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Zusammenfassung

Regenerative Energien haben in der jüngsten Zeit eine große Bedeutung bekommen.
Diese können die zwei größten Probleme der fossilen Energiequellen lösen: Die Be-
grenztheit der Ressourcen und das Anfallen von Abfällen bzw. Abgasen. Allerdings
birgt ein Energieerzeugungssystem mit einem hohem Anteil erneuerbarer Energien neue
Herausforderungen: Da wichtige erneuerbare Energien in Abhängigkeit von externen
Einflüssen fluktuieren, stellen sie ein Problem für die Versorgungssicherheit dar. Dies
ist vor allem bei Wind- und Solargeneratoren der Fall. Der Einfluß der Fluktuationen
auf Leistungsflüsse im Transportnetz ist bislang nicht ausreichend verstanden. Um
Übergänge von heutigen zu zukünftigen Stromversorgungssystemen planen zu können,
ist jedoch ein gutes Verständnis von möglichen Zukunftsszenarien wichtig.

In dieser Arbeit wird daher zunächst die Machbarkeit von Stromversorgungssy-
stemen mit einem hohen Anteil erneuerbarer Energien untersucht. Dabei wird sich
herausstellen, daß Energietransport innerhalb Europas notwendig ist. Daher werden
im Anschluss Transportflüsse mit Hilfe eines vereinfachten Modells analysiert und ana-
lytische Näherungen der Leistungsflüsse hergeleitet. Schließlich werden die aus den
Last- und Erzeugungszeitreihen resultierenden Leistungsflüsse analysiert und mit den
Modell-Ergebnissen verglichen.

Da Stromversorgungssysteme einen wichtigen Teil der Infrastruktur moderner Gesell-
schaften ausmachen, sind diese zum Gegenstand der Forschung komplexer Netze gewor-
den. Dabei werden Methoden der statistischen Physik zur Analyse der Zusammenhänge
von Struktur und Funktion von Netzwerken benutzt. Bisher wurden Transportnetzwerke
hauptsächlich mit Bezug auf ihre Toleranz bei Ausfällen oder gezielten Attacken unter-
sucht. Zur Beschreibung des Transportes werden in der Literatur hauptsächlich zwei
Paradigmen genutzt: Zum einen der Transport entlang der kürzesten Pfade zwischen
Quelle und Senke und zum anderen der sogenannte ”DC-Fluß”, der eine Näherung der
vollen physikalischen Leistungsflußgleichungen darstellt.

Ein erster Ansatz, Flüsse in einem Netzwerk mit fluktuierenden Quellen zu verstehen,
wird vorgeschlagen, die Wahrscheinlichkeitsverteilungen der Flüsse und die Stabilität des
gesamten Transportnetzes untersucht. Diese erste Modellierung geschieht im Rahmen
der in der Literatur benutzten Methoden, insbesondere des Transportparadigmas, das
auf kürzesten Pfaden beruht. Transportkapazitäten werden aus den Analysen hergeleitet
und den Verbindungen zugeordnet, sowie die Toleranz des Netzwerks bezüglich der
fluktuierenden Flüsse getestet. Auftretende Fehlerkaskaden, die durch Umverteilung der
Last einer überlasteten Verbindung auftreten, werden analysiert. Das vorgeschlagene
Kapazitätslayout ermöglicht es, für gegebene Überlastungswahrscheinlichkeiten die
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notwendigen Kapazitäten festzulegen. Dieser Ansatz ist jedoch nicht geeignet, um
Leistungsflüsse in Transportnetzen zu beschreiben.

Um ein gutes Verständnis von Stromversorgungssystemen mit einem hohen Anteil
erneuerbarer Energien zu erlangen, werden Verbrauchs- und Erzeugungszeitreihen von
elektrischer Energie analysiert. Die Erzeugung wird dabei vor allem für Wind- und
Solarenergie betrachtet. Deren Zeitreihen werden aus Wetterdaten generiert und mit den
Lastdaten verglichen. Die Erzeugungskapazitäten werden nach den politischen Planungen
für das Jahr 2020 räumlich zugeordnet. Um die Erzeugungs- und Lastreihen für ganz
Europa zu erhalten werden die räumlich hoch aufgelösten Zeitreihen aufsummiert.
Eine erste Betrachtung der Zeitreihen ergibt für Wind- und Soloarenergie, wie auch
für den Verbrauch, eine starke saisonale Abhängigkeit. Die aggregierten europäischen
Erzeugungsdaten zeigen, daß Winderzeugung und Last mit gleicher Phase saisonal
variieren: Beide sind im Winter höher als im Sommer. Die Erzeugung der Windkraft ist
allerdings im Winter höher als die Last und im Sommer signifikant niedriger, so daß bei
einer Versorgung mit elektrischer Energie ausschließlich aus Windkraft Speicher vonnöten
sind, die überschüssige Energie im Winter für den Sommer speichern. Solarenergie zeigt
ein umgekehrtes Verhalten: Im Winter ist die europaweite Energieausbeute niedriger als
im Sommer. Die 180◦-Phasenverschiebung der Soloarenergie zur Last hat zur Konsequenz,
daß in einem Szenario, in dem ausschließlich Sonnenenergie genutzt wird, größere
Speicherkapazitäten benötigt wird, verglichen mit dem Fall, in dem elektrische Energie
ausschließlich durch Windkraft erzeugt wird.

Da es häufig Zeiträume gibt, in denen die Erzeugung von Wind- und Sonnenenergien
nicht ausreicht, um den Bedarf zu decken, werden zusätzliche Anlagen benötigt, die
Energie speichern oder bei Bedarf kurzfristig Ausgleichsenergie erzeugen können. Die
saisonalen Einflüsse, die in den Zeitreihen gefunden werden, legen nahe, daß eine
Kombination aus Wind- und Solarenergie es ermöglicht, daß Last und Erzeugung
einander angeglichen werden können. Dabei sollen die benötigten Speicherkapazitäten
und die benötigte Ausgleichsenergie minimiert werden. Unter der Annahme, daß nur
erneuerbare Energie aus Sonne und Wind genutzt wird, werden hierzu die Zeitreihen
von Last und Erzeugung auf eins normiert. Dabei werden die Anteile von Wind-, bzw.
Solarenergie mit den Faktoren a, bzw. b bezeichnet, mit der Bedingung a + b = 1.
Dies impliziert, daß die Kapazitätszuweisungen skaliert werden, unter Beibehaltung der
Verhältnisse der räumlich zugeordneten Erzeugungskapazitäten.

Die optimalen Verhältnisse von Wind- zu Solarenergie, ausgedrückt durch den Anteil
der Windenergie a = b − 1, werden in Bezug auf den benötigten Speicher und die
benötigte Ausgleichsenergie minimiert. Für den Fall einer ausschließlich regenerati-
ven Energieerzeugung mit Wind- und Solarenergie finden wir eindeutige Minima der
benötigten Speicher und Ausgleichsenergie. Diese liegen im Falle der Minimierung des
Speichers bei a ≈ 0.6 und für die Minimierung der Ausgleichsenergie bei a ≈ 0.8. Die
unterschiedlichen optimalen Mixe können durch Dynamiken in den Datenzeitreihen auf
verschiedenen Zeitskalen erklärt werden. Tag-Nacht-Wechsel, und die dadurch benötigte
Ausgleichsenergie um die Nachts fehlende Solarenergie zu kompensieren, führen zu einem
optimalen Mix mit einem hohen Anteil von Windenergie, bei einer Minimierung der Aus-
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gleichsenergie. Die zu speichernde Energie wird von den saisonalen Zeitskalen dominiert
und führt daher zu einem anderen optimalen Mix. Analysiert man die 24-Stunden-
Mittelwerte der Zeitreihen, so bleibt der optimale Mix bezüglich der Speicherenergie
unverändert, der optimale Mix bezüglich der Ausgleichsenergie konvergiert ebenfalls zu
a ≈ 0.6.

Die Speicherenergie im optimalen Mix beträgt 10% des jährlichen Verbrauchs. Dies
bedeutet, daß ungefähr 300TWh gespeichert werden müssen. Es ist nicht abzusehen, daß
ein derartiger Speicherbedarf realisierbar wäre: Die Energie, die mit etablierten Tech-
nologien gespeichert werden kann, ist um Größenordnungen kleiner. Die Umwandlung
von elektrischer Energie in Wasserstoff, dessen Speicherung in Salzkavernen und eine
Rückverstromung des gespeicherten Wasserstoffs ist eine hypothetische Technologie, die
absehbar die höchste Speicherkapazität bietet. Deren Größenordnung liegt im optimalen
Fall bei 10 bis 20TWh. Die Effizienz dieser Speichertechnologie ist jedoch gering. Eine
Möglichkeit, den Speicherbedarf in diesen voraussichtlich machbaren Bereich zu bringen,
besteht in einer Überinstallation der Wind- und Solarenergiekapazitäten. Durch diese
Überinstallation verändert sich der optimale Mix nur minimal. Die benötigten Spei-
cherkapazitäten sinken jedoch bei 50% Überinstallation auf ungefähr 1% des jährlichen
Verbrauchs.

Das europäische Szenario impliziert Transport von überschüssiger Leistung unabhängig
von der räumlichen Lage von Erzeugung und Last. Ebenfalls interessant ist es, den
Fall zu betrachten, daß einzelne Länder ausschließlich ihren eigenen Bedarf decken und
daher kein Transport über Landesgrenzen hinweg stattfindet. Mit diesem und dem
europäischen Szenario sind zwei Extremfälle abgedeckt. Für jedes Land wurden die
benötigten Ausgleichs- und Speicherenergien ermittelt und ebenfalls eindeutige Minima
gefunden, die als optimale Verhältnisse von Wind- und Sonnenenergie für das jeweilige
Land interpretiert werden. Auffällig ist, daß in Abhängigkeit vom Breitengrad des
analysiertem Landes, bei Betrachtung der benötigten Speicherenergie, ein höherer Anteil
von Solarenergie im optimalen Mix gefunden wird. Griechenland, zum Beispiel, hat einen
optimalen Mix bei a ≈ 0, wohingegen Irland, mit a ≈ 0.8, die benötigte Speicherenergie
mit hauptsächlich Windenergie minimiert. Bei Betrachtung der Ausgleichsenergie findet
sich der gleiche Effekt, allerdings in einem weit geringeren Maße mit Werten von
0.6 ≤ a ≤ 0.9. Um die benötigten Speicher- und Ausgleichskapazitäten der beiden
Szenarien zu vergleichen, werden die jeweiligen Kapazitäten der einzelnen Länder
aufsummiert, mit dem Ergebnis, daß man für beide Szenarien einen über Europa
aggregierten Wert erhält. Bei dem Vergleich ergibt sich, daß europaweiter Transport
die benötigten Speicher und Ausgleichskapazitäten um einen Faktor von ungefähr
1.6 erhöhen, wenn es keinen Austausch zwischen den Ländern gibt. Europaweiter
Energietransfer ermöglicht daher, fluktuierende Energieerzeugung in einem höheren Maß
auszugleichen. Diese Ergebnisse illustrieren die Wichtigkeit des Transports von Energie,
dem sich die vorliegende Arbeit daher im Folgenden zuwendet.

Zu der Frage, welche Auswirkungen fluktuierende Energiequellen auf die Leistungs-
flüsse in Transportnetzen haben, gab es bisher noch keine wissenschaftlichen Erkenntnisse.
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Wir formulieren daher zunächst ein Modell mit dessen Hilfe diese Leistungsflüsse un-
ter kontrollierten Bedingungen analysiert werden können. Dieses Modell basiert auf
generalisierten und vereinfachten Beobachtungen in den Daten und berücksichtigt die
probabilistischen Eigenschaften der Erzeugung. Die räumliche Verteilung von Erzeu-
gung und Last sowie deren Verhältnis κ sind parametrisiert und die resultierenden
Leistungsflüsse werden für verschiedene Transportnetzstrukturen mit Hilfe der Monte
Carlo-Methode simuliert. In Anlehnung an andere Arbeiten werden nur quasi-stationäre
Zustände berücksichtigt, da die Komplexität des Modells anderenfalls zu groß würde.
Für die Berechnung der Transportflüsse wird die sogenannte “DC-Näherung” aus der
Elektrotechnik benutzt, die auf verschiedenen, empirisch hergeleiteten Näherungen
beruht, und nur die Wirkleistung berücksichtigt sowie Transportverluste vernachlässigt.
In stationären Zuständen muß die Leistungsbilanz Null sein, d.h. die komplette einge-
speiste Energie von den Verbrauchern entnommen werden. Dies ist bei fluktuierenden
Quellen im Allgemeinen nicht der Fall, so daß zwei Ausgleichsverfahren definiert werden,
die im Falle von Überproduktion oder Unterproduktion Verbraucher und Erzeuger
so anpassen, daß diese übereinstimmen: Im Falle von überschüssiger Energie werden
Erzeuger herunter geregelt, bei Energiemangel werden ausreichende Hilfsgeneratoren
angenommen oder es wird Last abgeschaltet. Das sogenannte “Minimale Dissipation”-
Ausgleichsverfahren minimiert die Summe der quadratischen Leistungsflüsse im Netz. Bei
Nutzung des “Globaler Faktor”-Ausgleichsverfahren werden Überproduktion oder Unter-
deckung gleichmäßig auf alle Erzeuger oder Verbraucher relativ zu ihrer Stärke verteilt.
Die Simulationen zeigen, daß das “Minimale Dissipation”-Ausgleichsverfahren starke
kurzreichweitige Korrelationen von Erzeugung und Last einführt. Bei dem “Globaler
Faktor”-Ausgleichsverfahren sind die Korrelationen jedoch vernachlässigbar.

Die ungerichteten Leistungsflüsse in den Leitungen haben aufgrund der fluktuierenden
Erzeugung einen probabilistischen Charakter. Ein Ergebnis der Simulation ist, daß
diese Verteilungen mit wenigen Ausnahmen sehr gut durch generalisierte Gammaver-
teilungen beschrieben werden können. Im Folgenden leiten wir analytisch Näherungen
der Momente der ungerichteten Leistungsflüsse her und können mit deren Hilfe die
Verteilungen der Leistungsflüsse in sehr guter Näherung vorhersagen. Diese analyti-
schen Näherungen basieren auf der zuvor diskutierten Beobachtung, daß die Erzeugung
und Last für den Fall des “Globaler Faktor”-Ausgleichsverfahren unkorreliert sind.
Dadurch lassen sich Theoreme der Wahrscheinlichkeitstheorie anwenden, um sowohl
den Einfluß des Ausgleichsverfahrens als auch die Verteilung der Leitungsflüsse in den
Leitungen zu beschreiben. Die zweiten Momente der Verteilungen der Leitungsflüsse
lassen sich ohne weitere Näherungen bestimmen. Für die ersten und dritten Momente
läßt sich der analytisch berechnete Ausdruck für relevante Netzgrößen nicht numerisch
auswerten. Daher werden zwei Näherungen für diesen Ausdruck hergeleitet. Die erste
Näherung beruht auf einer Beschreibung von Last und Generationen mittels Gauß-
Verteilungen. Mit dieser Näherung können die ungerichteten Leistungsflussverteilungen
in den Leitungen gut beschrieben werden. Eine Kombination der gaußschen Näherung
mit der exakten Beschreibung der Momente erlaubt eine numerische Berechnung und
verbessert die Qualität der Näherungen signifikant. Dieses Verfahren ist auf Grund der
kurzreichweitigen Korrelationen im Allgemeinen nicht anwendbar, wenn das “Minimale
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Dissipation”-Ausgleichsverfahren benutzt wird. Für den Fall, daß Last und Erzeugung
im Mittel übereinstimmen, wird gezeigt, daß sich das qualitative Verhalten der mit
den beiden vorgestellten Ausgleichsverfahren ermittelten Flüsse ähnelt. Die analyti-
schen Näherungen beschreiben die Leistungsflussverteilungen, die in den Simulationen
gefunden wurden, in diesem Fall in sehr guter Näherung.

Basierend auf den analytischen Näherungen der Leistungsflüsse lassen sich Leitungs-
kapazitäten zuweisen, so daß diese mit gegebener Wahrscheinlichkeit nicht überlastet
werden. Eine Überprüfung dieser Kapazitäten mit Hilfe der Simulation zeigt, daß die
zugewiesenen Kapazitäten eine Überlastung durch fluktuierende Erzeugung mit der
gewünschten Wahrscheinlichkeit verhindern. Dies erlaubt im Rahmen des Modells die
benötigten Kapazitäten, nur basierend auf der Netzwerkstruktur und den Mittelwerten
sowie Varianzen der Erzeugung und Last an den Netzwerkknoten zu berechnen, ohne
auf aufwendige Simulationen zurückgreifen zu müssen.

Am Ende dieser Arbeit werden, basierend auf den Datenzeitreihen, die Leistungsflüsse
berechnet und mit den Modellergebnissen verglichen. Wir finden, daß einige ausgewählte
Leitungen, beispielsweise die Verbindung von Spanien nach Frankreich, in der Spitze
Leistungen bis zu 100 GW transportieren müßten. Auch gibt es eine generelle Tendenz,
daß tagsüber Leitungsflüsse von Süden nach Norden führen und dies nachts umgekehrt
ist. Überraschenderweise sinkt im Falle einer Überproduktion der benötigte Transport
nicht oder nur minimal. Zur Verringerung der benötigten Transportkapazitäten müssen
die Erzeugungskapazitäten daher homogener verteilt werden, oder die Leistungsflüsse
durch lokale Speicher verstetigt werden, so daß die Leistungsfluss-Spitzen weniger
ausgeprägt sind. Der Vergleich mit den Ergebnissen der Analyse des Modells zeigt
einige Übereinstimmungen. Die Leistungsflussverteilungen lassen sich größtenteils sehr
gut durch generalisierte Gammaverteilungen beschreiben. Auch sind die analytischen
Näherungen im Mittel gut, allerdings sind die Abweichungen für einige Leitungen groß.

Zukünftige Arbeiten können sich beispielsweise der Quantifizierung der Effekte von
gemischtem Betrieb von Speichern und Ausgleichsgeneratoren oder den Auswirkungen
einer homogeneren Verteilung der Erzeugungskapazitäten auf den Transport widmen.
Auch die analytisch hergeleiteten Näherungen können noch an die spezifischen Eigen-
schaften der Erzeugung der Daten angepaßt werden, um eine bessere Vorhersage der
resultierenden Leistungsflüsse zu ermöglichen.

