. Therefore the shunt impedance is a direct
measure of the efficiency of the structure to convert RF power into an electric field
between the electrodes. High Rp,0-values correlate to high efficiency. With

Rp =
Q

ω0C
(6.11)

the Rp-value depends on the total capacity of the electrodes and is therefore a length
dependent value, since the total capacity increases with longer electrodes. In order to
compare RFQs of different lengths a parameter is necessary which does not depend
on the length of the RFQ. Often the RpL-value is used

RpL = Rp · L [Ωm]. (6.12)

The shunt impedance of an RFQ resonator can be measured by adding a small known
perturbation capacitance onto the electrodes [Sch90]. The equivalent circuit is shown
in figure 6.4. The resonance frequency then changes to

ω∗0 = ω0 −∆ω =
1√

L(C + ∆C)
. (6.13)
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This can be rewritten as

∆ω0

ω0

=
∆W

W
= 1− 1√

1 + ∆C
C

≈ ∆C

2C
. (6.14)

Making use of the definition of the quality factor and the shunt impedance the equation
can be rewritten

Rp =
2Q∆f

πf 2
0Cs

. (6.15)

The factor 2 in the numerator of Rp-value is necessary, because the vane voltage of
the RFQ is measured as the amplitude of the voltage and the RF power is measured
in rms terms. The perturbation capacitance has to be small compared to the capacity
of the electrodes. Typical values for the capacitance of the electrodes for a four rod
RFQ are between 80 and 120 pF/m. Capacitances of 1 pF, which are the smallest
commercial capacitances, have rather big production variation of 20% [Mül09]. With
suitable calibration the influence of the production variation can be reduced [Sch90].

6.2 Measurement of Shunt Impedance

Since no accelerated beam was measured after the IH-RFQ with the setup described
above [ZBH+08], the following measurements were done in order to find out if the
reason for this behaviour is caused either by the setup and operation of the machine
or by the layout of the particle dynamics. First step was to measure the actual
condition of the machine to eliminate construction problems. The shunt impedance
was measured to make sure that the intervane voltage of the IH-RFQ is high enough
to not only transport particles, but to accelerate them as well with the given power
amplifier. The second step was to measure the energy spectrum of a proton beam in
order to assure that the IH-RFQ can accelerate at a lower intervane voltage. Next
step was to measure the transmission of the IH-RFQ and to compare the results with
simulations.

The shunt impedance of the IH-RFQ was measured directly with two different
methods. One method uses a perturbation capacitor and the other one uses gamma
spectroscopy to determine the intervane voltage by a given RF power; equation 6.10
then gives the shunt impedance.
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6.2.1 Perturbation Capacitor

First, the shunt impedance was measured with a perturbation capacitor at low RF
power levels. Since the error of the small capacitors used to perturbate the field
varies, three different capacitors have been used for the measurement. The resonance
frequency is 104.688 MHz with a quality factor Q0 is 5980. The Rp-values vary between
45 kΩ and 50 kΩ (see equation 6.15); the error is 25% (5% from the quality factor
and 20% from the perturbation capacitor and the frequency measurement). Table 6.1
gives an overview of the measurements. Because of the big error of the measurement,
another method was used to determine the shunt impedance.

Capacitor 1 2 3
∆f [ MHz] 0.143 0.136 0.13
Rp[ kΩ] 48 46 45
Shunt impedance [ kΩm] 150 142 136

Table 6.1: Shunt impedance measurements with three different capacitors.

6.2.2 Gamma-Spectroscopy

Second, the shunt impedance was measured at a high RF level, by measuring the
intervane voltage and the RF power level. The RF power in the structure was measured
using a coupling loop, which was calibrated at low RF levels and the voltage was
measured by gamma spectroscopy. The bremsstrahlung of electrons is measured which
are produced by residual gas ionization. Depending on the phase of the RF and
the location of ionization the electrons can see a maximum voltage of ±U0/2, which
oscillates sinusoidal, when they are produced at one electrode and then accelerated
toward an adjacent electrode where they hit the copper and produce bremsstrahlung.
The expected spectrum is a continuous γ-spectrum. For measuring the bremsstrahlung
a semiconducting detector was used. The detector was calibrated with an Am241-
probe, which emits photons with an energy of 59.6 keV and 26.4 keV.