In der vorliegenden Arbeit konnten Rahmenbedingungen für den zuverlässigen Betrieb
von Energieversorgungssystemen mit hohem Anteil erneuerbarer Energien hergelei-
tet werden. Zudem konnten Transportflüsse in solchen Energieversorgungssystemen
in einem Modell in sehr guter Näherung beschrieben werden. Diese Näherungen be-
schreiben auch Transportflüsse, basierend auf echten Daten, im Mittel gut. Damit
bietet diese Arbeit einen Beitrag an, für ein besseres Verständnis von Transportflüssen
in Übertragungsnetzwerken mit einem hohen Anteil von fluktuierender erneuerbarer
Energieerzeugung.
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1. Introduction

Renewable energy resources have become increasingly important in the last decades
[29, 30, 50, 74, 98, 99, 118, 120]. Especially for wind and solar power generation the
potential and growth is expected to be high [98]. Renewable energy generation can solve
the main problems associated with conventional fossil and nuclear power generation:
Limited resources and waste. When employing a high share of renewable energy sources,
new challenges arise and the general conditions for reliable and stable power systems as
well as the resulting power transmission requirements need to be studied.

In this work, I focus on electrical power systems. Historically, the ability to transport
electricity over long distances was a breakthrough. Transmission of electrical power was

Figure 1.1.: The official poster for the Interna-
tional Electro-Technical Exhibition
of 1891.

the dawn of a new era as it freed power
from geographycal constraints. Before,
only cities and towns that were close to
energy sources such as coal, wood, and
hydropower could become industrial cen-
ters. With the ability to transport electri-
cal energy, all regions potentially gained
access to energy sources [83]. The feasi-
bilty of generating power in one location
and transmitting it to consumers over long
distances was shown at the International
Electro-Technical Exhibition of 1891 in
Frankfurt/Main. The enthusiasm at that
time can be seen in the official poster in
Figure 1.1. The power to illuminate a dis-
play of a thousand incandescent lamps was
generated at Lauffen am Neckar and trans-
ported over 175 km to Frankfurt using
three-phase alternating currents at 15kV .
This successfull demonstration ended the
discussion on the most economical means
of transmitting electrical energy [83].

Power grids evolved to highly interde-
pendent complex systems [5], consisting of

various turbines, generators, transformers, high voltage cables, circuit breakers et cetera
[107]. Recent advances of power electronics allow for more versatile components that
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Figure 1.2.: US electrical power generation by source in the year 2008 [119].

facilitate control and increase the power transfer capabilities of the power transmission
network [25]. However, the system has to be monitored in order to detect faults and to
ensure reliable, save, and economic operation with sufficient contingency reserves [126].

Today, electrical power generation is dominated by fossil and nuclear fuels, see e.g. the
shares of different energy source in the U.S. for 2008 in Figure 1.2. Existing infrastructure
and control algorithms are therefore adjusted to the characteristics of these generators.
However, as all resources are limited, the usage of fossil and nuclear energy sources
is not sustainable in the future. The amount of remaining resources and reserves is
under debate, the important fossil fuels can be expected to be depleted within the
next hundred or maximally two hundred years [see e.g. 29, 69, 76, 129, 130]. Negative
consequences, such as higher prices for scarce resources or environmental damages when
exploiting sites that are difficult of access, can be expected to set in much earlier. Coal,
for example, was the source of 48% of the U.S. electrical power in 2008 (see Figure 1.2)
but is estimated to reach peak production around 2025 [130]. In Figure 1.3, the uranium
resources according to Zittel and Schindler [129] are shown. Although significant stocks
from different sources, e.g. from the conversion of nuclear weapons, exist, the proven
resources together with the existing stock are projected to be exhausted within the next
30 years. Possible resources including all estimated discovered resources with extraction
costs of up to 130 $/kg will be exhausted within around 70 years while predictions on
further undiscovered resources are highly speculative [129].

Fossile and nuclear fuels also cause severe waste problems. Despite reprocessing
technologies, the current nuclear technology produces waste that may remain highly
radioactive for a million years [101]. More than a quarter-million tons of commercial
high-level nuclear waste is in the need of disposal worldwide and no acceptable solution
for long time disposal has been implemented yet [60, 101]. There is accumulating
evidence for the driving role of green house gases, emitted when burning fossil fuels, in
the increase of the average temperature of Earth’s near-surface air since the mid-20th
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Figure 1.3.: Uranium supply and demand taken from Zittel and Schindler [129] based on the
World Energy Outlook 2006 report of the International Energy Agency (IEA).
RAR denotes reasonably assured resources and IR the inferred resources. The
fuel demand of reactors currently operating is shown by the black line. Future
demands are estimated based on the scenarios in the World Energy Outlook (WEO
2006) of the International Energy Agency. The red area indicates the uranium
already mined and the forcast of reasonably assured resources at a price below
40$ per kg Uranium. Between 40 $ per kilogram and 130$ per kilogram, there are
higher reasonably assured resources indicated by the orange area. Estimates of
undiscovered uranium sites are shown in blue.

century [see e.g. 84, 110]. The possible consequences of this effect, well-known as “global
warming”, are very serious, so that there is a common agreement that greenhouse gas
emissions are to be avoided and reduced in the future [29, 30, 50, 74].

Limited resources or the waste problems do not occur when employing renewable
energy sources. The most important renewable sources in terms of the total available
power are wind, solar, geothermal, biomass and hydroelectric generation [29, 99]. While
wind and solar power are capable to meet future energy demands [29, 30, 50, 74], the
use of other renewable energy sources can supplement wind and solar power generation
or take advantage of local conditions, e.g. geothermal power in Iceland. However, as
the energy delivered by wind and solar irradiation is driven by weather conditions, it is
highly intermittent [72, 74]. Due to specific spatial features, e.g. good conditions for
solar energy in the south and high wind speeds close to oceans, the resulting transport
requirements for energy will be high [30, 50].

Consequently, understanding transmission in power systems is an important topic.
Not only work with respect to detailed problems of technical implemention, but also a
good theoretical knowledge of the whole system is important. As power transmission
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1. Introduction

systems are crucial infrastructure networks, they are also interesting from the point
of view of statistical physics of complex networks [5]. They allow to refine models
describing transport on networks and are one of the many real world networks, where
the relation between topology and function is studied [5, 9, 43, 75]. In many fields
of science, networks and their properties play an important role. Approaches from
complex network theory are used, in e.g. neuroscience [see e.g. 24, 116], gene expression
or coexpression analysis [see e.g. 106, 114], for chemical applications [see e.g. 127], or the
study of various transport networks as well as synchronization properties [see e.g. 6, 10]
and social networks [see e.g. 3, 123]. Because of their importance, many studies were
devoted to general transport infrastructure networks [see e.g. 3, 58, 75, 85]. Especially
the vulnerability to failures and attacks was assessed. With respect to power grids,
understanding blackouts dynamics is an important aim [9, 26, 27, 43].

1.1. Objective and Methods of this Work

The question, to what extent a fully renewable power system is generally feasible, has
to be addressed. Fluctuating wind and solar energy generation requires storage and
transport that allow for a spatio-temporal compensation of excess power with deficits in
generation. Additional backup balancing generators, based e.g. on hydroelectric power
generation, might also be needed. The questions that arise are: How much storage
and balancing is needed? How much wind, solar, hydro and geothermal power is good
for Europe? Is there an optimal mix between them? Furthermore, the transport flows
in such systems need to be quantified and understood. These questions have to be
analyzed with respect to technological constraints and capacity limits.

In this work, the above questions are studied based on generation data of solar and
wind power derived from metrological data and on empirical load data. For this purpose,
we use a macroscopic approach to quantify the required storage and balancing energies,
while for specific problems more details are included. For example, to calculate transport
flows, the spatial arrangement of generation and consumption as well as the transmission
network are considered.

To quantify power flows, we employ methods from complex network theory, engineering,
and probability theory. To gain a deeper understanding of fluctuating flows in transport
networks, a generic model is introduced that incorporates stylized facts found in the data.
The model is evaluated using Monte-Carlo simulations and the statistics of the resulting
transport flows are analyzed. Analytical approximations are derived using methods
from probability theory and compared to the simulation results and the data. Due to
the high complexity of power systems, all work is done in a quasi static framework, so
that transient dynamics are neglected.
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1.2. Overview

This thesis is organized as follows. A brief theoretical background on complex networks
and simple transport models is given in Chapter 2 with a focus on the applicability to
power systems. Based on a simple transport paradigm, a first approach to transport
flows elicited by fluctuating sources is proposed.

For a better understanding of the characteristics of renewable power generation, we
examine time series of generation and consumption data in Chapter 3. In particular,
we analyze the Europe-wide required storage and balancing capacities for different
scenarios. The results are compared to storage and balancing capacities that are
potentially available in Europe and the feasibility of a power system with a high share
of renewable energy generation is evaluated. This is followed by an examination of the
properties of individual countries in Chapter 4 and an assessment of the advantages of
European cooperation compared to a scenario without power exchange among countries.

We introduce a generic model in Chapter 5 that allows to gain a deeper understanding
of transport flows in power systems within a simplified framework. The model incorpo-
rates stylized facts of the data from the preceding chapters. The results of Monte-Carlo
type simulations of the model are discused and approximations to the power flow distri-
butions analytically derived. The transport resulting from the weather-based generation
data is analyzed in Chapter 6 and compared to the results obtained from the model.

Finally, a discussion of the results of this thesis together with an outlook of future
work is presented in Chapter 7. Background information on power systems and power
transmission are given in the Appendix.
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2. Transport Flows on Networks

Statistical physics of complex networks offers a rich set of methods to analyze and
describe various systems. Power grids can be understood as large, highly interdependent
complex networks [5]. The main purpose of this section is to evaluate existing models on
how well these can be used to understand power systems with a high share of fluctuating
renewable power generation. As the impact of source fluctuations on the flow of the
individual link was not been considered yet, an extension to existing models is proposed
and analyzed.

In Section 2.1 the basic notions and methods of graph theory and complex networks
are introduced. Structual properties of power grids are discussed in Section 2.1.3.

Motivated by modern infrastructures and their cascading failures, much work has been
devoted to transport in complex networks. Models using transport along the shortest
path from the sending to the receiving vertex are introduced in Section 2.2.1. Blackouts
in power systems, where small disturbances may lead to a failure of large parts of the
system, inspired researchers to consider cascading failures. Studies of cascading failures
based on shortest path transport are also introduced in Section 2.2.1. Models based on
approximations to the physical power flow equations of power systems can be found in
Section 2.2.2. Fluctuating sources are a central point in this study and existing work
on that topic is presented in Section 2.2.3. The results from literature are discussed in
Section 2.2.4.

Previous work did not consider fluctuations in the flows of the transported quantities.
Cascading failures can be caused by external fluctuations and may not only be important
for power systems but also for other applications, like internet traffic for example. We
introduce a new approach based on shortest path transport in Section 2.3 and derive and
analyze a new capacity layout that is, with a given probability, stable with respect to
overloads caused by fluctuations. A summary of this chapter can be found in Section 2.4.

2.1. Statistical Physics of Complex Networks

“Statistical physics [. . . ] consists in the study of the special laws which govern the
behavior and properties of macroscopic bodies (that is, bodies formed of a very large
number of individual particles, such as atoms and molecules). To a considerable extent
the general character of these laws does not depend on the mechanics (classical or
quantum) which describes the motion of the individual particles in a body” [Landau
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2. Transport Flows on Networks

and Lifshitz, 79]. Typically systems with a large number of elements are analyzed
using methods of probability theory and statistics. Many real world systems can be
described by or reduced to networks. The aim is to describe systems as diverse as
physical or engineered networks, information networks, biological networks, cognitive,
semantic, and social networks within a unified framework. Statistical physics of complex
networks aims to find universal behavior and general laws which are independent of
the microscopic properties of the system. It allows for a simplified approach to study
complex systems, whose complexity makes an analysis considering all details infeasible.

Starting with work from Watts and Strogatz [123] and Barabási and Albert [14]
methods and tools from statistical physics were applied to complex networks. Interesting
connections can be found. For example, consider the probability that a random walker,
starting at point i, will reach point s before point t on a finite grid or network. It is
equal to the voltage of the vertex i in a network of uniform resistors1, if the voltage
at s is set to one and set to zero at t [47]. If the observed network is not random,
organizational principles of the real world system should be reflected and encoded in its
topology [3]. This approach provides a new way to gain insights on complex systems
and their dynamics. In various fields of science where networks and their properties
play an important role, complex networks theory was applied, e.g. neuroscience [see
e.g. 24, 116], gene expression or coexpression analysis [see e.g. 106, 114], for chemical
applications [see e.g. 127] or the study of various transport networks as well as social
networks [see e.g. 3, 123] and synchronization properties [see e.g. 6, 10].

In this section an introduction to graph theory and complex networks is given, to
the basic notions in Section 2.1.1 and to fundamental findings in Section 2.1.2. The
properties of power grids in terms of network theory found in the literature are sketched
in Section 2.1.3.

2.1.1. Basic Notions

A network or graph G = (V , E) consists of a set of vertices V that are connected by
a set of edges E . The set of vertices or nodes is defined by V = {v1, v2, . . . , vN} with
N = N(G) elements. The number of elements of a set is also denoted as | · |, e.g.
N = |V|. The set of edges or links E = {eij, . . .} with M = |E| elements is a subset of
the set V2 of unordered vertex pairs. An edge from vertex i to j exists if the pair i, j
is an element of E and is written as eij. Edges are also denoted by an unique index k,
eij = ek.

Two vertices i, j are said to be neighbors or adjacent, if they are connected by an
edge eij of G, which is equivalent to the condition {vi, vj} ∈ E . The vertices vi and vj

1The probabilities for the next step of the walker have to be uniform over all possible next steps.
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are said to be incident with edge eij. This allows to define the adjacency matrix

Aij =

{
1 vi has a link to vj
0 otherwise

, (2.1)

and the incidence matrix, that maps from the space of edges E to the space of vertices
V ,

Kij =


1 vi is the initial vertex of edge ej
−1 vi is the terminal vertex of edge ej

0 otherwise
, (2.2)

where A is an N ×N and K an N ×M matrix. Both matrices play an important role
in various fields and for various applications, see e.g. Section 5.1.1.1 and A.2.4. In
this work, only undirected networks are considered, in the sense that from {vi, vj} ∈ E
follows {vj, vi} ∈ E . However, the direction of the link eij from vi to vj serves as a
reference for the sign of the flow fij between these vertices. Positive fij indicate a flow
from i to j, negative fij the opposite. This notion of direction is used also for the
incidence matrix. The initial and terminal vertices of the links are assigned randomly.

For a given vertex vi, the set of neighbors Ni is given by

Ni = {vj ∈ V : {vi, vj} ∈ E} = {vj ∈ V : eij ∈ E} . (2.3)

For undirected graphs, that are considered in this work, the number of neighbors of
a vertex i is called its degree, ki = |Ni|. For directed graphs, the in and out degree
typically differs. An important class of graphs are “regular graphs”, where the degree
ki = k is identical for all vertices. Random graphs, whose vertices are connected
somehow randomly, are classified by the type of the degree distribution p(k), that is the
probability for a randomly chosen vertex to have degree k. This is discussed in more
detail in Section 2.1.2.

Based on the incidence or the adjacency matrix, the Laplace matrix, also referred to
as combinatorial Laplacian or Kirchhoff matrix in the literature [19], is defined as

L = D−A = K KT . (2.4)

where Dii = ki is an N ×N diagonal matrix with the vertex degrees on the diagonal.
XT denotes the transposed matrix. The Laplacian can be interpreted as a discrete
version of the Laplace operator2 that allows to consider problems like diffusion and
random walks on networks [89, 115]. In this work, the Laplace matrix will be used in
the context of the Kirchhoff flow [89], see Section A.2.4.

2On a grid, the Laplace matrix can be obtained as a finite difference approximation of the Laplace
operator using a stencil of size one [103] as the adjacency matrix only considers next neighbors,
see Equation (2.4). This approximation yields an discretization error of the order O(h2), where h
is the grid spacing of the system [92]. For a random network, the vertices are interpreted as grid
points and local connectivity of the vertex determines the finite difference approximation stencil at
this grid point.
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2. Transport Flows on Networks

The clustering coefficient Ci of a vertex i denotes the relative number of edges between
its neighbors to the maximally possible number. It is defined for each vertex i as [123]

Ci =
1

ki(ki − 1)

∑
j∈Ni

|(Ni ∩Nj)| =
2Ti

ki(ki − 1)
, (2.5)

where Ni ∩Nj denotes the subgraph of the neighborhood shared by both vertices i and
j. Each vertex, that is in the neighborhood of two adjacent vertices, forms a triangle.
By symmetry,

∑
j∈Ni |(Ni ∩ Nj)| is twice the number Ti of triangles passing through

vertex i and this is normalized to the number of maximally possible k(k− 1)/2 triangles
to obtain the clustering coefficient. It is a local measure with values between zero and
one by construction. The average clustering coefficient cc of the network is given by
averaging over all Ci

cc = 〈C〉 =
1

N

∑
i∈V

Ci. (2.6)

Graphs with a high average clustering coefficient consist of clusters of vertices with
many edges among each other. A low average clustering coefficient can be found for
more uniform networks.

A path [i → j] from vertex i to j is a subgraph consisting of a non recurring set
of vertices V([i→ j]) = {xi, xp1 , . . . , xpl (= xj)} and the respective edges E([i→ j]) =
{eip1 , ep1p2 , . . . , epl−1pl} of G [19]. The number of edges in E([i→ j]) defines the length
l = |E([i→ j])| of the path. In general, there is more than one path from i to j. The
shortest path refers to the path with the minimal length l and is denoted by [i→ j]s.
The shortest path may be degenerate in the sense that there are more paths with the
same minimal length. In the literature different metrics to define the lengths in the
network are used that lead to different definitions of the shortest paths and path lengths
[see e.g. 104]. In the following, only the so-called hop-metric, where each edge has length
one, is considered as described above. A different way to describe the shortest path is
the path function,

path([j→k]; i) =

{
ξ i ∈ V([j → k]s)
0 else.

. (2.7)

The value of ξ is one for the case of a non-degenerate path. Otherwise, the initial value
of one is divided equally at each bifurcation point over all branches of the remaining
path3.

A graph is called connected, if for every pair of vertices i and j there exists a path
[i→ j]. A subgraph that includes all vertices that are connected by a path is called a
component4. For a connected graph the number of components is one. The distance
dij between two vertices i and j is given by the length of the shortest path [i→ j]s

3To the knowledge of the author, there are no approaches to further simplify the path function.
4In other words, it is the maximal connected subgraph [19].
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and defined to be infinite for a pair of vertices which is not connected by a path. The
average distance within connected graphs or components is calculated as the average
over all pairs of vertices

〈d〉 =
1

N(N − 1)

∑
i,j∈Vc,i 6=j

dij , (2.8)

where Vc denotes the set of vertices of the graph or component.

In many publications [see e.g. 85, 122], the size of the largest component or giant
component Ngc is used to quantify the effect of changes in the network, e.g. due to
link or vertex removal. Starting from a connected graph, the quantity Ngc/N gives a
normalized measure of the decomposition of the graph after the removal of vertices or
links. This measure has the disadvantage, that the average distance of a graph may
increase when deleting an edge, while Ngc/N might stay constant. A measure that is also
sensitive to the distances is the efficiency of the network, defined as

E =
1

N(N − 1)

∑
i,j∈V,i 6=j

1

dij
, (2.9)

which is effectively the harmonic mean over all distances. A fully connected network,
has efficiency one. Increasing the distances decreases the efficiency. A pair of vertices
that is not connected is defined to have an infinite distance, so that the contribution of
this pair to the efficiency is zero. To quantify changes, the relative efficiency, E/E0 is
considered, where E0 is the efficiency of the initial network. It is one, if there are no
changes in the network and zero if there are no paths between the vertices.

2.1.2. Complex Networks

Erdõs and Rény [49] presented the first very influential paper on random graphs [3].
Previous work focused on regular or fully connected graphs [19]. The network model
analyzed by Erdõs and Rény (ER) starts with N vertices and each pair of vertices is
connected by a link with probability p. The probability of a given degree at a given
vertex is then distributed binomially [18] and the number of nodes with degree k follow
as Poisson distribution in the large N limit [3]. Also for N → ∞, the probability to
find connected graphs, the probability distribution of the size of the giant component,
and other measures were calculated analytically [3].

Starting with Watts and Strogatz [123], Faloutsos et al. [51], and Barabási and Albert
[14], characteristic degree distributions were found in many real world systems. These
degree distributions deviate significantly from the Poisson distribution. This is a strong
hint that the structure is not random. Most real world networks exhibit a degree
distribution with a power-law or exponential tail [see e.g. 88]. A review of studied
networks was published by Albert and Barabási [3], that cover a wide range of different
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disciplines and topics from movie actor collaboration networks and protein folding
networks to Internet topologies.

Powerlaw, also called scalefree, degree distributions are given by

p(k) ∝ k−γ . (2.10)

This distribution is discrete for vertex degrees and has usually a minimum and maximum
degree or an exponential cutoff [7]. Empirical values of γ have been found to be typically
between two and three, although occasionally γ may lie outside these bounds [3].

Besides characteristic degree distributions, two other properties of networks play a
prominent role, the average distance and clustering [3]. Despite the large size of many
real world networks, the average distance between all pairs of vertices is relatively small.
Random graphs as proposed by Erdõs and Rény also exhibit this property. The clustering
coefficient influences the finer structure of the network. A high clustering coefficient
means that many cliques are found, subsets of vertices with relatively many links within
them. The average distance for a given degree distribution can be expected to increase
for increasing clustering coefficient, as the fact that there are many links within a clique
means that there are few links connecting the different cliques. Surprisingly, many real
world networks have a small average distance and a high clustering coefficient that is
orders of magnitudes larger than the clustering coefficient of ER-random networks with
the same size N and average degree 〈k〉 [3]. Networks with these features were called
small world networks by Watts and Strogatz [123].

A prominent example of a network structure model is the “preferential attachment”
(PA) model by Barabási and Albert [14]. It argues that the scalefree nature of many
real networks is caused by two generic mechanisms, growth and preferential attachment.
An initially small network is assumed to grow over time and new vertices are assumed
to attach to vertices with a high degree with high probability. For the network of web
pages, for example, these are plausible assumptions, as constantly new pages appear and
they will link to highly known pages with already have a high degree. The probability Π
that a new node will attach to a node i with degree ki is modelled with Π(ki) = ki∑

j kj
[14].

The networks generated applying these rules are scale-free with an exponent of γ = 3
and have a clustering that is significantly higher than found for ER random networks.
The average distance in the network scales logarithmically with the size N of the network
and is a bit higher than for ER random networks but still exhibits the “small world”
property [3]. These findings are in good agreement with many scale-free networks
and thus support the assumptions that growth together with preferential attachment
plays an important role in the evolution of some networks. The concept of preferential
attachment was refined in following studies, e.g. with respect to aging [7, 45]. Further
models exist that aim to explain specific network topologies, e.g. the Internet topologies
at different levels, as discussed in Krioukov et al. [78].

A different approach to network generation, is to generate networks with specific
properties without implementing rules to explain specific observed structures. This
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helps, for example, to study the dependence of network properties on specific parameter
variations. The so called “configuration model” [see e.g. 8] is a simple method designed to
generate networks with special properties, like arbitrary degree distributions or clustering
coefficients. The basic idea is that, in a first step, each vertex gets a number of edges
assigned that are not yet connected to other vertices, so-called stubs. The number of
stubs is drawn from the desired degree distribution, that can be arbitrarily chosen. In a
next step, pairs of vertices i, j with at least one stub are selected and a stub of each
vertex replaced by a connecting edge. This is repeated until there are no stubs left.
The pairs of vertices to be connected can be selected randomly or such that additional
constraints are met. For example, the method proposed by Ángeles Serrano and Boguñá
[8] allows to tune the clustering coefficient and the degree-degree distribution.

Scholz [105] proposes a network generation method, referred to as “geometric p-model”
based on the configuration model that interpolates between random and geometric
networks and thus allows to tune the clustering coefficient within a certain range. A
geometric network is embedded in a two dimensional Euclidean space spatially close-by
vertices are connected. For networks embedded in a two dimensional box a clustering
coefficient around 0.6 is found independent of the size N of the network [39]. The network
generation according to the “geometric p-model” is done with a simple method: Vertices
not only get a number of stubs assigned, drawn from the desired degree distribution,
but also a position on a two-dimensional plane. The position is drawn from a uniform
distribution between zero and one, independly for both coordinates. When connecting
a stub of vertex i, the vertex with the smallest Euclidean distance that has a free stub
is chosen as the target vertex j with probability pcc. With probability 1− pcc a random
vertex with a free stub is chosen. Thus, a value of pcc = 0 creates a random network
with a vanishing clustering coefficient and when using pcc = 1 a geometric network with
a large clustering coefficient. The variation of pcc allows for a smooth interpolation
between the two types of networks and their respective clustering coefficients in the
large N limit [105].

2.1.3. Power Grids and Graphs

We consider only the high voltage transmission level of power grids in this work. For a
more detailed discussion, see Section A.1. When working on power transmission systems
using graph theory, the first question is: What are the properties of power grid networks
in terms of graph theory? The most important is the degree distribution besides
other parameters like the number of nodes and links as well as clustering coefficients,
degree-degree correlations and so on.

Since there are no data of power grids publicly available5, we revert to parameters
that can be found in the literature. Rosas-Casals et al. [102] reproduced the network
data of the European power grid from a map that is available as image from the

5To the knowledge of the author.
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European Network of Transmission System Operators for Electricity. The found degree
distribution is close to an exponential distribution

p(k) = γ−1 exp

(
−k
γ

)
(2.11)

for k & 2. The probability for degree one does not follow this distribution. The number
of nodes is N ≈ 3000, the average number of degrees over Europe 〈k〉 = 2.8, and the
parameter of the distribution γEU = 1.8 for all Europe. Some subnetworks are also
given, e.g. for the UK γUK = 0.91 and for Portugal γPT = 2.71 is found.

These values are consistent with the findings by Albert et al. [5], who also find an
exponential degree distribution with γ = 2 for the North American power grid, with
N = 14099 and M = 19657. According to Holmgren [68], the Western U.S. power
grid and the Nordic power grid also have a degree distribution close to an exponential
distribution with an average degree 〈kWUS〉 = 2.33 and 〈kN〉 = 2.67, respectively [68].

The clustering coefficient of all mentioned power grids is significantly higher than the
clustering coefficient of random networks [68, 102]. The same is true for the average
path length. The degree-degree correlations of the European power grid are essentially
zero [102].

The networks used when modelling power systems in Chapter 5 have an exponential
degree distribution with 1 . γ . 3, the bounds found for the subnetworks of the
European power grid. The clustering coefficient is varied, since it was found to be large
compared to random networks. As mentioned above, the number of vertices with degree
one is significantly lower than the expected number from the degree distribution. To
account for that, the probability for degree one vertices is set to a given fraction of the
probability of the degree two vertices. The resulting degree distribution is renormalized
accordingly. To generate an ensemble of graphs, the method introduced by Scholz [105]
as described in Section 2.1.2 is used, which allows for an arbitrary degree distribution
and clustering coefficient.

2.2. Review of Transport Network Models

As much of the transport infrastructure in modern societies is organized in complex
networks, transport networks have been studied widely. As failures may have dramatic
consequences, it is important to understand the properties and vulnerabilities of these
systems. In this section some approaches are reviewed. In this context the load and
capcities can be defined for links or vertices depending on which is the limiting factor
in the system. For example, the bandwidth in the internet infrastructure is limited by
the throughput of the routers [46].

A first approach was proposed by Albert et al. [4]. The resilience of a network to
failures and attacks was quantified by analyzing the diameter of the network and, in

14



2.2. Review of Transport Network Models

case the network fragments into more than one cluster, in terms of the size of the largest
cluster and the average size of the isolated clusters. The tolerance of the network to
failures was examined by removing vertices in a random fashion. To inflict the most
damage, an intentional attack would damage the most connected nodes [4], thus an
attack is simulated by removing specifically the vertices with the highest degree. A
fraction f of links was removed in networks with scalefree and with exponential degree
distributions. For the exponential network the average distance increases slowly with f
independent whether the removal was due to failure or attack. For scale-free networks a
completely different behavior is found: On failures the distance does not change while for
attacks the average distance increases with f . This increase is stronger than the increase
for exponential networks. From the largest cluster and the average size of the isolated
clusters, one can infer, that with increasing f the exponential network disintegrates into
many components. The same is true when considering scale-free networks for the case
of attacks, while random node removal disconnects only few small components, leaving
the main network intact. These findings were confirmed analytically using percolation
theory [32, 33]. Since the Internet has a scale-free topology, the authors conclude that
it has a high robustness against failures whereas it is vulnerable to attacks against the
most connected vertices.

For a better understanding, transport in networks was modelled in more detail. Many
studies consider transport based on shortest path, as will be defined in Section 2.2.1,
while in Section 2.2.2 models are introduced for the special case of power grids that
consider the DC-flow, a transport paradigm approximating the full power flow equations.
As our focus is on fluctuating flux due to intermittent renewable power generation,
studies considering this topic are presented in Section 2.2.3. A discussion of the reviewed
literature is done in Section 2.2.4.

All of these models consider a quasi-static case, where transient behavior is neglected
and the assumption is made that load redistribution takes place on a much faster
timescale than changes in the structure of the network.

2.2.1. Models Based on Shortest-Path Transport

Inspired by the betweenness centrality which was introduced to identify influential
people in a social network [87], Goh et al. [58] propose a simple approach for the load
of a vertex: Every vertex sends a packet of size one to every other vertex along the
shortest paths. The load Li of vertex i then follows as the number of paths that pass
through it

Li =
1

N(N − 1)

∑
j,k 6=j

path([j→k]; i) . (2.12)

The normalization by the number of pairs N(N − 1) yields a load of one for a vertex
where all paths pass through. If there is no path between any two vertices, the path
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function is zero for all vertices. Using this approach, Goh et al. [58] found a scaling
law of the load distribution of all vertices PL(l) ∝ l−δ with δ ≈ 2.2 when considering
scale-free networks with γ between two and three. They propose that this scaling is
universal. For γ > 3, the exponent δ increases and the distribution eventually becomes
an exponential distribution for γ →∞.

Albert et al. [5] used the load as introduced by Goh et al. [58], to study power grids.
The work is based on the network of the North American high voltage power grid. The
properties of the real power grid were reflected in the analysis by differentiating between
generators, transmission substations and distribution substations that connect to the
low voltage distribution grid. The stability is measured in terms of the connectivity loss
CL defined as the fraction of generators not connected to a distribution substation. The
first finding is that the grid is stable to a removal of generators due to redundancy at the
power generation level. This is true for both, a random as well as degree based removal.
However, degree and load based removal of transmission substations has a large effect,
for example the connectivity loss CL goes up to 60% if only 6% of transmission vertices
are removed. Load based removal is defined so that the load is calculated for the intact
network and the transmission substations with the highest load are taken out of the
network, according to the initial calculation.

Inspired by the fact that in the three decades before 2000, blackouts have been
happening in the U.S. electric transmission grid on average every 13 days [28], so called
cascading failures came into the focus of research. A typical phenomenon of these
blackouts is that small disturbances, leading to failures in one component, can trigger a
cascade of further failures due to the subsequent redistribution of the load [85]. In the
approach of Albert et al. [5], cascading failures were modelled by recalculating the load
after every removal of a transport substation. The load based removal can be understood
as a simultaneous failure of a fraction of the transport substations. Removing each
vertex individually, recalculating the load and selecting the next vertex with the highest
new load for removal, until the desired fraction of nodes is removed, mimics the effect
of a cascading failure. Using this approach, a high instability of the network was found:
Removing 6% of the transport substations cause a connectivity loss CL of over 90% [5].

An important effect of cascading failures is that a small failure can lead to a breakdown
of arbitrary large parts of the network. This not be captured by the cascading failure
approach by Albert et al. [5], as the number of failing vertices is given a priori in the
model. Motter and Lai [85] introduced capacities for each vertex. Using the same
definition for the load Lj as in Equation (2.12), the capacities

Cj = (1 + α)Lj , j = 1, 2, . . . , N (2.13)

are assigned to each vertex, with α ≥ 0. A vertex is assumed to fail if the load is
bigger than its capacity, Lj > Cj, and thus removed from the network. Based on the
new shortest paths, the recalculated load might cause further failures. This scheme is
repeated until no further vertices fail, thus implementing a cascading failure with a size
that depends on the assigned capacities and the properties of the network. Interesting

16



2.2. Review of Transport Network Models

to note is that a loss of parts of the network reduces the total load in the network, as
disconnected vertices can not cause any load on other vertices, see Equation (2.12).

Different network structures were tested by Motter and Lai [85] with respect to the
effect of a cascading failure in response to the removal of a node, either randomly, with
the highest degree, or with the highest load. The stability was measured in terms of
the size of the largest component after a removal N ′ relative to its initial size N by
G = N ′

N
. For a regular graph with ki = 〈k〉 = 3, the network disintegrates for α = 0 but

no cascading failures occur for slightly larger α. Scale-free networks are stable only for
random vertex removal with α > 0. When removing high degree vertices, G goes down
to around 0.2 for α → 0 and only slightly increases for higher α values. The same is
found when removing high load vertices [85].

These results were analyzed further by Zhao et al. [128]. The connectivity loss CL due
to cascading failures was characterized as a phase transition between the disintegrated
network and an intact network as a function of the tolerance parameter α. They present
an analytical approach to approximate the critical αc which quantifies the onset of the
phase transition.

To allow for a stable operation of transmission systems, Wang and Kim [122], for
example, modified the capacity layout in Equation (2.13), such that mainly vertices
with a high load get an additional capacity. They show that this approach makes the
network more robust while reducing the cost. A different approach is proposed by
Schäfer et al. [104]. They prove that an intelligent routing, which distributes the load
more homogeneous over the network, can reduce the required capacities and allows for
a much higher stability to cascading failures for a given investment compared to the
routing along the shortest hop paths.

2.2.2. DC-Flow Models

Modern power grids use alternating currents (AC) to transport energy from generators
to consumers, for more details consult Sections A.1 and A.2. This is mainly due to
the fact that in AC-systems the voltage can be transformed, allowing high voltage
transmission to reduce losses, up to 765 kV are in operation [107], and lower voltages
for distribution to increase security, see Section A.2.5. While for direct current (DC)
systems capacitances and inductances play only a role in transient responses to changes,
these have to be considered for AC-systems. As discussed in detail in Sections A.2.1
and A.2.2, for an exact treatment of the power flows not only the active power has to
be taken into account but also reactive power.

The power flow equations are second order in the voltage. To solve these nonlinear
equations, well established methods exist in the literature from electro-technical [see
e.g. 90, 107, 126] or mathematical theory [see e.g. 23, 103]. However two important
approximations to the network flows exist [see e.g. 90, 126], the decoupled flow and
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the DC flow approximation. Based on empirical observations the power flow equations
can be linearized such that the active and reactive power are described by independent
equations, thus referred to as decoupled power flow. Assuming a homogeneous voltage
across the network allows to neglect the reactive power flow, so that the power flow is
approximated by a linear equation consisting only of the active power, referred to as “DC
flow”6. It is important to notice that, in this power flow approximation only reactances
influence the flow as empirically the resistances are found to be small compared to the
reactances of the lines and thus neglected. This implies that no losses are considered.

The structure of the network, together with the reactances of the links, are described
by the matrix B′. This matrix resembles the Laplace matrix in Equation (2.4), as
discussed in Section A.2.4. For a formulation of the full power flow equations, currents
and voltages in AC-systems are described by their absolute values and phases, see
Section A.2.1. Due to the approximations, only the phases of the voltages at the vertices
~δ are relevant and the DC power flow is given by

~P = B′~δ . (2.14)

Positive Pi denotes active power injected at vertex i and negative values the power that
is withdrawn. The in and out flow of the network has to be equal for the energy in the
system to be conserved. Thus, the condition

∑
i Pi = 0 has to be ensured, referred to as

balancing or matching generation and consumption. The DC flow equations are modelled
on the exact power flow equations, so they can expected to be a better description of
flows in power grids that shortest path flows. The exact derivation together with the
details on the approximations are discussed in Section A.2.3.

In a series of studies [26, 27, 43], the dynamics of blackouts in power grids was studied,
both by analyzing blackout time series from 1984 to 1998 and by reproducing the
findings with a simple model. After analyzing the probability distributions and the
long time correlations, the data of the blackout size was found to be consistent with
avalanche sizes in a running sandpile and the authors conclude that this is an evidence
of self organized criticality in the blackout dynamics [27]. The model, they propose, is
specifically tuned to reproduce the avalanche behavior. Initial capacities are assigned to
generators and links and these grow on a slow, daily time scale. Links also get capacities
assigned, but these are only increased after a failure. Balancing is done using a linear
program with respect to the assigned capacities and to a cost function that discourages
load shedding. Using this approach, avalanche behavior found in power grids has been
reproduced. Anghel et al. [9] extended this study with a more detailed modelling of
line failures as well as a utility response model and obtained first results on evaluating
repair strategies.

An approach that is capable of reproducing the dynamics of power systems is proposed
by Filatrella et al. [53]. Large generators and loads are typically synchronous machines

6Since this approximation is computationally cheap compared to the full flow equations, it is also
referred as fast power flow [126].
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in which the constantly magnetized rotor is synchronous to the magnetic field of the
stator and thus synchronous to the transmission network. The power balance equation,
considering the power stored in the rotating mass P acc

i , the losses due to dissipation
P diss
i , the power transmitted P trans

i , and the power injected or withdrawn Pi at vertex
i, can be written as

Pi = P diss
i + P acc

i + P trans
i . (2.15)

A second order diffenerential equation for the phase at each generator can be derived,

θ̈i = P − αi θ̇i + Pmax
∑
j∈N (i)

sin(θj − θi) (2.16)

with α = 2KDΩ
I

the ratio of the dissipation rate KD and the synchronous frequency Ω to
the inertia I of the generator. Pmax denotes the maximal power that can be transferred
over a link. The dynamic stability with respect to synchronization in response to
faults was analyzed and a qualitative agreement to empirical observations was found.
Equation (2.16) also can be interpreted as a network of coupled Kuramoto oscillators
with an additional inertia term. The Kuramoto model is one of the most important
models of coupled phase oscillators that is used to study synchronization phenomena
in physical, biological, chemical, and social systems [see e.g. 1]. In this approach
transmission losses are neglected, so that the DC-flow approximation is the steady state
solution of Equation (2.16) when neglecting the power consumed by dissipation at the
synchronous frequency Ω. This can be shown using linear stability analysis [113].