The first measurement of the bremsstrahlung spectrum of the RFQ was done
with an RF power of 32 kW (Figure 6.5). The maximum energy of the photons is
between 28 keV and 30 keV. The corresponding Rp-values are 24.5 and 28 kΩ.

Since this value was so much lower than expected, it seemed likely that the
structure had some kind of problem. Up to that point, the IH-RFQ was equipped
with four tuning plates to capacitively adjust the flatness and resonance frequency
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Figure 6.5: γ-Spectrum of IH-RFQ with RF power of 32 kW with tuning plates
mounted inside the structure.

Figure 6.6: Scheme of the IH-RFQ with tuning plates (red).

(Figure 6.6). It was observed that the stamps of these tuning plates became quite
warm during operation. After the removal of the tuning plates the Rp-value of the
structure had increased. Figure 6.7 shows the spectrum without the tuning plates. A
maximal photon energy between 32.5 keV and 38 keV was determined, corresponding
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Figure 6.7: γ-Spectrum of IH-RFQ with RF power of 30 kW after removing the tuning
plates.

Rp-values are 35 kΩ and 48 kΩ. The values vary much, because the RF amplifier was
at this point not able to produce and transmit a stable RF power amplitude to the
resonator and because of discharges and a thermal drift of the resonator. The error
of the Rp-value measurements are typically between 5 and 10% due to the precision
of the RF power measurement and to the field measurement in the resonator. In our
measurements the unstable RF power amplitude increased to error additionally, but
the Rp-values are clearly below the expected.

6.3 Measurement of the Output Energy

First beam tests have only shown a output beam current of 8 µA with an input current
of 1 mA and it was not known, whether the beam has only be transported trough the
RFQ or has been accelerated to the design output energy of the RFQ [ZBH+08]. As the
next step an energy spectrum of the RFQ was measured. A proton beam was chosen
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for this purpose, because of the lower required intervane voltage and therefore lower
RF power. The electrostatic lens system was suspected to cause a high beam loss for
protons and the question of alignment was never satisfactorily answered. Therefore,
the ion source was mounted directly in front of the RFQ. Simulations of this scenario
predicted a proton transmission of only 10%. For measuring an energy spectrum a low
transmission is no problem. The energy measurement was done using a dipole magnet
and a Faraday cup. A straightforward plot is the exciting current of the dipole magnet
versus the current on the cup. The magnet is sensitive to the momenta of the particles.

qvB = mω2r = m
v2

r
⇔ p = qBr

Therefore the abscissa can only be changed to the energy of a certain charge to mass
ratio. In Figure 6.8, showing the energy spectrum for two different RF power levels,
this was done for protons. The accelerated protons are clearly noticeable at an energy

Figure 6.8: Energy spectrum of a proton beam with different RF power levels.

106



6 Experiments with the MAFF RFQ

of about 314 keV (red curve). The design energy of the IH-RFQ is 300 keV/u for a fre-
quency of 101.28 MHz, but the structure’s resonance frequency now was 104.688 MHz.
The fixed cell length of an accelerating cell is given by

cl =
βλ

2
.

A higher frequency and therefore a smaller wavelength λ leads to a higher β to maintain
synchronism to the cell length. So a higher output energy was expected. The signal
of an RF probe with a damping factor of 56.5 dB was measured to 1.6 V which is
equivalent to an RF power of 2.8 kW. When the RF power levelf is not high enough
(black curve), the acceleration process could not be completely finished and many
particles leave the RFQ bunched, shaped, and accelerated to a certain fraction of the
output energy. The black curve was produced with an RF power of 2.5 kW. With
increasing RF power the RFQ gets pushed toward its operating point. This type of
ion source produces a big fraction of H3. The intervane voltage and the injection
energy are not high enough to accelerate these particles, but they get transported and
show up in the energy spectrum with their injection energy. The RF power needed to
accelerate protons can be used to calculate the Rp-value of the machine, if one assumes
that the voltage on the electrodes is the same as in the simulation for acceleration.
Doing so, a Rp-value of 32 kΩ was calculated. Since the unflatness of the IH-RFQ
was round 15%, a higher value for the intervane voltage is necessary to accelerate
particles. Simulations show that a 10% higher voltage should be assumed which leads
to an increase of the Rp-value to 38 kΩ. This is a more realistic value.

6.4 Measurement of the Transmission

In beam dynamic simulations the transmission of a given structure is easy to determine,
since all coordinates of all particles are known at any time, as well as the position where
they get lost if they hit the electrodes. The transmission is the simple ratio of the
number of particles at the start of the structure to the number of particles at the end.
When it comes to determine the transmission of a real structure it is a rather difficult
measure, because one has no knowledge of the number and position of the particles
at all. Thus the beam currents before and behind the structure are determined. For
measuring the beam current a Fast-Faraday cup has been used. To determine the
beam current at the front end of the structure, only that fraction of the beam should
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Figure 6.9: Signal on the fast Faraday cup after the RFQ with and without beam.

be considered which lies in the acceptance of the structure. If that is not done, the
transmission will be far lower than it actually is. One feature of an RFQ is that it can
bunch a dc beam, shape it and then accelerate it. Therefore normally a dc beam is
injected into the RFQ and a bunched beam is ejected. For comparing a dc beam with
a bunched beam the signal of the bunched beam has to be averaged an RF period.
While bunching, all particles from a phase from −180◦ to 180◦ are ideally compressed
into a phase width of 40− 60◦. Since current is charge per time, this leads to a higher
peak current than for the same dc beam.

For measuring the transmission of the MAFF IH-RFQ the following setup for
the beamline has been chosen: volume ion source which has been used before, Faraday
cup with electrode to propel secondary electrons to measure the dc beam behind the
ion source, a single solenoid lens to match the beam to the RFQ, RFQ, and a fast
Faraday cup behind the RFQ to measure the bunched, accelerated beam. The beam
current behind the ion source was measured to be 0.8 mA. The signal of the Faraday
cup after the RFQ is shown on Figure 6.9. The black curve shows the signal when the
ion source is turned off and only the RF is inducing a signal on the cup (a periodic
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6 Experiments with the MAFF RFQ

Input beam current 0.8 mA
Output peak current 3 mA
Average output current 0.6 mA
Transmission 75%
Phase width 90◦

Intervane voltage need to accelerate (from simulation) 38 kV
RF-power 40 kW
Rp-value 38− 44 kΩm

Table 6.2: Table of the measurement

signal with an average of zero). The red curve is the signal with beam and RF. One
can clearly see the bunched beam with a peak current of 3 mA. The average current
is 0.6 mA. This leads to a transmission of 75%± 15%. The error of the transmission
is due to the uncertainty of the beam current before the RFQ and the proper match
to the RFQ and partly to the averaging of the signal behind the RFQ which should
also get rid of the perturbation of the RF signal. To have a better picture of the shape
of the bunched beam, the signal without the beam can be subtracted from the signal
with beam. (One difficulty is to get the two signals in the right phase correlation.)
This graph is shown on Figure 6.10 and can be used to calculate the phase spread of
the beam. The FWHM of the bunch is 2.45 · 10−9 s which is equivalent to a phase
width of approximate 90◦. The design phase width is about 42◦. That and the shape
of the curve with a much steeper increase of current than its decrease suggest that
there are particles which have not been accelerated to their full energy and therefore lie
behind the main bunch. A possible reason for that kind of longitudinal shape is that
the intervane voltage is still a little to low and the limited resolution of the Faraday
cup. The design intervane voltage is 9.5 kV per q

A
. Therefore a voltage of 38 kV is

needed for He+. The RF power for acceleration was measured to be about 40 kW
with a two way coupler and with a pickup loop. This leads to a Rp-value of about
36 kΩ with a systematic error of ±20%. Because of the unflatness of the field of the
IH-RFQ a voltage of 42 kV is needed to accelerate. This corresponds to a Rp-value of
44 kΩ. Unfortunately, it was not possible to increase the RF-power due to limitations
of the amplifier.