2.2.3. Fluctuations

Few studies considered fluctuations in network transport. An importantant work was
done by Barabási et al. [15]. Analyzing fluctuating fluxes in different networks, they
found a characteristic scaling of the standard deviation σ of the flow in dependence of
the mean 〈f〉,

σ ∝ 〈f〉α , (2.17)

with exponents either in the vicinity of α ' 1 or α ' 0.5. The flow analyzed for the
daily traffic measurements of 374 geographically distinct Internet routers and currents
in a microprocessor, yielded α = 0.5. The value of α = 1 was found for the number of
visitors an Internet site receives, highway traffic measurements at 127 locations and
the flow in rivers probed on 3495 locations on several U.S. rivers. All of these systems
clearly have an underlying network on which the transport takes place. Barabási et al.
[15] claimed that these scalings are universal with a scaling of α = 0.5 for systems that
are dominated by external fluctuations and α = 1, if the behaviour of the system is
dominated by its internal collective fluctuations.
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Kim and Motter [75] studied the relation between capacities and load. Based on real
data, they found for various networks7, that only vertices with a high load Li operate
close to their capacity Ci. For vertices with a small load the capacity is significantly
higher than the load. The strength of this effect varies for the different cases. The air
transportation network has a load close to the capacity, while infrastructure networks,
like highways or power grids, have a capacity much higher than the load, especially for
vertices with a small load. Their empirical and theoretical analysis provides evidence that
in all the systems analyzed, the determination of capacities results from a decentralized
trade-off between cost and robustness. Robustness was tested with respect to fluctuations
in the quantity of the transported goods. The optimal capacities were then derived with
respect to an objective function consisting of the failure probability for a given capacity
and the associated costs, that are assumed to be linear. A parameter allows to weight
the importance of the two objectives. The optimization reveals that system-specific
characteristics of the observed nonlinear behavior of the capacity - load relation are
mainly determined by the weight given to the cost. An interesting remark is that the
capacity allocation is rather independent of the network structure [75].

2.2.4. Discussion

Various studies of transport properties of complex networks have been presented in
the previous sections, most of them analyze stability against failures or attacks. In the
context of statistical physics of complex systems, a rich set of methods and characteristic
features have been developed to analyze and describe transport networks.

However, there is also some criticism. Doyle et al. [46] argue that some of the claims
do not hold when tested with real data or when examined by domain experts. For the
case of the Internet, the theoretical results e.g. by Barabási and Albert [14] or Albert
et al. [4] suggest a “robust yet fragile” nature with respect to vertex removal due to
failures or attacks. This finding is neither supported by engineering data nor theory
[46]. It is argued, that the topology of the Internet at router level is severly restraint
by physical and economical constraints. For these networks no central high degree
hubs are found whose failure leads to breakdown of the network into small clusters,
as argued by Albert et al. [4]. Further, the Internet has a layered architecture that
uses feedback control to enable a robust performance in an heterogeneous environment
that experiences many disruptions. While the lowest layers have strong physical and
economic constraints, higher layers define their own, often unique network topologies.
They make the Internet robust to perturbations that they are designed for, but may be
vulnerable to other perturbations. According to Doyle et al. [46], this is the real “robust
yet fragile” property of the Internet. In this work, we try to avoid oversimplification
when analyzing the power transmission system by a careful analysis of generation data
that is presented in Chapters 3 and 4.

7The data was derived from the U.S. and international air transportation network, airplane movements
on the network of routes between airports, highways, power grids, and Internet routers.
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To calculate power flows in transmission networks, two transport paradigms are used
in the presented literature, shortest path transport and the DC-flow approximation.
While the latter is directly derived from the physical flow equations, the quality of
the approximation using a betweenness centrality based load that uses shortest path
transport needs to be addressed. Kim and Motter [75] show that the correlation between
the empirical load and the betweenness centrality that is based on shortest paths, see
Equation (2.12), is not meaningfully strong when considering power grids. This suggest
that shortest path transport is not a good transport paradigm to analyze power grids.

Most presented studies only considered quasi-static states, neglecting all transient
effects. Using a conceptually simple dynamical phenomenological flow model that
captures stylized facts of electrical networks, Simonsen et al. [109] find that the dynamics
can play an important role for the network robustness. The capacity layout as introduced
by Motter and Lai [85] was used and a link defined to fail if the load is bigger than
the capacity for at least the period τ . The robustness of the network exhibits a strong
dependence on τ . The static case shows a much higher robustness compared to the case
in which links immediately fail, τ = 0. The two cases consititute the upper and lower
bound on the robustness. This illustrates the importance the network dynamics may
have.

2.3. Fluctuations using Shortest Path Flow

The impact of fluctuating fluxes to cascading failures in transport networks was not
studied yet. As will be shown in Chapter 3, fluctuations are important when considering
power systems with a high share of renewable energy so there is a strong need to study
the impact of fluctuating fluxes on the robustness of networks. Vertices may fail either
directly due to an accumulation of extreme flux or due to a subsequent overload cascade.
Immediate questions that arise are: How does an efficient capacity layout look like,
which is able to cope with the fluctuating fluxes? Given various classes of fluctuating
fluxes, how do they determine the resulting fluctuations in the accumulated vertex
loads? Are there correlations between the accumulated loads of different vertices and
how do they look like?

This study is based on the approach of Motter and Lai [85] which uses the shortest
path transport paradigm. It is not directly applicable to power systems but more to get
first insights into the effects of fluctuating fluxes within a well studied framework [see
e.g. 58, 67, 85, 87, 104], see also Section 2.2.1. The results presented in the following
are published in Heide et al. [63].

As in Section 2.2, every vertex i of the network G=(V , E), sends a unit flux sij = 1
to every other vertex f 6=i along the shortest-hop paths [i→f ]s. This results in an
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accumulated vertex load

Lv =
1

N(N − 1)

∑
i,j∈V

path([i→j]; v)sij . (2.18)

The value of the path function is either 1 or 0, depending on whether the vertex v is
part of the shortest-hop path or not. In case of shortest-path degeneracy, the value of
the path function is reduced by a factor depending on the degrees and depths of the
respective branching points.

Based on the load in Equation (2.18), the capacities

Cv(α) = (1 + α) 〈Lv〉 , (2.19)

where 〈X〉 denotes the average over X, are assigned to the vertices. If for some reason
one or more vertices fail, a network-wide redistribution of the loads in Equation (2.18)
occurs due to a modification of the shortest paths. The new load Lv of vertex v may
become larger than its capacity Cv and subsequent failures can occur that trigger a
cascading failure.

2.3.1. Load Fluctuations Resulting from Flux Fluctuations

In previous studies sij was always assumed to be constant and uniform. Here, flux
fluctuations are introduced into the modeling of the load in Equation (2.18) by varying
the strengths sij according to some distribution. For demonstration, we pick a lognormal
distribution with mean 〈s〉 = 1, on average the results of [85] should be found. The
fluctuation strength is defined as its standard deviation σ =

√
〈(s− 1)2〉. We distinguish

two fluctuation scenarios. The first is denoted as path-like, where all sij are drawn
independently from each other. For the second, which we denote as source-like, all
sij = si belonging to the same source vertex i are given the same value sampled from
the lognormal distribution.

In order to develop a new capacity layout beyond the mean-flux case in Equa-
tion (2.19), a good understanding is needed on how the flux fluctuations determine the
load distributions across the network. We begin by looking at the one-point distribution
pv(Lv). Equation (2.18) can be read as a weighted sum of independently and identically
distributed random fluxes sij. In case of log-normal fluxes with fluctuation strengths
σ . 1, this sum can be approximated again by a lognormal distribution [100]. To allow
for some more flexibility we choose a three-parameter generalization of the log-normal
distribution

pv(Lv) =
1√

2πηv(Lv − κv)
exp

[
−(log[Lv − κv]− µv)2

2η2
v

]
(2.20)

for the description of the load distribution. The parameters expressed in terms of the
first three central moments of the load at v, the mean mv, variance σv and the third
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Figure 2.1.: Simulated load distributions p(Lv) due to path-linke (a) and source-like (b) flux
fluctuations for three fluctuation strengths. Two vertices with minimum (left) and
maximum (right) load are depicted. One typical realization of a random scale-free
network, for which the number of vertices, scale-free exponent and minimum degree
have been set to N=1000, γ=2.5 and kmin=2, has been used with 104 fluctuation
realizations. The dashed curves correspond to the three-parameter log-normal
distribution [TPLN, see Equation (2.20)] with predicted parameters as defined in
Equation (2.24) and (2.25).

central moment γv, follow as

η2
v = log

(
b

1
3
v + b

− 1
3

v − 1
)

= log (dv) (2.21)

µv =
1

2
ln

(
σ2
v

d2
v − dv

)
(2.22)

κv = mv − σv
√

1

dv − 1
. (2.23)
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with bv = 1
2

(
γv
√
γ2
v + 4 + γ2

v + 2
)

and d = b
1
3
v + b

− 1
3

v − 1. These equations are directly

derived from the central moments of the three-parameter generalization of the log-normal
distribution, as given by e.g. Cohen and Whitten [31].

To fit the load distribution at vertex v, the three parameters µv, ηv, κv are calculated
from the first three cumulants of Equation (2.20) which have to be equal to the first
three cumulants of the load in Equation (2.18). This is called method of moments in
the literature [see e.g. 112]. These are for path-like fluxes

〈Lnv 〉c = 〈sn〉c
N∑

i 6=j=1

(
path([i→ j]; v)

N(N − 1)

)n
, (2.24)

and for source-like fluxes

〈Lnv 〉c = 〈sn〉c
N∑
i=1

 N∑
j=1(j 6=i)

path([i→ j]; v)

N(N − 1)

n

. (2.25)

The parameters µv, ηv, κv in Equations (2.21) to (2.23) can be directly calculated by
inserting the moments from Equation (2.24) or (2.25) for mv, σv, and γv.

Figure 2.1 compares the predicted three-parameter log-normal distribution with
simulated one-point load distributions, which have been sampled from a large number
of independent flux fluctuation realizations on a typical random scale-free network. For
path- as well as source-like flux fluctuations and for all vertices ranging from minimum
to maximum average load, the analytical distributions fit the numerical data very well.
– Note, that the one-point load distribution in Equation (2.20) should not be confused
with the distribution p(〈Lv〉) of average loads across all vertices of the network. For the
latter we reproduce the result p(〈L〉) ∼ 〈L〉−δ with δ≈2.2, which has been shown [58]
to be universal for all scale-free networks with exponent 2<γ≤3.

The n = 2 cumulants of Equations (2.24) and (2.25) are depicted in Figure 2.2 as a
function of the averaged vertex loads. For path-like flux fluctuation, shown in the inset
of Figure 2.2, a scaling relation of the type

√
〈L2

v〉c ∼ 〈Lv〉β is found with exponent
β = 0.5. This dispersion relation has already been observed in [40] and related to
internal collective dynamics on the network. It has not been clear whether the found
value of the scaling exponent is universal or not. For source-like flux fluctuations no
good overall scaling is observed. This is due to the fact that only the load distribution
for high average loads are Gaussian shaped, whereas load distributions of vertices with
small loads have a long tail that increases the variance; consult again Figure 2.1. The
asymptotic high/low load regimes are in accordance with β = 0.5 and 0.1, respectively,
indicating that the scaling exponent β ≈ 0.5 is not universal.
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Figure 2.2.: The moment σ(Lv) =
√
〈L2

v〉c of Equations (2.24) and (2.25) as a function of
the average vertex load 〈Lv〉 for one realization of path- (inset) and source-
like fluctuations on random scale-free (circles) and Poisson (triangles) networks.
Parameters are N = 1000, γ = 2.5, kmin = 2 for the scale-free networks, and
N = 1000, 〈k〉 = 5 for the Poisson networks. 50 out of 103 vertices are shown.
The dashed and dash-dotted straight lines represent the scaling exponents β = 0.5
and 0.1.

2.3.2. Capacity Layout and Failure Probabilities

The good agreement of the predicted three-parameter log-normal distributions with the
vertex loads allows for a direct construction of a new capacity layout, which is robust
against flux fluctuations up to some confidence level. For a single vertex the quantile

q =

∫ Cv

0

pv(Lv)dLv = Fv(Cv) (2.26)

describes the confidence level that its load Lv remains smaller than its capacity Cv.
Since 1− q describes the probability that the vertex will fail due to direct overloading, a
confidence level very close to one is desirable. A typical value in engineering is q = 0.9999.
By presetting the confidence level to such a targeted value, the capacity Cv(q) = F−1

v (q)
needed at the vertex is obtained from the inverse of the cumulative distribution function
Fv. Since pv(Lv) is three-parameter log-normal, Fv can be expressed in terms of the
inverse of the cumulative distribution function Φ(q) of a centered normal distribution
with unit variance. This leads to the capacity assignment

Cv(q) = eηvΦ−1(q)+µv + κv , (2.27)
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Figure 2.3.: Probability distributions for the number of directly failing vertices due to source-
like flux fluctuations in a scale-free network. Network parameters are as in the
previous figures. 104 flux realizations have been used for various fluctuation
strengths. The distributions only depend on the quantile, see Equation (2.26):
q = 0.8 (right), 0.9 (centre), 0.99 (left). The dotted and dashed curves correspond
to binomial and beta-binomial distributions with the same mean (1−q)N . The
correlation parameter ρ of the beta-binomial distribution has been calculated with
Equation (2.29) and (2.30).

with µv, ηv, and κv obtained from Equations (2.20) to (2.23) by applying the method of
moments. In principle, different q values could be assigned to different vertices, but for
simplicity we chose the same q for all vertices.

By this construction, the distribution of the number of directly failing vertices M
due to the fluctuating fluxes will have a mean of 〈M〉 = (1 − q) · N . As can be seen
in Figure 2.3, the actual number may deviate much from this mean. Note that the
shown distributions only depend on the quantile q and not on the strength of the flux
fluctuations. The distributions would be binomial if the direct failure of a vertex were
independent of the other vertices, however, this is not the case. The probabilities of
directly failing vertices are correlated since all vertices on a shortest path receive the
same flux strength from the transmitting vertex.

A good approximation to the observed distributions is provided by the beta-binomial
distribution

p(M ; a, b) =

(
N
M

)
B (M + a,N −M + b)

B(a, b)
, (2.28)

where B(·, ·) is the Beta function. It is known to describe correlated Bernoulli random
variables [66]. The two parameters a and b can be rewritten as the mean 〈M〉 /N =
(1−q) = a

a+b
and the correlation measure ρ = 1

a+b+1
. From best fits of Equation (2.28)
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2.3. Fluctuations using Shortest Path Flow
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Figure 2.4.: Relation between the parameters ρ and (1− q) of the beta-binomial distributions,
see Equation (2.28), which have been directly fitted to the sampled distributions
of Figure 2.3.

to the distributions of Figure 2.3, we find the empirical relation

ρ = ωN (1− q)ξ , (2.29)

see Figure 2.4. Within acceptable precision the exponent ξ turns out to be independent
of the network size. For ωN the N -dependence

ωN = ω N−ν . (2.30)

is found. The following table lists the fitted parameter values for path- and source-like
flux fluctuations on scale-free (γ = 2.5, kmin = 2) as well as Poisson networks (〈k〉=5).

path ω ξ ν
Poisson 1.50 0.53 0.80
scale-free 1.47 0.41 0.80

source ω ξ ν
Poisson 5.40 0.70 0.80
scale-free 3.34 0.51 0.80

The good description by the beta-binomial distribution in Equation (2.28) allows
to make an analytical prediction of the probability that with the capacity layout
in Equation (2.27) no vertex of the network will fail due to flux fluctuations. This
probability p(M=0; 1−q, ρ) with ρ from Equations (2.29) and (2.30) is equal to the
probability that the network efficiency [37], as introduced in Section 2.1.1,

E =
1

N(N − 1)

∑
i 6=f∈V

1

dif
(2.31)
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Figure 2.5.: Probability for the relative efficiency to remain E/E0 = 1 given the capacity layout
in Equation (2.27) against source-like flux fluctuations. The symbols represent
the data from a simulation of 103 fluctuation realizations with strength σ = 0.5
on a representative random scale-free (triangles) and Poisson (circles) network
of size N = 1000 (other parameters as stated before). The dashed and dotted
curves represent the analytical prediction based on the beta-binomial distribution
in Equation (2.28) and the binomial simplification, respectively.

remains equal to its initial value E0 of the intact network, thus p
(
E
E0

= 1
)

=

p(M = 0; 1− q, ρ). The network efficiency represents a measure to evaluate the quality
of a capacity layout. It includes direct as well as cascading failure of vertices. dif is
the shortest-hop distance between vertices i and f . Figure 2.5 compares the predicted
p(0; 1−q, ρ) with numerical data.

Since the correlation ρ of the Beta-binomial distribution goes to zero as q goes to one,
the probability p (E/E0 = 1) can also be approximated using the binomial distribution
pbin (M=0; 1−q); see again Figure 2.5. This gives a parameter free approximation to
the probability that no vertex fails. The same relation also holds for path-like flux
fluctuations, shown in Figure 2.6.

Finally, we compare the investment costs I =
∑

v∈V Cv = I(α) = I(q) relative to
I0 =

∑
v∈V 〈Lv〉 of the two capacity layouts in Equation (2.19) and Equation (2.27).

These are functions of the tolerance parameter α and the quantile q, respectively.
Figure 2.7 shows the efficiency as defined in Equation (2.31) of a scale-free network as a
function of I. For source-like flux fluctuations the efficiency of Equation (2.27) remains
close to zero up to a critical investment cost, only then to jump up and to overtake
the efficiency of Equation (2.19). In the limit E/E0 → 1, the investment costs into the
newly proposed capacity layout defined in Equation (2.27) are significantly smaller than
for the standard layout in Equation (2.19). For path-like flux fluctuations both capacity
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Figure 2.6.: Same as Figure 2.5 but for path-like fluctuations.

layouts reveal an abrupt transition from low to high efficiency at very low investment
costs.

2.4. Discussion

Statistical physics of complex networks has developed a wide variety of methods and
measures to quantify and analyze various systems. Transport systems were analyzed,
mainly with respect to stability to link or vertex removal.

Based on the model proposed by Motter and Lai [85], we analyzed the impact of
fluctuating fluxes on the robustness of networks. The cumulants of the flows over each
link in the network are derived based on topological information and the cumulants of
the source fluctuations. An approximation of the probability distributions of the flows is
found using the method of moments. This allows to develop a new robust capacity layout.
It is able to cope with the load fluctuations induced by flux fluctuations transported
on the network. Within given confidence level it supports the network to operate at
full efficiency and guarantees robustness against a cascading failure. We conclude that
within simple framework, fluctuations have a strong impact on the efficiency of the
network. A good understanding allows the construction of a capacity layout efficient
with good robustness at low cost.

In the next sections, renewable energy generation based on metrological data are
studied as a base for further modelling of power grids and renewable energy generation.
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3. Weather Data Driven Analysis of
Renewable Energy Generation

We investigate the design of a future European power supply system with a high share
of renewables energy generation. These days wind power has emerged as the most
dominant contributor to renewable power generation, with potential for more in the
future. A straightforward and simple answer to the first question has been pointed out
[72, 81]: there are enough wind resources around the globe to supply all continents
with only wind power. Also, the potential for solar power is high [30]. The different
renewable power sources and their potential are discussed in Section 3.1. Due to its
weather-driven fluctuations wind and solar power generation is not a simple stand-alone
solution. An enormous amount of balancing and storage will be needed on top of this
wind-only scenario.

As the weather is the driving force of fluctuations in wind and solar power generation,
an analysis of a future power system with a high share of wind and solar generation
has to be based on data that accounts for that influence. A eight year time series of
wind and solar generation based on weather data with hourly time and a high spatial
resolution is thus considered. The consumption, that has to be met by generation,
is considered with the same temporal resolution. The details of the time series for
consumption and generation are discussed in Section 3.2.

In this chapter, the whole European generation and consumption is analyzed on a
macroscopic scale. This allows for general considerations on important characterisctics
of the system as discussed in Section 3.3. Storage and balancing requirements strongly
depend on the mixture between wind and solar power generation. An optimal mix, that
minimizes storage or balancing capacities, is discussed for a hundred percent renewable
generation scenario in Section 3.4 and for a transitional scenario in Section 3.5. Over-
installation of generation capacities has advantages and is discussed in Section 3.6.

In the generation and the consumption data, distinct time scales are found. Their
influence and possibilities to exploit these are discussed in Section 3.7. In Section 3.8,
the results of this chapter are summarized. Large parts of the results shown here are
published in Heide et al. [64].
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3. Weather Data Driven Analysis of Renewable Energy Generation
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Figure 3.1.: Share of global electricity from renewable energy in 2006 [98].
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Figure 3.2.: Accumulated hydroelectric power for (a) Europe and (b) Europe between 1980 to
2006. On the right axis the generation is normalized to the values of 1980. Data
source : U.S. Energy Information Administration [119].

3.1. Renewable Energy Generation

There are various technologies to generate energy. In Figure 3.1, the global shares
of different electricity sources in 2006 are shown. Electricity generation is dominated
worldwide by fossil fuels and nuclear power. Around 15% is contributed by large hydro1

electricity, a much bigger contribution than the remaining renewables that produce

1Electricity generated from water flowing downhill, typically from behind a dam. Large hydroelectric
power usually entails a substancial reservoir and refers to generation capacities larger than 10 MW.
The definition can vary from country to country [99].
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3.1. Renewable Energy Generation

Figure 3.3.: Renewable power capacities in 2008 for electricity generation worldwide, the
developing countries, EU, and top six countries, taken from REN21 [99]. Large
hydropower generates around a factor of three more than all other renewables
together and is thus excluded, see also Figure 3.1. For the definition of large
hydropower see text. The group of developing countries include China.

Figure 3.4.: Annual investments in renewable energy capacities, taken from REN21 [98].

around 3.4% of the electrical power worldwide. From 1980 to 2006, the electricity
generation from hydro increased by almost 80% worldwide, see Figure 3.2a. In the
same time span, the European hydro electricity increased by only 30% as shown in
Figure 3.2b. This is due to the fact that most of the economically feasible hydroelectric
resources in Europe had to a large extend already been developed. Further renewable
energy generation capacities within Europe have to be build up using other technologies
[118].
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3. Weather Data Driven Analysis of Renewable Energy Generation

(a) Wind power capacities (b) Solar power capacities

Figure 3.5.: Worldwide installed capacities for wind and solar power [99].

The most important renewable energy sources, excluding large hydro, are shown in
Figure 3.3 for selected countries and regions. Wind power generation makes already a
large contribution to the renewable generation, while solar power plays a smaller role.
The highest potential for new renewable capacities is expected for wind and solar power
[50]. This forecast is supported by the fact that the investments from 1996–2006, shown
in Figure 3.4, have increased almost exponentially and is also reflected in installed wind
and solar capacities, see Figure 3.5. This strongly demonstrates the importance these
energy sources are going to have in the next decades [see e.g. 50, 118, 120].

In the following, we focus on wind and solar power generation. However, hydro
power can be very important to balance shortages as large capacities exist that can be
activated on short time scales, see Sections 3.6 and 3.7.

3.2. Data Time Series

Key to the modeling of wind- and solar-power generation is a large weather data set
with good spatial and temporal resolution all over Europe. Its convolution with future-
projected wind and solar power capacities reveals how much wind and solar power
is generated across Europe together with the spatial and temporal information. The
following subsections will explain the details. The load modeling is described in the last
subsection of this section.

3.2.1. Weather Data

Weather data for all of Europe is available from various sources with different spatial
and temporal resolutions. For our purposes three selection criteria have been important:

• The correct modeling of intra-day solar- and wind-power ramps require a good
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3.2. Data Time Series

Figure 3.6.: The region partintioning. Due to the fact that load data is only available for
regions larger than the grid size of the weather data, the generation data is
aggregated accordingly. The gray line indicates the onshore area, regions outside
are considered as offshore. The borders between the regions are indicated by the
black lines.

time resolution of at least 1h.

• In order to resolve the passing of synoptic systems related to high winds and
opaque clouds a spatial resolution of at least 50×50km2 is required.

• In order to gain representative and significant statistics covering all possible
seasonal and extreme weather situations a rather long time window is required,
ranging over a couple of years.

These criteria have been met by the private weather service provider WEPROG
(Weather & Wind Energy Prognosis) [124]. With regional models it downscales medium-
resolved analysis data from the US Weather Service NCEP (National Center for Envi-
ronmental Prediction) [86] down to 47×48km2 spatial and 1h time resolution over an
eight-years period (2000-2007).

This high-resolution data provides direct information on the wind speed and direction
100m above ground. The solar global radiation is not a standard output, but can be
computed directly from the data on the net short wave radiation at the surface, the
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Figure 3.7.: Expected wind power and solar photovoltaics power capacities [GW] per grid-cell
across Europe in 2020. The spatial grid-cell resolution of 47 × 48km2 has been
adapted to the weather data. For a better visualization capacities larger than 0.73
GW for wind and 0.50 GW for PV are indicated in dark red.

total cloud cover, and a standard cloud and surface albedo.

3.2.2. Assumed Wind- and Solar-Power Capacities and Generation

The national 2020 targets serve as guidance for a rough distribution of wind and
photovoltaic capacities in Europe. Figure 3.7 illustrates the expected installed wind-
power and solar photovoltaics power capacities across Europe. They total to 227 and
68 GW, respectively. 66 GW of wind power is assumed to be installed offshore. The
subsequent finer distribution within each country onto the grid cells of the weather data
is done empirically, giving more capacity to those grid cells with large average wind
speed and large average global radiation, respectively.

The conversion of hourly WEPROG wind speeds into wind power at each grid cell
was done using typical wind power curves at 100m hub height. Different power curves
have been assigned for on- and offshore grid points. Losses due to wake effects have
been modeled explicitly for offshore grid points by assuming a park layout of 7x7
turbines in offshore wind farms. Additional 7% losses have been introduced due to
electrical losses and turbine non-availability. The same 7% of losses have also been
applied to onshore grid points. The turbine cut-off due to extreme winds is empirically
parameterized by an additional modification of the power curve, which mimics the
gradual power-lowering-behavior of wind turbines with storm-control.

The solar photovoltaic power generation within the grid cells has been calculated based
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Figure 3.8.: The monthly averaged load accumulated over Europe. The black curve indicates
the data. An exponential trend is removed resulting in the load shown by the red
curve. The black dashed line shows the fit of an exponential trend based on a
running one year average.

on the available meteorological data (global radiation, air temperature), assumptions on
the characteristics of the photovoltaic plants (tilt angle, orientation, fixed or with solar
tracker) and the geographical coordinate of the grid cell considered. A mix of different
photovoltaic plant technologies was considered for each grid cell [16].

This convolution of the weather data with the wind and solar power capacities
produces spatio-temporal power-generation patterns across Europe. These patterns are
important for the calculation of power flows, see Chapter 6.

3.2.3. Load modeling

There are no sources to obtain the load data on the same spatial 47×48km2 grid-cell
resolution as for generation. But for the work presented here, a coarser resolution is
sufficicent. For almost all European countries the load profiles have been downloaded
either from the UCTE-homepage [117] or from the national transmission providers. At
least for the two recent years those have an hourly resolution. For the remaining years
they have been replicated with the known relative annual electric power consumption;
special care was given to a proper handling of the weekend effect.

The load increases over time, see Figure 3.8. Since for generation the fixed capacities
expected for 2020 are used, the load is detrended. An exponential trend2 is removed
according to y = a exp(b · t). Every country is detrended individually, since the growth
factor strongly deviates from country to country. For all of Europe the load increases

2The exponential detrending was not done in Heide et al. [64], so the results shown here differ slightly.
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Figure 3.9.: Average annual load [TWh] per grid cell in the 50 coarse-grained onshore regions.

by 1.138% per year over the considered eight years.

Some countries, especially the larger ones, come with a large average load. Those have
been further subdivided into regions, with some spatial correlation to the territories of the
respective network transmission providers. The regional load profiles have been obtained
from the country profiles with a multiplicative factor obtained from a linear regression
between the annual electric power consumption on the one hand and population and
gross domestic product on the other hand.

Figure 3.9 shows the average annual load of the 50 onshore regions during the years
2000-2007. Offshore regions come with no load and are not shown. The sum over all
regions totals to 2995 TWh average annual consumption. Its seasonal dependence is
shown in Figure 3.10.

3.3. The European Perspective

In a renewable future well beyond 2020 the share of wind-power generation may well
increase beyond fifty percent [50, 72]. For such a large amount, the spatial and temporal
scales that have to be looked at increase substantially. Regions with a momentary
excess of wind power will try to export it, whereas deficit regions are depending on
import. This spatial horizon beyond regions and countries helps to smoothen short-term
wind-power fluctuations and to reduce the short-term balancing and storage needs.

Besides the short-term time scales ranging from minute to a few days, the weather
follows a distinct seasonal pattern. Winds across Europe are stronger during winter
than in summer. As a consequence, the wind power aggregated over all of Europe is
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(red). One month averages shown over
all eight years are shown.
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(b) Same as (a) for one day averages over a
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(c) Same as (a) for one hour averages over
a month (may).
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(d) The wind- and solar-power genera-
tion time series are combined with a
60%/40% weighting (green) together
with the load (red).

Figure 3.10.: Normalized wind-power-generation, solar-power-generation and load time series
aggregated over Europe. Each series is shown in one-month resolution and is
normalized to its 8-years average. The vertical lines indicate (a,d) months and
(b,c) weeks.

larger in winter than in summer. This is shown in Figures 3.10a to 3.10c. In fact, the
winter maximum is about double the summer minimum.

If wind were the only power source in a fictitious future Europe, then the seasonal
wind power curve has to be directly compared to the European load curve. This is
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3. Weather Data Driven Analysis of Renewable Energy Generation

also illustrated in Figure 3.10a for the monthly average values. In this 100% wind-only
scenario the yearly average of wind-power generation and load is the same. However, the
seasonal behavior is different. The seasonal load curve also comes with a maximum in
winter and a minimum in summer, but the seasonal variation strength is much smaller
than for the wind-power generation. As a consequence an enormous amount of storage
and balancing energy is required. Over summer the storage and balancing plants have
to feed the deficit. During winter the large wind-power excess is put into the storage.

Like wind, also the solar community has its own solar-only answer to the question
how much wind, solar etc. is needed [72]. If solar were the only power source in another
fictitious European future, then the seasonal generation curve would look like the orange
one in Figure 3.10a. The solar power generation is much larger during summer than in
winter. Since it anticorrelates with the seasonal load curve, a 100% solar-only scenario
will lead to even larger seasonal storage and balancing needs than for the wind-only
case.

Let us summarize Figure 3.10a in another way. For Europe the seasonal wind-power
generation nicely correlates with the seasonal load behavior. On the other hand, the
seasonal solar-power generation anticorrelates with the seasonal load behavior. However,
the seasonal wind- and solar-power variation strengths are roughly the same. Both are
significantly larger than for the seasonal load.

When considering these facts set by the European weather conditions, an idea is
created immediately: Future Europe is able to counterbalance seasonal wind with
solar power generation. Their share should be almost the same, with a small extra
contribution from wind power due to its seasonal correlation with the load. Figure 3.10d
takes 60% from the wind curve and 40% from the solar curve of Figure 3.10a. The
resulting curve is able to nicely follow the seasonal load curve. It is expected that this
optimal mix brings seasonal storage and balancing needs to a minimum.

A different approach to look at the data is shown in Figure 3.11, where the generated
wind and solar power and the load of the year 2000 aggregated over Europe are shown,
colorcoded for every hour (y-axis) for each day (x-axis). This allows to look at all data
for a given year at once. The 24-hour structuring takes the day/night changes with it’s
effects into account, thus showing temporal dependencies. The wind power generation
has small fluctuations from hour to hour, but the seasonal time scale dominates. In
both winter and summer, there are periods in the order of a few days, where there
is no wind in winter and strong generation in summer. The solar power generation
dominated by the day-night changes and also varying on a seasonal timescale. The load
is influenced by many factors, seasonal and day/night effects as well as weekends and
vacations, e.g. around Christmas.
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Figure 3.11.: Generated power and load for a given hour (y-axis) on a given day (x-axis) of
the year 2000. The colors code the power in GW.

3.4. The 100% wind-plus-solar-only scenario

Based on seasonal time series such as shown in Figures 3.10a to 3.10c, it is straightforward
to quantify a seasonal optimal mix between wind and solar power generation in a 100%
wind-plus-solar-only scenario for a future Europe, in which the generation from wind
and solar power on average match the consumption. Key to such quantifications is the
mismatch energy

∆(t) = γ

(
a
W (t)

〈W 〉
+ b

S(t)

〈S〉

)
− L(t)

〈L〉
. (3.1)

W (t) represents the total European wind power generation at hour t, and 〈W 〉 its
average over all data contained in the eight-years-long time series. S(t) and L(t) are
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Figure 3.12.: Storage energy, see Equation (3.3), as a function of the wind fraction a = 1− b in
a 100% wind-plus-solar-only scenario for a future Europe based on hourly time
resolution. For the storage energy its maximum (black) and 90% quantile (red)
is shown. The unit of the storage energy is in average anual load.

the respective solar power and load time series. The coefficients a and b tell how much
of the load is on average covered by wind and solar power generation. For the scenario
considered here, these coefficients are constrained to a + b = 1. The overproduction
factor γ is needed to compensate for losses and is set to one in this section unless noted
otherwise.

To evaluate the seasonal optimal mix, a simple storage model is constructed out of
the mismatch energy in Equation (3.1)

H(t) = H(t− 1) +

{
ηin∆(t) if ∆(t) ≥ 0
η−1

out∆(t) if ∆(t) < 0
. (3.2)

Whenever the mismatch is positive, the surplus generation is storage with efficiency
ηin. In case of a negative mismatch the generation deficit is taken out of the storage
with efficiency ηout. The time series H(t) describes the filling level of the storage. The
approach in Equation (3.2) is based on the property that on average the generation is
equal to the load, so that the filling level at the end of the data set is equal to the initial
level, H(t = 0) = H(t = 8y). For a first simple approach, its maximum and minimum
determines the required storage energy

EH = maxtH(t)−mintH(t) . (3.3)

This quantity is shown in Figure 3.12 as a function of the wind fraction a = 1 − b
normalized to the annual load. It comes with a rather flat minimum at a = 0.47. The
storage efficiencies have been set to ηin = ηout = 1. Also shown in Figure 3.12 is the
90% quantile Q(95%) − Q(5%) of the storage energy, which is determined from the

distribution p(H) and
∫ Q

0
p(H)dH = 0.95 (0.05). This second variant of the required

storage energy reveals a pronounced minimum at a = 0.57.
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Figure 3.13.: (a) Comparison of the maximum storage energies for an idealized storage (black),
pumped hydro (green) and hydrogen storage (red), derived from hourly wind,
solar, and load time series. The storage energy is normalized to the average
annual load. (b) Overproduction factor γ of wind and solar power needed to
compensate the storage losses.

The used idealized storage efficiencies ηin = ηout = 1 are not realistic. Pumped hydro
has ηin = ηout = 0.9 and hydrogen storage has ηin = ηout = 0.6. Since efficiencies smaller
than one lead to storage losses, the wind and solar power generation has to be increased
in order to compensate for the losses. The overproduction factor γ = a + b > 1 is
determined from the requirement that the storage level H(t = 8y) = H(t = 0) reached
after 8 years is equal to the initial storage level. The formula yielding the overproduction
factor is derived in Section A.4. Figure 3.13a shows that the smaller the storage
efficiencies turn out to be the larger the maximum required storage energy becomes.
However, the location of the seasonal optimal mix does not change significantly. The
overproduction factor is illustrated in Figure 3.13b. For a = b it amounts to γ = 1.05
(pumped hydro) and 1.28 (hydrogen).

As can be seen in Figures 3.12 and 3.13a, the required maximum storage energy has
to be 10% (without storage losses) and 12% (for hydrogen storage) of the anual load
and amounts to 300 and 360 TWh, respectively. These are very large numbers. They
will even double once future Europe decides to switch to a wind-only or a solar-only
scenario.

In the absence of storage, the needed balancing power can be also defined based on
Equation (3.1). In case of a negative mismatch, additional power is needed, e.g. from
gas turbines or hydro power. It is defined as

B(t) =

{
−∆(t) if ∆(t) < 0

0 if ∆(t) ≥ 0
. (3.4)
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Figure 3.14.: Needed balancing power, see Equation (3.4), in dependence of the wind fraction
a = 1− b. The balancing power is normalized by the average load.