The uncertainty of the RF-power measurement is based on limitations of the
coupler. The amplifier produces a certain fraction of higher harmonics; the higher the
output level, the bigger the fraction of higher harmonics. This higher harmonics leads
to an additional error of the RF power measurement.
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6 Experiments with the MAFF RFQ

Figure 6.10: Difference of the two signals of Figure 6.9.

Perturbation Capacitor (average) 46 kΩ
Gamma Spectroscopy 42 kΩ
Acceleration of protons 38 kΩ
Acceleration of He 44 kΩ
Average 42.6 kΩ standard deviation 3.6 kΩ

Table 6.3: Overview of the different measurements of the Rp-value.

6.5 Overview of Shunt Impedance Measurements

The shunt impedance of the MAFF IH-RFQ has been measured using different tech-
niques. Table 6.3 gives an overview of the different results. Although the error of
each measurement was estimated to be quite high, the four different methods have an
average of 42.6 kΩ ± 3.6 kΩ. The standard deviation is less than 10%. The length
normalized shunt impedance of the MAFF IH-RFQ is 128 kΩm and is therefore in the
range of REX-ISOLDE RFQ.
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6 Experiments with the MAFF RFQ

6.6 Comparison to beam dynamic simulations

For simulating particle dynamic of the MAFF IH-RFQ the RFQ-structure parameters
(a ,m, L, V) were used to get the information of the actual shape of the vanes. Other
parameters like input energy, beam current, frequency et cetera. are also known.
The only data which is roughly known is the input emittance of the beam. The
characteristics of the volume ion source was determined as a diploma work by J.
Fischbach [Fis10], but was modified to match the IH-RFQ. For an accurate simulation
of the RFQ the emittance in front of the vanes (RFQ) behind the solenoid needs
to be known. For the following simulation the input emittance was estimated to be
0.015 cm rad (see Table 6.4).

beam current 0.8 mA
ε 0.015 cm rad
α 1.17
β 8.090 cm rad

Table 6.4: Overview of the input beam.

The evolution of the simulation in terms of x,y position, phase and energy is
shown in Figure 6.11. The oscillation in the transverse planes indicate that the beam
is slightly missmatched in the beginning of the RFQ. The bunching process takes place
quite well (phase plot), but some particles leave the bucket at the end of the RFQ and
fall behind. At the beginning of the RFQ the energy of all particles is the same. After
some distance, when the bunching process has started, the energy distribution of the
particles is expanded. Some gain and some loose energy. At the end of the structure,
the energy spread of the beam is reduced to less than 25 keV/u. A small fraction
of particles get transported with the wrong energy. The transmission in this case is
about 77% and the percentage of accelerated particles is about 75%. The shape of
the beam in the last cell of the IH-RFQ is shown in Figure 6.12. It is focused in the
x-plane and it is defocused in the y-plane. The phase width of the bunch is about 30◦

by an energy spread of less than 25 keV. The small fraction of unaccelerated beam is
not shown in these graphs.
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6 Experiments with the MAFF RFQ

Figure 6.11: Evolution of the simulation of the MAFF IH-RFQ.

6.7 Conclusion

The measurements discussed above show that the MAFF IH-RFQ was assembled
correctly and is capable of accelerating particles with a mass to charge ratio of 4. The
problems solved include the bad Rp-value due to the tuning plates, replacement of
the injection system, intensive conditioning of the RFQ, and using precise measuring
methods for the beam current especially with the fast Faraday cup. Problems still
to overcome are mainly to eliminate the limitation of the structure to operate at
higher RF-levels. There are some regions in the RFQ which are sources for sparking,
which should be upgraded. A more precise measurement of the transmission including
measurements of the emittance at the entrance of the RFQ and behind the RFQ are
needed which leads to a larger experimental setup to compare them to simulations
more precisely. The measured values for the impedance, beam transmission and beam
energy of the MAFF IH-RFQ were close to the design parameters.
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6 Experiments with the MAFF RFQ

Figure 6.12: Beam in the last cell of the MAFF IH-RFQ.
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7 Summary

A basic introduction to RFQs has been given in the first part of this thesis. The
principle and the main ideas of the RFQ have been described and a small summary
of different resonator concepts has been given. Two different strategies of designing
RFQs have been introduced. The analytic description of the electric fields inside the
quadrupole channel has been derived and the two term simplification was shown as
well as the limitation of these approaches.