The mean, maximal and the 99% quantile of the required balancing power are shown in
Figure 3.14. The minimum of the mean comes at a fraction a = 0.80 of wind power
with 0.15 times the average load. For the 99% quantile that corresponds to around
12 hours per year, 0.70 times the average load is needed as balancing power and the
maximal balancing amounts to 1.12 times the average load, that is needed for one hour
over the period of eight years. The optimal mix is shifted towards a = 1 for higher
quantiles. The finding, that storage and balancing energy yield different optimal mixes,
is discussed in Section 3.7. The needed balancing capacities based on the average hourly
load amount to 51 GW on average, which have to supply 447 TWh per year. The
capacities that ensure balancing for the 99% quantile have to be 239 GW.

The storage energy lead to a seasonal optimal mix of 50-60% wind and 50-40%
solar power generation. These results agree nicely with the intuition obtained from
Figure 3.10. From these findings on the seasonal optimal mix a few more conclusions
can be given for a 100% wind-plus-solar-only scenario in a future Europe. Just for
demonstration we consider the average load from 2000 to 2008, which is 2995 TWh.
55% of this makes 1647TWh and requires 627GW of installed wind power capacity;
here the wind load factor 0.30 has been used, which has been directly determined from
the used weather data. The remaining 45% make 1348 TWh and require 733 GW of
installed solar photovoltaic power; here the PV load factor 0.21 has been used, which
again has been directly determined from the used weather data.

627GW of installed wind power capacity across Europe translate into around 314000
build 2 MW turbines, or 126000 5MW turbines, or around 4000 wind farms of the size of
the first offshore wind farms Horns Rev I and Nysted. As a rule of thumb [41], one MW
of installed capacity requires 0.07km2 onshore and 0.11km2 offshore, respectively. This
translates 627GW into around 50000km2 onshore or 75000km2 offshore. For comparison,
Denmark has an area of 43000km2.
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Figure 3.15.: A mix of 27% wind, 0% solar and 73% fossil-nuclear power generation (green) is
also able to follow the (red) seasonal load curve. See Figure 3.10 for comparison.

The spatial and temporal mean global radiation 169W/m2 is computed from the
weather data and translates 1460TWh-producing 810GW-installed solar photovoltaic
power into a PV-panel area of 5000km2. For comparison, Germany has the potential to
cover 1330km2 of roofs with ideal slopes and direction [96].

Currently, Germany has about 190 GWh of pumped hydro facilities in operation, with
only little room for more. The exact amount of pumped hydro across all of Europe is
not known to the author. Even if it is a factor of ten more, still two orders of magnitude
are missing to reach the required 300-480 TWh. This is discussed further in Section 3.6.

3.5. Transitional scenarios with wind, solar, and
fossile-nuclear power

The investigations on the 100% wind-plus-solar-only scenario can be extended to
transitional scenarios by modifying the mismatch energy defined in Equation (3.1) to

∆(t) = γ

(
a
W (t)

〈W 〉
+ b

S(t)

〈S〉

)
+ c

F (t)

〈F 〉
− L(t)

〈L〉
. (3.5)

F (t) = 〈F 〉 represents fossil-nuclear power generation and is assumed to be time-
independent as these are optimized for continuous operation. It may even include a
contribution from geothermal power. The transitional strategy discussed in this section,
results in the 100% scenario as introduced in Section 3.4.

The three coefficients a+ b+ c = 1 add up to one and match the average load. The
choice a = 0.27, b = 0.00, c = 0.73 leads to Figure 3.15. The seasonal power generation
curve follows the seasonal load curve more closely than for the a = 0.60, b = 0.40,
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Figure 3.16.: Maximum storage energy, see Equations (3.3) and (3.5), required for all of Europe
as a function of the two independent coefficients c and a/(a+b). The dashed curve
represents the seasonal optimal mix between wind and solar power generation as
a function of the remaining fossil-nuclear power generation for η = 1. The unit
of the contours is given in average annual load over Europe.

c = 0.00 example shown in Figure 3.10d. This indicates already, that as long as a
fraction of fossil-nuclear power remains in the generation mix the need for storage energy
will be smaller than for the 100% wind-plus-solar-only scenario.

Figure 3.16a shows the required maximum storage energy, see Equation (3.3), which
has been deduced from Equation (3.5) with ηin = ηout = 1 and Equation (3.2). It is
a function of the two independent coefficients c and a/(a + b). The smallest storage
energy is obtained for a = 0.27, b = 0.00, c = 0.73, which are the values used for
Figure 3.15. For large fossil-nuclear fractions 1 ≥ c ≥ 0.73 the storage energy reaches a
minimum when only wind power generation covers the remaining fraction a = 1 − c.
This is because the seasonal wind power generation curve correlates with the seasonal
load curve; confer again Figure 3.10a. Due to its anticorrelation it is not favorable to
include solar power into the fossil-nuclear-dominated generation mix. The same is true
for η = 0.6, as shown Figure 3.16b. The qualitative behaviour is similar to the case of
η = 1.

Solar power is needed once the fossil-nuclear power generation is reduced below c<0.73.
The seasonal solar power generation then has to counterbalance the seasonal wind power
generation. Otherwise the absolute seasonal wind-power variation would become larger
than the absolute seasonal load variation. The dashed curve in Figure 3.16a follows the
bottom of the storage valley and represents the seasonal optimal mix between wind and
solar power generation as a function of the remaining fossil-nuclear power generation.
In the limit c→0 the wind and solar coefficients a ≈ b ≈ 0.5 become about the same.
Obviously, this result agrees with the earlier result obtained in Figure 3.12.
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Figure 3.17.: Balancing power needed, see Equations (3.4) and (3.5), required for all of Europe
as a function of the two independent coefficients c and a/(a+b). The dashed curve
represents the seasonal optimal mix between wind and solar power generation
as a function of the fossil-nuclear power generation. The unit of the contours is
given in average load over Europe.

Let us follow the dashed optimal-mix-curve once more, from right to left. At c = 1
the required maximum storage energy amounts to 8% of the annual load. From c = 1
down to c = 0.73 the required maximum storage energy decreases down to 5% of the
annual load. From c = 0.73 to c = 0 the required maximum storage energy increases
again and reaches 10% of the annual load at c = 0.

The balancing, shown in Figure 3.17, exhibits a different qualitative behaviour for
both the average and the quantile values. The optimal mix for c� 1 is around a = 0.8.
For c → 1, the wind share goes down to zero. The reasons behind this deviation of
the optimal mix minimizing the storage energy from the case minimizing the balancing
power is discussed in Section 3.7. However, for the transitional scenario and c → 1,
the variations in the needed balancing power are small for different a. Therefore, the
optimal mix obtained for storage could be used, with only minor increase in the needed
balancing power.

We close this Section with an additional remark. If the seasonal load curve had come
with a maximum in summer and a minimum in winter, then the optimal-mix curve
would have been different. This is discussed in more detail in Section 4.1.
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3.6. Over Installation

Even when spatially aggregated over the whole continent, the fluctuation strength of
wind and solar power remains large. In order to absorb these fluctuations, enormous
amounts of storage and balancing are required. For a simplified Europe based on 100%
wind and solar power generation the required storage energy has been estimated in
Sections 3.4 and 3.5. It amounts to 10% of the annual European consumption. Given
the consumption rate of 2007, this corresponds to 320 TWh. This large number is
already an optimal minimum, where 60% wind and 40% solar power generation are
mixed together so that their opposite strong seasonal dependences almost cancel each
other and follow the weaker seasonal load behaviour (see Figure 3.10d).

For pumped hydro an energy capacity of several hundred TWh is fully out of European
reach. As discussed in Section 3.1, hydro power is almost fully developed in Europe.
Pumped-storage hydroelectricity requires two reservoirs at different heights and water
is either pumped up for storage or released back through a turbine to generate energy.
Because of its dependency on suitable topological sites and the needed altitude difference
for the reservoirs, the potential of future pumped hydro storage capcities is limited [61].
A hypothetical hydrogen storage in mostly North German salt caverns would be able to
store energy in the order of 10− 20TWh. These numbers are derived from the potential
volume of working gas3 in all European salt caverns of 9.09 · 109 m3 with planned
extensions of another 3.5 · 109 m3 [56]. The energy density is 170 kWh/m3 at an operating
pressure difference of 120 bar [44], yielding the above numbers. The energy density of
adiabatic compressed air storage is two orders of magnitude smaller [44] amounting to
0.1 TWh, if all available salt cavern would be used. Even the hypothetical hydrogen
storage would still be one order of magnitude away from the estimated several hundred
TWh required that need to be stored. At present no other large-scale round-trip storage
technologies are in sight. Storage lakes represent a different form of storage. They do
not store excess electricity, they only balance electricity deficits. Scandinavia has most
of the storage lakes in Europe. They have a seasonal energy capacity of about 100
TWh. This is also by far not sufficient for a 100% wind-plus-solar Europe, defined as a
scenario.

A way has to be found how to reduce the enormous amount of storage needs for a
fully renewable Europe. A straightforward solution is to go into the over-installation
regime, where wind and solar power generate more on average than the load. Negative
mismatches in the fluctuating balancing between wind-plus-solar-power generation and
load will occur less frequently. The question then is, how much excess generation is
needed? We want to learn in a quantitative manner how the storage capacities decrease
as a function of excess generation. At the same time, we want to look not only at
storage energy, but also on balancing power, and ask again the same questions.

3The working volume is not the volume of the storage site, but the amount of gas which can be stored
and extracted again.
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The calculations in this section are based on the mismatch as defined in Equation (3.1)
only here with an over installation factor γ ≥ 1. The amplitudes γa and γb = γ(1− a)
tell how much of the load is on average covered by wind and solar power generation.
(γ − 1) ≥ 0 represents the average excess generation. a and b = (1− a) are equal to the
share of average wind- and solar-power generation, respectively.

When considering the simple storage model defined in Equation (3.2), we find that,
due to the overproduction, the time series of the storage H(t) has a positive linear drift,
see Figure 3.18 (middle). In this case, the simple subtraction in Equation (3.2) of the
overall minimum from the overall maximum of the storage-level as used in Section 3.4
time series does not make sense. The new definition of the storage energy

EH = maxt (H(t)−mint′≥tH(t′)) . (3.6)

takes care of the positive drift. At time t the non-constrained storage level is H(t). For
all larger times t′ ≥ t the non-constrained storage level does not drop below mint′≥tH(t′).
Their difference represents the required storage energy at time t. Its maximum over
all times yields the required overall storage energy EH. Note, that the alternative
definition EH = maxt (maxt′≤tH(t′)−H(t)) is fully equivalent to Equation (3.6). With
the definition in Equation (3.6), the non-constrained time series in Equation (3.2) can
be transformed into a constrained storage-level time series:

Hc(t) =


EH if EH −Hc(t− 1) < ηin∆(t) ,
Hc(t− 1) + ηin∆(t) if EH −Hc(t− 1) > ηin∆(t) > 0 ,
Hc(t− 1) + η−1

out∆(t) if Hc(t− 1) ≥ −η−1
out∆(t) ≥ 0 ,

0 if Hc(t− 1) + η−1
out∆(t) < 0 .

(3.7)

By construction, the constrained storage level never exceeds the storage energy given
by Equation (3.6) and never drops below zero. An example of a constrained storage
level time series is shown in Figure 3.18 (bottom).

3.6.1. Storage Energy

The storage energy as defined in Equation (3.6) depends on the excess generation γ
and the relative share a of wind-power generation via Equations (3.1) and (3.2). This
dependence is illustrated in Figure 3.19a. The storage efficiencies have been set to
ηin = ηout = 1. The contour plot reveals a strong dependence on a and γ. At γ = 1
the minimum storage energy is at a ≈ 0.6. This represents the optimal mix between
wind and solar power generation, which has been found in Sections 3.4 and 3.5. As can
be seen from the dashed line, this optimal mix does not change much for γ > 1. For
1.1 ≤ γ ≤ 1.4 it is around a ≈ 0.75 and for 1.6 ≤ γ ≤ 1.9 it is around a ≈ 0.45. Note,
that the respective absolute values EH(γ, a) do not differ much from EH(γ, a = 0.6).
Figure 3.19b shows several one-dimensional cuts through the two-dimensional landscape
of Figure 3.19a. The cuts along the optimal mix and along a = 0.6 are almost identical.
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Figure 3.18.: Time series of (top) mismatch power from Equation (3.1) (middle) non-
constrained storage level following from Equation (3.2), and (bottom) storage
level as defined in Equation (3.7) constrained with Equation (3.6). The unit of
the mismatch power is given in average hourly load. The unit of the storage
levels is given in annual load. Parameters have been set γ = 1.25, a = 0.60,
ηin = ηout = 1.

For these two cases the storage energy decreases much faster with increasing γ than
along the wind-only a = 1 and solar-only a = 0. At γ = 1.05 the storage energy
EH(γ = 1.05, a = 0.6) is half of EH(γ = 1, a = 0.6), at γ = 1.15 it is a quarter, and at
γ = 1.35 it is a tenth.

Figure 3.20 is similar to Figure 3.19, except that the storage efficiencies have been set to
ηin = ηout = 0.6. These values are valid for hydrogen storage [36]. Due to the conversion
losses, some extra generation is needed to make up for the losses. The left border in
Figure 3.20a represents the extra generation in order to fully match the average load.
For a = 1.0, 0.7, 0.0 this extra generation amounts to γ = 1.23, 1.20, 1.87, respectively.
Again, the storage energy reveals a strong dependence on a and γ. The optimal mix
between wind and solar power generation, which minimizes the storage energy, is at
a ≈ 0.7. Compared to EH(γ = 1.20, a = 0.7), the storage energy EH(γ, a = 0.7) reduces
to a half at γ = 1.23, to a quarter at 1.30, and to a tenth at 1.57; see Figure 3.20b. The
wind-only storage energy EH(γ, a = 1.0) is found to be significantly larger than for the
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Figure 3.19.: (a) Storage energy as defined in Equation (3.6) as a function of the excess
generation γ and the share a of wind-power generation. The storage efficiencies
have been set equal to ηin = ηout = 1. The contour lines represent constant
storage energy and their attached numbers are measured in average annual load.
(b) Cuts through (a) at a = 1.0 (red), 0.6 (orange), 0.0 (blue), and along the
dashed optimal-mix line (green).
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Figure 3.20.: Same as Figure 3.19, but for storage efficiencies ηin = ηout = 0.6.

optimal-mix storage energy EH(γ, a = 0.7). The solar-only storage energy EH(γ, a = 0.0)
is beyond reach.

The storage energy in Figures 3.19 and 3.20 is measured in annual load. The average
annual load for all of Europe amounted to 3240TWh in 2007. In case of ideal storage
with η = 1 the value EH(γ = 1.00, a = 0.6) = 0.10 then corresponds to 330TWh
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of storage energy. With 35% excess generation this value is reduced to a tenth, i.e.
EH(γ = 1.35, a = 0.6) = 33TWh. Because of the conversion losses, hydrogen storage
requires 20% excess generation per se. Its storage energy EH(γ = 1.20, a = 0.7) = 0.12
corresponds to 400TWh. A 57% excess generation is needed to reduce this value down
to EH(γ = 1.57, a = 0.7) = 40TWh. This reduced value is in the order the estimated
10 − 20TWh potential of hydrogen storage in North German salt caverns, see the
introduction of Section 3.6.

The required storage energies for pumped hydro and compressed air storage lie
inbetween those for ideal and hydrogen storage. An excess generation somewhere
inbetween 35-55% will lead to a storage energy around 40TWh.

3.6.2. Balancing Energy

A different form of storage is provided by storage lakes. It does not make use of the
positive mismatch power and is only used to balance the negative mismatch. Storage
lakes and gas turbines represent examples for balancing storage.

As defined in Equation (3.4), the hourly balancing power is defined by the negative
mismatch. When multiplied with the number of hours T = 8760 contained in a year, its
average leads to a measure

EB = T 〈B〉 , (3.8)

which we denote as the annual balancing energy.

Figure 3.21 illustrates EB as a function of the excess generation γ and the relative
share a of wind-power generation. The contour plot reveals that EB has a minimum at
a ≈ 0.8. Compared to its storage counterpart at a ≈ 0.6, this optimal mix is different
and shifted towards a larger fraction of wind power generation.

In order to understand this, we introduce the average daily profiles l(t), w(t), s(t)
of load, wind and solar power generation. For each 0 < t ≤ 24 hour they are averaged
over all available eight years. For example, l(t) = (1/Ni)

∑
i L(t+ 24i) with i running

through all Ni = 8×365 days within the 8 years. Together with selected combinations
of the form aw(t) + (1− a)s(t) these profiles are illustrated in Figure 3.22a. The load
and solar-power generation profile show the expected behaviour. Although small, but
visible, the profile w(t) indicates more wind-power generation during night than during
day-time hours; see also the respective time series of Figure 3.10c, where this effect is
also observed. The difference

Eprofile =
1

2 · 24

∫ 24

0

|l(t)− [aw(t) + (1− a)s(t)]| dt (3.9)

of the profiles represents a measure for the balancing needs. Figure 3.22b shows it as a
function of the wind-power fraction a and reveals a minimum at a = 0.92. By looking
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Figure 3.21.: (a) Balancing energy, defined in Equation (3.8), as a function of the excess
generation γ and the share a of wind-power generation. The contour lines
represent constant balancing energy and their attached numbers are measured in
annual load. (b) Cuts through (a) at a = 1.0 (yellow), 0.8 (blue), 0.6 (red), 0.0
(green), and along the dashed optimal-mix line (purple).
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Figure 3.22.: (a) Average daily profiles of (red) load, (blue) wind power generation, (yellow)
solar power generation, (dashed green) 60%/40%, (dash-dotteded dark-green)
80%/20% and (long-dashed black) 90%/10% mix of wind/solar power generation.
The profiles have been averaged over 8 years and are normalized to one. (b)
Balancing integral, see Equation (3.9), as a function of the share a of wind-power
generation. The excess generation has been fixed to γ = 1. For comparison, the
balancing energy from Equation (3.8) with γ = 1 is shown as the dashed curve.
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again at the profiles of Figure 3.22a this outcome is obvious. The profile with a = 0.9 is
closest to the load profile.

Figure 3.22b also compares Eprofile(a) with the balancing energy EB(a, γ = 1). Up to
a ≈ 0.6 both quantities are almost identical, but beyond that they differ. At a = 0 the
solar-only profile exceeds the load profile during day times and is zero during night times.
With other words, no balancing is needed for half of the day and full balancing is needed
for the other half of the day. This explains Eprofile(a = 0) ≈ EB(a = 0, γ = 1) ≈ 0.5,
which is half of the average load. The small difference between the two quantities is due to
fluctuations of the solar power generation, which are present on hourly, daily and seasonal
time-scales. In the other limit, a = 1, only fluctuations caused by wind power generation
are present. They have a big impact on the balancing energy. EB(a = 1, γ = 1) = 0.19
is about three times as large as Eprofile(a = 1) = 0.06. Furthermore, the minimum of
Eprofile(a) at a = 0.92 is shifted to a = 0.81 for EB(a, γ = 1).