The main work of this thesis was the implementation and analysis of a multi-
grid Poisson solver to describe the potential and electric field of RFQs which are needed
to simulate the particle dynamics accurately. The main two ingredients of a multigrid
Poisson solver are the ability of a Gauß-Seidel iteration method to smooth the error
of an approximation within a few iteration steps and the coarse grid principle. The
smoothing corresponds to a damping of the high frequency components of the error.
After the smoothing, the error term can well be approximated on a coarser grid in
which the low frequency components of the error on the fine grid are converted to
high frequency errors on the coarse grid which can be damped further with the same
Gauß-Seidel method.

After implementation, the multigrid Poisson solver was analyzed using two
different type of test problems: with and without a charge density. These two situ-
ations correspond to the calculation of the internal and external fields of RFQs. As
a charge density, a homogeneously charged ball and cylinder were used to represent
the bunched and unbunched beam and placed inside a quadruple channel. The solver
showed a good performance.

Next, the performance of the solver to calculate the external potentials (and
fields) of RFQs was analyzed. First, the potentials and corresponding electric field
components were illustrated for different geometries of RFQ cells in terms of modula-
tion, cell length and aperture. After illustrating the results of the multigrid Poisson
solver, a comparison to the field of the old multipole expansion method was made.
The multipole expansion method is an accurate representation of the field within the
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minimum aperture, as limited by cylindrical symmetry. Within these limitations the
multigrid Poisson solver and the multipole expansion method agree well. Beyond
the limitation the two method give different fields. It was shown that particles leave
the region in which the multipole expansion method gives correct fields and that the
transmission is affected therefrom as well as the single particle dynamic. The multigrid
Poisson solver also gives a more realistic description of the field in the beginning of
the RFQ, because it takes the tank wall into account, and this effect is shown as well.
Closing the analysis of the external field, the transmission and fraction of accelerated
particles of the set of 12 RFQs for the two different methods were shown. For RFQs
with small apertures and big modulations the two different method give different val-
ues for the transmission due to the limitation of the multipole expansion method.

The internal space charge fields without images was analyzed at the level of
single particle dynamic and compared to the well known SCHEFF routine from LANL,
showing major differences for the analyzed particle. For comparing influences on the
transmissions of the set of 12 RFQs a third space charge routine (PICNIC) was con-
sidered as well. The basic shape of the transmission curve was the same independent
of space charge routines, but the absolute values differ a little from routine to routine,
with SCHEFF about 2% lower than the other routines. The multigrid Poisson solver
and PICNIC agree quite well (less than 1%), but PICNIC has an extremely long run-
ning time.

The major advantage of the multigrid Poisson solver in calculating space
charge effects compared to the other two routines used here is that the Poisson solver
can take the effect of image charges on the electrodes into account by just changing the
boundaries to have the shape of the vanes whereas all other settings remain unchanged.
The influence of doing so on the potentials and field are shown. It was demonstrated
that the effect of image charges on the vanes on the space charge field is very big in the
region close to the electrodes. Particles in that region will see a stronger transversely
defocusing force than without images. The result is that the transmission decreases
by as much as 10% which is considerably more than determined by other (inexact)
routines before. This is an important result, because knowing about the big effect of
image charges on the electrodes it allows it to taken into account while designing the
RFQ to increase the performance of the machine. It is also an important factor in
resolving the traditional difference observed between the transmission of actual RFQs
and the transmission predicted by earlier simulations.

In the last chapter of this thesis some experimental work on the MAFF (Mu-
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nich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was
designed to accelerate very neutron-rich fission fragments for various experiments. The
machine was assembled in Frankfurt and a beam test stand was built. As a part of
this thesis the shunt impedance of the structure was measured using different tech-
niques, the output energy of the structure were measured and finally its transmission
was determined and compared to the beam dynamics simulations of the RFQ. Unfor-
tunately, the transmission measurements were done without exact knowledge of the
beam’s emittance. So the comparison to the simulation is somewhat rough, but with
a reasonable guess of the emittance a good comparison between the measurement and
simulation was obtained.
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