Figure 3.21b shows the γ dependence of the balancing energy for various fixed a.
a = 1 and a = 0.6 lead to an almost identical behaviour. The solar-only a = 0 leads to
balancing energies, which remain close to the previously discussed 50% of the average
load at γ = 1. This is much larger than for the 0.6 ≤ a ≤ 1.0 cases. Along a = 0.8 the
balancing energy decreases from 15% of the average load at γ = 1, via 10% at γ = 1.18,
to 5% at γ = 1.49.

Considering again the annual European load of 3240TWh of the year 2007, 15%, 10%
and 5% translate into required balancing energies of 480, 320 and 160 TWh, respectively.
A balancing energy of 100 TWh, which roughly corresponds to the capacity of the
Scandinavian storage lakes, would require an excess generation γ = 1.72 at a = 0.8.

3.6.3. Balancing Power

The estimates of Sections 3.6.1 and 3.6.2 have been concerned with the required amount
of storage or balancing energy. An equally important characteristic to look at is balancing
power. The driving question is: how large can the hourly mismatch get, and how often
does this occur? In more general terms, how does the statistics of the balancing power
from Equation (3.4) look like, and how does it depend on a and γ? The answers will
help to complete the quantification of the respective storage technology needs.

Figure 3.23 illustrates the probability distributions p(B) of the hourly balancing power
in Equation (3.4) for selected combinations of a and γ. They have been sampled over the
whole eight years of available data. All distributions have a pronounced peak at B = 0.
For γ = 1 these peaks have a probability mass 0.47, 0.49, 0.46, 0.39 at a = 1, 0.8, 0.6, 0,
indicating that for a little less than half of the time balancing is not needed. For γ = 1.5
we find 0.73, 0.79, 0.70 for a = 1, 0.8, 0.6, indicating that balancing is needed for only
about 25% of the time. In case of the solar-only a = 0, the distributions almost do not
depend on γ. During day hours the solar power generation exceeds the load, which
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Figure 3.24.: (a) 99% hourly-balancing quantile QB as a function of a and γ. (b) From top
to bottom maximum balancing maxB(t), 99.9%, 99% and 90% quantiles QB, as
well as the average balancing energy EB as a function of a for fixed γ = 1.5.

again explains the peak at B = 0 with probability mass ≈ 0.4. During night hours
no sun is shining, so that independent of the value for γ full balancing prevails. The
maximum balancing results to be maxB = 1.4 times the average hourly load. The
maximum balancing for the wind-only a = 1 is smaller. It turns out to be maxB = 1.12
for γ = 1 and decreases a little to 1.01 for γ = 1.5. The probability distributions for
a = 1 result to be very similar to those with a = 0.6. For a values inbetween these two,
like a = 0.8, the tail of the distribution is shifted slightly to the left.
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γ a Eη=1
H Eη=0.6

H EB Qq=0.9
B Qq=0.99

B Qq=0.999
B

0.6 0.101 -.- 0.198 0.554 0.807 0.973
1 0.7 0.116 -.- 0.166 0.501 0.759 0.931

0.8 0.147 -.- 0.153 0.465 0.718 0.899
0.9 0.182 -.- 0.163 0.479 0.708 0.877
0.6 0.014 0.069 0.129 0.452 0.724 0.897

1.25 0.7 0.013 0.043 0.100 0.386 0.668 0.849
0.8 0.017 0.050 0.084 0.337 0.624 0.817
0.9 0.034 0.078 0.089 0.343 0.610 0.788
0.6 0.005 0.019 0.087 0.356 0.649 0.834

1.5 0.7 0.005 0.015 0.063 0.280 0.588 0.784
0.8 0.007 0.018 0.049 0.218 0.541 0.745
0.9 0.015 0.037 0.050 0.218 0.526 0.716

Table 3.1.: Storage energy EH, balancing energy EB, and hourly 90%, 99%, 99.9% balancing
quantiles QB for a = 0.6, 0.7, 0.8, 0.9 and γ = 1, 1.25, 1.5. The storage and
balancing energies are normalized to the average annual load. The balancing
quantiles are normalized to the average hourly load.

The average of these distributions has already been shown in Figure 3.21. Figure 3.24a
now illustrates the 99% (q = 0.99) quantile QB as a function of a and γ. It is defined as∫ QB

0
p(B)dB = q. For every γ its minimum comes at a = 0.88. Along this minimum line,

the 99% quantile QB(a = 0.88, γ) decreases linearly with γ, from 70% of the average
hourly load at γ = 1 down to 35% at γ = 2. These rather large values guarantee that
in 99% of the time the hourly balancing power remains below these quantiles. With
other words, in 1% of the time, which is equivalent to 700 hours within 8 years or
1.7 hours per week, the hourly balancing power will be larger. Figure 3.24b depicts
other quantiles for γ = 1.5. The quantile with q = 0.999 means that only nine hours
within one year result in a larger balancing power. The optimal a, which minimizes the
quantile, increases with q. For q = 0.9, 0.99 and 0.999, it turns out to be a = 0.85, 0.89
and 0.90, respectively.

Table 3.1 summarizes the hourly 90%, 99%, 99.9% balancing quantiles for all com-
binations of a = 0.6, 0.7, 0.8, 0.9 and γ = 1, 1.25, 1.5. The unit is in average hourly
load. Given again the annual European consumption of 3240 TWh in the year 2007, the
average hourly load amounts to 370 GW. This translates for example the 99% quantiles
with a = 0.6, γ = 1 and 1.5 into 300 and 240 GW, respectively.

3.7. Separation of Time Scales

When looking at Figures 3.19, 3.20, 3.21a, and 3.24a, we observe that storage energy,
balancing energy and balancing quantile come with differing optimal combinations
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Figure 3.25.: Fluctuation pattern of balancing power over all hours (y-axis) and days (x-axis)
within one arbitrary year. Eight different combinations for a and γ are shown.
The unit of the balancing power is given in average hourly load.

between wind and solar power generation; consult also Table 3.1. The minimum of EH

is at a ≈ 0.5 − 0.7, the minimum of EB is at a ≈ 0.8, and the minimum of the 99%
quantile QB is at a ≈ 0.9. Of course this can be seen as the result of three different
optimization objectives, but from an infrastructure investor’s point of view it would
have been nicer if the three outcomes had agreed more.

The distributions of the hourly balancing power, shown in Figure 3.23, do not provide
information on when exactly which amount of balancing power is needed. Although
neglecting fluctuations, the average daily profiles of Figure 3.22a contain at least some
information: for a ≤ 0.92 it is likely that more balancing is needed during night hours
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Figure 3.26.: Fluctuation pattern of (a) wind power generation, (b) solar power generation
and (c) load over all hours and days within one arbitrary year.

than during daytime hours; for a ≥ 0.92 it is the opposite. More information is given
by Figure 3.25, which depicts the fluctuation pattern of balancing power over all hours
and days of one full year for various combinations of a and γ.

These patterns result from combinations of respective patterns for wind power gener-
ation, solar power generation and load. The latter three are illustrated in Figure 3.26.
Since they are very different from each other, different combinations of the form as
given in Equation (3.1) lead to different fluctuation patterns for the balancing power,
defined in Equation (3.4). As can be seen in the first row of Figure 3.25, the limit a ≈ 1
is dominated by the wind pattern of Figure 3.26a. Mostly during groups of low-wind
summer days balancing is needed, for almost all 24 hours per day. The limit a ≈ 0
is shown in the last row of Figure 3.25. It is dominated by the solar pattern of Fig-
ure 3.26b. During daylight times absolutely no balancing is required. During the entire
night the balancing equals the full load. The fluctuation patterns in the intermediate
regime a ≈ 0.6 are inbetween the two extremes. The third row of Figure 3.25 reveals
that again absolutely no balancing is needed during daylight times. During nighttime
hours balancing is needed to some degree, not all the time up to full load, but with
reduced amplitude over many small groups of consecutive days, which are more or less
continuously spread over the whole year. The fluctuation patterns for a = 0.8 are similar
to those for a = 0.6, with two small exceptions: for γ ≈ 1 some balancing is occasionally
also needed during daylight times, and for larger γ ≈ 1.5 the reduced balancing during
nighttime hours is occurring with fewer and over the year a little bit more intermittently
distributed day groupings.

The fluctuation patterns of Figure 3.25 reveal, that for 0 ≤ a ≤ 0.9 the power
mismatch shows a regular intra-day behavior. During daytime only excess power is
generated. Negative mismatches occur only during nighttime. Because of this, it makes
sense to introduce a separation of times scales into the storage and balancing dynamics,
i.e. a dynamics above one day and a dynamics below one day. In the following Subsection
we will look at the dynamics above one day.
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γ a Eη=1
H Eη=0.6

H EB Qq=0.9
B Qq=0.99

B Qq=0.999
B

0.6 0.100 -.- 0.094 0.292 0.549 0.648
1 0.7 0.115 -.- 0.110 0.331 0.557 0.666

0.8 0.147 -.- 0.129 0.379 0.583 0.695
0.9 0.182 -.- 0.151 0.436 0.633 0.745
0.6 0.014 0.034 0.028 0.103 0.388 0.503

1.25 0.7 0.013 0.025 0.037 0.156 0.407 0.526
0.8 0.016 0.035 0.055 0.221 0.447 0.570
0.9 0.034 0.071 0.077 0.297 0.528 0.635
0.6 0.004 0.010 0.009 0.000 0.246 0.364

1.5 0.7 0.005 0.009 0.012 0.000 0.275 0.395
0.8 0.006 0.011 0.021 0.074 0.316 0.444
0.9 0.015 0.035 0.038 0.164 0.438 0.540

Table 3.2.: Same as Table 3.1, but based on daily instead of hourly mismatches.

So far the wind power generation W (t), the solar power generation S(t), the load L(t),
the mismatch ∆(t) and the balancing power B(t) have been modeled with a one-hour
time resolution. Now the time resolution is changed to one day. The daily wind power
generation then is

W (τ) =
1

24

24τ∑
t=24(τ−1)+1

W (t) ; (3.10)

it is divided by 24 in order to normalize its average to one. The time τ proceeds in
steps of one day. The daily solar power generation S(τ) and the daily load L(τ) are
obtained in complete analogy. Contrary to the daily mismatch

∆(τ) = γ
[
aW (τ) + (1− a)S(τ)

]
− L(τ)

=
1

24

24τ∑
t=24(τ−1)+1

∆(t) , (3.11)

the daily balancing power can not be calculated in two ways. Its proper definition is
analogous to Equation (3.10):

B(τ) =

{
−∆(τ) if ∆(τ) < 0

0 otherwise
. (3.12)

This expression is not identical to the daily average of the hourly balancing power.
Actually Equation (3.12) is smaller than (1/24)

∑24τ
t=24(τ−1)+1B(t), because the latter

does not take into account the compensating positive mismatches occurring over the
day.

Based on the daily mismatch ∆(τ) and the daily balancing power B(τ), the storage
energy, the balancing energy and the balancing quantiles are determined completely
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Figure 3.27.: Storage energy EH with (a) ηin = ηout = 1 and (b) ηin = ηout = 0.6, (c)
balancing energy EB and (d) 99% balancing quantile QB based on the daily
mismatch,defined in Equation (3.11) and balancing power from Equation (3.12).
The unit of the contour lines for the storage and balancing energies is the average
annual load. The unit of the contour lines for the balancing quantile is the
average hourly load.

analogous to the previous Sections. The results are shown in Figure 3.27 as a function
of γ and a. Figure 3.27a and Figure 3.19a are almost indistinguishable, which means
that the ideal (ηin = ηout = 1) storage energies based on hourly and daily mismatches
are almost identical; compare also the third columns of Tables 3.1 and 3.2. As can be
seen from the storage time series of Figure 3.18, the storage energy is only determined
by fluctuations on the synoptic and seasonal time scales, which are larger than one
day. For hydrogen storage with reduced efficiencies ηin = ηout = 0.6 the storage energies
based on daily and hourly mismatches are not identical; compare Figure 3.27b and
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Figure 3.28.: Comparison of the differing impacts between (dashed) hourly and (solid) daily
mismatches in Equations (3.1) and (3.11) on (a) storage energy EH with (red)
ηin = ηout = 1 and (blue) ηin = ηout = 0.6, (green) balancing energy EB, and
(b) (blue) 99% balancing quantile QB. The unit of the storage and balancing
energies is given in average annual load. The unit of the balancing quantiles is
given in average hourly load. The parameter a has been fixed to a = 0.6.

Figure 3.20a. They are similar for 0.85 ≤ a ≤ 1, but differ for 0 ≤ a ≤ 0.85. This
difference is specified in the fourth columns of Tables 3.1 and 3.2. For a = 0.6 the
storage energy based on daily mismatches is only about half of the storage energy based
on hourly mismatches.

Figures 3.27c and 3.27d illustrate the balancing energy and the 99% balancing quantile
based on the daily mismatches. They are completely different to their counterparts
based on the hourly mismatches; consult again Figures 3.21a and 3.24a. The new
minima are now found at a ≈ 0.5. This result is independent of γ and coincides nicely
with the a ≈ 0.6 obtained for the storage energy. From an infrastructure perspective
this is good news: based on the daily mismatches the optimal mixes between wind
and solar power generation for storage energy, balancing energy and high quantiles of
balancing power are almost the same at around a = 0.5− 0.6.

Compared to the hourly mismatches, the balancing energy and the quantiles of
balancing power based on daily mismatches are greatly reduced. Compare Figures 3.27c
and 3.27d with Figures 3.21a and 3.24a. Table 3.2 lists the obtained values for daily-
based EB and QB for various combinations of γ and a. The EB values 0.094, 0.028,
0.009% for a = 0.6 and γ = 1, 1.25, 1.5 are significantly smaller than the respective
0.153, 0.084, 0.049 for the hourly-based EB at its minimizing a = 0.8. A similar finding
is obtained for the balancing quantiles, where for example the 52.6% and 71.6% of the
hourly-based 99% and 99.9% quantiles QB at γ = 1.5, a = 0.9 are reduced by a factor
of two down to 24.6% and 36.4% for the respective daily-based quantiles at a = 0.6.
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Figure 3.28 summarizes the results obtained in Figure 3.27 and Table 3.2 in a different
way. For fixed a = 0.6 it compares the γ dependence of the smaller daily-based with
the larger hourly-based storage energies, balancing energies and balancing quantiles.
With this separation of time scales we anticipate a separation into a short-term and
long-term storage.

The long-term storage takes care of the daily mismatch. Over the day its hourly
contribution would be more or less constant and sum up to the daily mismatch. Its
storage/balancing energy and power quantiles would correspond to those based on the
daily mismatches. With another look into Table 3.2 at for example γ = 1.5 and a = 0.6
the required numbers would be EH(η = 1) = 0.004 and QB(q = 0.99) = 0.246 for
ideal round-trip storage, which, given the annual European load of 2007, translate into
EH(η = 1) = 15TWh and QB(q = 0.99) = 90GW. For hydrogen storage the respective
numbers are EH(η = 0.6) = 0.010 = 35TWh and QB(q = 0.99) = 0.246 = 90GW. For
one-way storage reservoirs like storage lakes the respective numbers are EB = 0.009 =
30TWh and QB(q = 0.99) = 0.246 = 90GW.

The short-term storage takes care of the hourly mismatch around the daily mismatch.
Roughly, its required balancing power corresponds to the difference between the quantile
based on the hourly mismatch and the quantile based on the daily mismatch. Again for
γ = 1.5 and a = 0.6, this results in Qhourly

B (q = 0.99)−Qdaily
B (q = 0.99) = 0.40 = 140GW.

A safe upper bound for the required storage energy for a roundtrip storage would then
be Eshort−term

H = 140GW × 12h = 1.68TWh < 2TWh. The multiplication with 12h is
due to the night hours, where balancing is needed; see again Figure 3.25. Candidates
for such a short-term storage would be pumped hydro, electric cars, compressed air,
and any combination thereof.

3.8. Summary

Besides short term fluctuations, wind and solar power generation across Europe follow
the seasonal cycle of the weather. Wind power generation in winter is much stronger
than during summer. For solar power generation the summer season produces much
larger yields than during winter. In this way mother nature determines how to design a
future European power supply system based on a very high share of renewables. When
mixed together in a specific ratio, the opposite strong seasonal behaviors of wind and
solar power generation almost cancel each other and follow the weaker seasonal load
behavior.

Depending on the objectives to minimize storage energy, balancing energy or balancing
power, different optimal mixes between wind and solar power generation have been
found. In case of storage energy, the optimal mix is 60% wind and 40% solar power
generation for ideal roundtrip storage, and 70% wind and 30% solar power generation
for hydrogen storage. In case of balancing energy, the optimal mix is 80% wind and
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20% solar power generation, for balancing power it is 90% wind and 10% solar power
generation. Furthermore, all optimal mixes turn out to be more or less independent
from the amount of excess power generation. For transitional scenarios with a high
fraction of fossil-nuclear power generation left in the system, the share of wind power
generation increases when minimizing the required storage size and decreases when
minmizing balancing energy compared to the only renewable scenario. Note, that the
different optimal mixes are mainly caused by the intra-day mismatch dynamics between
wind plus solar power generation and load. Once the intra-day time scales are neglected,
the optimal mixes for storage energy, balancing energy and balancing power would
become identical at around 60% wind and 40% solar power generation. The storage
energy for all of Europe amounts to around 10% of the average annual load. Compared
to other scenarios like wind-only or solar-only, the optimal mix reduces the need for
storage energy by a factor of two.

With no excess wind plus solar power generation, the required storage needs turn
out to be very large. However, they decrease very fast with the introduction of excess
power generation. In the following we list the concrete numbers for the required storage
needs, given the European consumption load of 3240 TWh for 2007; consult again with
Table 3.1. With the objective to minimize the storage energy, the required needs for
roundtrip storage with ideal efficiencies ηin = ηout = 1 amount to EH = 320 TWh storage
energy and QB(q = 0.99) = 300 GW balancing power for γ = 1 and a = 0.6. For excess
generation with γ = 1.5 and a = 0.6 the numbers reduce to EH = 16 TWh storage energy
and QB(q = 0.99) = 240 GW. However, the installed wind and solar-photovoltaic power
capacities across Europe would each increase from 750 to 1100 GW. For comparison,
hydrogen storage with non-ideal efficiencies ηin = ηout = 0.6 would require around 40
TWh and 220 GW for minimum storage energy and non-minimum balancing power at
γ = 1.5 and a = 0.7 with installed 1300 GW wind and 830 GW solar power capacities.
If we were to choose the other objective to minimize the balancing power, then the
optimal a = 0.9 at γ = 1.5 leads to required 50 TWh (ideal) and 120 TWh (hydrogen)
storage energies, and 195 GW balancing power, with installed 1650 GW wind and 275
GW solar power capacities.

For one-way balancing storage the two objectives to minimize either the balancing
energy or to minimize the balancing power lead to quite similar results. The optimal
share of generated wind power amounts to a ≈ 0.8-0.9. At zero excess generation γ = 1
the required European balancing energy and balancing power result to be 500 TWh and
265 GW. They are reduced down to 160 TWh and 200 GW once the excess generation
is increased to γ = 1.5.

The presented results demonstrate that excess wind and solar power generation will
be one key to reduce the required storage needs for a fully renewable European power
system. In fact, a fully renewable power system is only fully defined when including of
a reasonable amount of excess generation. However, with a reasonable amount of excess
wind and solar power generation alone the resulting storage energies, balancing energies
and balancing powers are still very large. With 50% excess generation, roundtrip storage
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3. Weather Data Driven Analysis of Renewable Energy Generation

still comes with a required storage energy of the order 20-50 TWh and balancing power
of the order 200 GW. For one-way balancing storage it will be 160 TWh storage energy
and 200 GW balancing power.

With the considered storage technologies, central storage facilities seem to be un-
avoidable due to the high energy that needs to be storage in a storage only scenario.
These facilities are required to provide high capacities for balancing power and can be
expected to cause large power flows. A paradigm change so that the load follows the
intra-day generation could help to overcome these problems. A shift of consumption
to day time and less load during night time would reduce both the required balancing
power, see Figure 3.25, and the extreme transport flows, as will be shown in Section 6.1.
However, this approach highlights the need for accurate prediction of wind and solar
power for at least 24 hours. Local, distributed storage facilities with limited storage
energy also have a great potential to match the generation and consumption over a day.

A good understanding of possible future scenarios has to be the basis for deciding on
efficient transitions from the existing power system towards a fully renewable scenario.
It has to be noted, that the two extreme scenarios, only storage or only balancing power,
are discussed here. Both scenarios, were shown to be feasible. A mix of both approaches
potentially further reduces the storage and the balancing needs.

64



4. Advantages of Cooperation

In Chapter 3, weather data driven time series of wind and solar photovoltaic power
generation and load time series have been analyzed with respect to European storage and
balancing needs. Implicitly a European cooperation was assumed, with the advantage
that the pooling over this large area can be expected to help counterbalancing spatially
localized fluctuations. Another scenario is, that the European countries do not cooperate
and implement strategies that are optimal for their specific needs. In Section 4.1,
optimal mixes for individual countries are presented and in Section 4.2 compared to
the cooperative scenario. For simplicity only the one hundred percent scenario, as
introduced in Section 3.4, is considered. In that case, c = 0, γ = 1, and a = 1 − b is
used, see Equation (3.1). The data with the one-hour temporal resolution is analyzed
and only ideal storage with ηin = ηout = 1 is considered, see also Section 3.4.

4.1. Optimal Mixes for Countries

We analyze the optimal mixes for the individual countries. The respective wind and
solar generation and load data are aggregated over the sets of regions of each country.
The respective region sets, along with the abbreviations for each country, are shown
in Figure 4.1. The optimal mixes are discussed in detail for Germany, Ireland, Spain,
and Greece. For comparison, the all-European scenario, based on an uniform optimal
mix for all countries and power exchange, results for storage and balancing energies and
power are again shown in Figure 4.2.

For storage, the results for each country are shown in Figure 4.3. The values are
normalized to the average annual consumption of the respective country. The optimal
mix varies, between almost zero and a ≈ 0.8. For Greece, the storage energy for a = 1
is around a factor five higher than in the optimal mix at a ≈ 0. For Ireland on the other
hand, the optimal mix is almost a = 0.8. The other countries considered here are in
between these cases.

When considering the balancing energy and quantiles, as shown in Figure 4.4, only a
small variation of a is found for the optimal mix, with a ≈ 0.6 and up to a ≈ 1 for the
higher quantiles. All countries exhibit almost the same behavior when looking at the
average values. With increasing quantiles, the minimum is less pronounced, indicating
that extreme events cannot be counterbalanced, independent of the mix. This is a
significant difference to the European scenario in Figure 4.2b.
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Figure 4.1.: Map of the countries with the respective abbreviations. The colors, together with
the dotted lines, indicate the regions. The offshore regions are not drawn within
the country borders, for easier recognition of the map. Offshore generation is
added to the respective countries.

To explain the different behavior of the optimal mixes obtained when minimizing
the storage and balancing energies, the timeseries of the generation and the load has
to be examined. The seasonal characteristics of the load have a big influence on the
optimal mix. For each country, the timeseries of the monthly averages are shown in
Figure 4.5. Both Spain and Greece show a much smaller fluctuation strength in the
photovoltaic generation compared to Germany and Ireland, consult the orange curves
in Figure 4.5. For Germany and Ireland in Figure 4.5a and 4.5b, the load time series
correlates strongly with the wind series. This behavior is weak for Spain, see Figure 4.5c.
For Greece in Figure 4.5d, the load is rather anti-correlated to the wind generation and
thus more correlated with the photovoltaic time series, see Figure 4.5d. The main reason
for high electricity usage in winter is illumination and heating. In summer cooling is an
important seasonal influence on the load. The winter peak can be seen, to a different
extent, for all countries shown in Figure 4.5. For Spain and especially for Greece, the
peak in Summer is strong, while for Germany it is small. As the optimal mix that
minimizes the storage energy is dominated by seasonal timescales, a ≈ 0 for Greece and
a ≈ 0.75 for Ireland are in agreement with the timeseries of the load and generation for
the respective countries.
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Figure 4.2.: Storage energy (ηin = ηout = 1), balancing energy and power shown for c = 0
and varying a for whole Europe as discussed in Chapter 3. The values in (a) are
normalized to annual average load and in (b) to hourly average load.
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Figure 4.3.: Required storage energies (ηin = ηout = 1) for selected countries. The values are
normalized to the average annual consumption of the respective country.

The balancing energy, on the other hand, is dominated by short timescales. When
employing a high share of photovoltaic power generation, there is a high probability of
a shortage of power during night. This is independent of the seasonal characteristics.
To minimize the required balancing energy and power, the day night fluctuations have
to be minimized and so the ratio between solar and wind is similar for all countries.

The observation, that the optimal mix for storage varies strongly between countries
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Figure 4.4.: Balancing needs for selected countries. As in Figure 4.2b the balancing energy is
indicated with a solid black curve, the quantiles q = 0.9, 0.99, 0.999 in red, green,
and blue, respectively. The quantile values are normalized to the average hourly
load.

as well as to a smaller extent the optimal mix for balancing, is also found when looking
at all European countries within the data set. This can be seen in Figure 4.6. An
ordering from left to right roughly corresponds to an ordering from south to north. In
good approximation, we find that the more south the country is located, the lower the
fraction of wind power generation, when minimizing the storage energy. The same is
found for balancing energy but to a much smaller extent, as shown in Figure 4.6b.
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Figure 4.5.: Load (red), wind (blue), and photovoltaics (orange) power generation. Normalized
time series of the monthly averages for selected countries for the years 2000 – 2008.
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Figure 4.6.: Overview of the optimal mixes for each country, optimizing either (a) the required
storage energy EH or (b) balancing energy EB. The abbreviations for the countries
are shown in Figure 4.1. The countries are roughly sorted according to their
latitude. Countries in the south are on the left side and northern countries on the
right.
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4.2. Cooperation over Europe versus Selfish Countries

A scenario contrary to European cooperation would be the implementation of autarkic
national policies. The optimal mix can be calculated for every country, as shown in the
previous section. In this scenario, the load of each country has to be satisfied only with
the generation within the country as well as by its balancing and storage facilities.

To asses the question, if a cooperative strategy, with power flows across borders, is
to be favored over a selfish approach for each country, without power flows between
the countries, the required storage and balancing energies and power are compared.
These are shown in Figure 4.7. The energies and quantiles for the European case
is straightforward as done in Chapter 3. The values for the storage and balancing
energies and power quantiles within countries are calculated by examining each country
individually using the respective optimal mixes and adding up the optimal mix values
of each country.
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Figure 4.7.: Comparison of a cooperative scenario (blue) versus a selfish scenario (red). In
the latter countries are optimized with respect to their own needs but no power
is exchanged. The cooperative scenario assumes European cooperation so that
there are no limits for power flows across the borders. The storage energy is
normalized to the average monthly load, whereas the reserve energies and powers
to the average hourly load.

The comparison of the different scenarios is depicted in Figure 4.7. Note, that the
storage energies are normalized to the average monthly load, while the balancing energy
and power quantiles are plotted relative to the average hourly load. It is obvious that
the cooperation results in significantly less storage and balancing energies. This is also
true for the quantiles of the balancing power. The upscaling factors for the selfish
scenario relative to the cooperative case are shown in Figure 4.8. The storage energies
aggregated over all countries would have to be scaled up by a factor around 1.7. The
same is true for the balancing. On average 1.6 times more balancing is needed. For the
quantiles above 0.9, the factor is slightly lower.

The benefits of the cooperative approach, have to be considered in the context that
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Figure 4.8.: The ratios of the energies and power quantiles for the selfish scenario with respect
to the cooperative scenario. The factor gives the required upscaling of the energies
and power quantiles for the case without power flows over country borders.

the needed capacities to transport the power have to be available, but also that storage
as well as balancing energies are limited. The required transport capacities will be the
topic of the next chapter.
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As shown in Chapter 4, power exchange between countries reduces the required storage
and balancing energies. Also, the scenarios analyzed in Chapter 3 imply transport of
energy. This illustrates the importance of power transmission. Sufficient transport
capacities have to be installed to allow for the required power flows.

Power transport systems are large and highly complex [5]. Consequently, the study
of power flows is highly nontrivial as the whole system has to be taken into account
[90]. The effect of fluctuating power generation on the power flows has not been studied
yet. Therefore, we propose a generic model to understand transport flows within a
framework with known properties. In the next chapter, the gained insights are then
tested against the data presented in Chapter 3.

The models described in Section 2.2 are not appropriate to analyze power flows
resulting from fluctuating generation as these either use the shortest path transport
paradigm1 or are designed to describe specific problems with no relation to fluctuating
generation. The power flow in real power systems is determined by physical laws and
the specific properties of the power grid and its components. A usefull approximation
to the exact power flow equations is the so-called “DC power flow” approximation. It is
introduced in Section 5.1 and derived in detail in Section A.2. We introduce a model
that is based on stylized facts from the data in Chapter 3. The model is defined in
Section 5.2 and an overview of the results is presented in Section 5.3.

Fluctuating sources cause flows in transport networks that have a probabilistic nature.
Similar to the work in Section 2.3, we estimate these probability distributions by
using analytically derived approximations and propse a capacity layout. The case
when generation and load between different vertices are uncorrelated is presented in
Section 5.4, while the correlated case is discussed in Section 5.5.

To obtain a model that is numerically and analytically treatable, only quasi-static
states are analyzed, as done in other studies [5, 26, 43]. This approach neglects all
transient effects. However, when analyzing cascading failures, as done in Section 2.3,
the transient dynamics can play an important role [109]. Therefore, the reliability of
calculated cascading failures in our static model is unclear and we only estimate the
robustness against failures of single links.

1The load based on shortest path transport has no significant correlation to the flow in power grids
[75].
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5.1. DC Power Flow Approximation

In Section 2.2, we discussed two transport paradigms that are used in the literature to
quantify transport in power grids. The shortest path transport assumes that transported
commodities are routed along the shortest hop path. However, it was shown [75]
that this paradigm does not adequately describe power flows. A transport paradigm
approximating the physical power flow equations is the so called DC-flow. Since the DC-
flow is well established in the literature [see e.g. 90, 126] and widely used [9, 26, 27, 43],
we chose this approach to examine transport flows in transmission systems (see also
Section 2.2.2).

Here, a short outline of the implications of the DC-flow approximation is given. For a
more detailed derivation consult Section A.2. AC power systems can be well described
by using complex admittances Y , an extension to the laws governing DC circuits, e.g.
Ohm’s law I = Y ·U . It allows to apply DC-current concepts to systems with sinusoidal
voltages and currents with constant frequency. The complex admittance Y = G+ jB
is the sum of the conductance, the inverse of the resistance, and the susceptance that
arises from capacitances and inductances. Because of the changing voltages and currents,
reactive power has to be considered, see Section A.2.1. The full steady state power flow
equations2 can be written as

Si = Pi + jQi = Ui

(∑
k

YikUk

)∗
, (5.1)

where j denotes the imaginary unit and Ui = |Ui|ejδi is the voltage at vertex i with phase
angle δi. Pi and Qi describe the active and reactive powers and Si denotes the complex
power. The entries of the complex admittance matrix Y consist of the admittances of
the links. For known voltages, the active and reactive powers at each vertex can be
calculated using Equation (5.1).

Typically, the injected or withdrawn complex power is known and the voltages phase
angles have to be calculated, so that the power flows over the links can be derived. Since
Equation (5.1) is second order in the voltage, it cannot be solved directly. The specific
properties of power grids allow for approximations, so that the power flow equations
can be greatly simplified. Based on the observation by engineers [90, 126], that the
resistance of the links is small compared to the capacitance, the resistances are neglected.
Furthermore, the phase angles δi are assumed to be small and voltage amplitudes to
be uniform. Using these approximations, Equation (5.1) can be simplified to a linear
system of equations

~P = B′~δ , (5.2)

2The description in Equation (5.1) is only valid for steady states. For transient behavior, the differential
equations describing the system have to be solved.
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with

B′ik = Bik for i 6= k (5.3)

B′ii = −
N∑

k=1,k 6=i

Bik (5.4)

based on the susceptance Bik of the link i → k. This is an equation only for the
active power, since changes in the reactive power vanish due to the simplifications.
Because of this similarity to DC-systems, the approximation is referred to as DC-flow
approximation [90, 126].

The linear system in Equation (5.2) is much easier to solve than the full power flow
equations (5.1). It is used by engineers to obtain a fast approximation of the flows in
the network or as initial solution when solving Equation (5.1). If all susceptances Bik

are set to one, the matrix B′ is equal to the Laplace matrix L (see also Section A.2.4).
There is also a formal analogy with the flow of currents in a resistor network that is
governed by Kirchhoff’s equations as discussed in Section A.2.4. This allows to apply
results found for the latter to be applied to Equation (5.2), but with the conceptual
difference, that the entries of the matrix are not conductances but only susceptances
and that the variable on the right hand side of Equation (5.2) is the phase angle and
not the voltage.

Solving Equation (5.2) for given ~P cannot be done directly, since B′ has a zero
eigenvalue and is thus not invertible [see e.g. 89]. A simple method is introduced in
Section A.2.4.1, using the Moore-Penrose pseudoinverse, so that

~δ = B′+ ~P , (5.5)

with the constraint that the in- and out- flows are balanced
∑

i Pi = 0. The balancing
condition is necessary so that Equation (5.5) is consistant with Equation (5.2). To
avoid confusion with the balancing power from the previous chapters, we refer to the
balancing condition as “matching the in- and out-flows”. The power on the link j → k
is given by [126]

fjk = Bjk (δj − δk) . (5.6)

Using the transpose of the incidence matrix KT , see Section 2.1.1, the power flows can
be written as

~f = B KT~δ , (5.7)

where B is a M ×M diagonal matrix with the suceptances Bik = Bq on the diagonal

and ~f is the vector of flows along the links. The ordering of ~f and Bq has to be defined
with respect the same unique index for the edges as used for K in Equation (2.2).

75



5. Flows in Power Grids: Model

5.1.1. Matching Policies

From energy conservation follows, that the power flowing into the power system has to
either flow out or be consumed in the system. The generation and load at vertex i are
denoted by gi and li, respectively. The mismatch, defined as sum over all generation and
load m =

∑
(gi + li), is typically nonzero. To ensure the conservation of energy, the

load and the generation have to be modified by some method so that they match, i.e.∑
gbi =

∑
lbi . There are unlimited degrees of freedom to modify the load and generation,

accordingly. We introduce two methods, that we refer to as “matching policies”.

The minimum dissipation policy, described in Section 5.1.1.1, minimizes the sum over
the quadratic flows. It is a benchmark as this minimizing property is known a priory.
In Section 5.1.1.2, we introduce the global factor policy, which distributes the mismatch
over all vertices relative to their load or generation and can be treated analytically.

Various other policies are possible. In real systems, the employment of capacities
is usually assigned based on the costs of the generators and transport [107]. The
implementation of such a policy would incorporate a modelling of different classes of
generators with their cost functions, their spatial distribution, and rules on economic
decision making. This is beyond the scope of this work. However, as the cost of
transmission are also considered, the economic dispatch can be expected not to deviate
strongly from the minimum dissipation policy.

In the following, the in- and out-flows before the policy is applied are referred to as
“unmatched”. The matched in- and out-flows, that fullfill the conservation of energy
condition, are denoted by sbj = lbj + gbj .

5.1.1.1. Minimum Dissipation

A policy that minimizes the aggregated flows in the network is of great advantage. It
defines a lower bound that can be used for comparison. Trivially, to minimize the flows,
the load at vertex i should be satisfied by the generation at the same vertex, as this
elicits no flow in the network. Thus, we define the unmatched in- and out-flow at vertex
i as si = gi + li and the matched in- and out-flows for all vertices by

~sb = ~s+ ~sc , (5.8)

with sci the correction at each vertex so that
∑

i s
b
i = 0. The minimal flow has to meet

some constraints. The flow needs to satisfy Equation (5.2). For positive sj, referred to
as sources, the constraint 0 ≤ sbj ≤ sj has to be met. For sinks, with sj ≤ 0, it is the
constraint sj ≤ sbj ≤ 0, in order not to introduce artificial generation or load. Further,
~sc has to satisfy

∑
i si = m = −

∑
i s
c
i .

Another difficulty is that the flow fij along the link i→ j can be positive or negative,
depending on the direction. Using the absolute value in the objective function would
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introduce a rather inconvenient nonlinearity. Minimizing the quadratic flow f 2
ij solves

this problem, leading to a constrained nonlinear optimization problem, also referred to
as nonlinear programming, which is not easy to solve. Gertz and Wright [55] propose a
method to solve problems of the form

min
~x
~xQ ~x (5.9)

with the constraints A~x = ~b and xli ≤ xi ≤ xui , where xli and xui are the respective upper
and lower bounds. To convert our problem into this form, we define the vector ~x as

~x =

(
~f
~sc

)
, (5.10)

where ~f is a vector of length M3 denoting the flows on the links. The in- and out-flow
correction ~sc for each vertex is of length N . Since only the flows should be minimized,
the matrix Q has the form

Q =

(
1M 0
0 0N

)
, (5.11)

where 1M denotes a diagonal M ×M unit matrix and 0N an N ×N zero matrix.

The constraints have to be of the form A~x = ~b. As shown in Section A.2.4, the in/out

flows ~sb are related to the flow on the links ~fij by the incidence matrix K, ~sb = K~fij.
Using this relation, Equation (5.8) can be written as

~s = ~sb − ~sc = K~fij − ~sc = A′~x′ (5.12)

with

A′ =
(

K IN
)
. (5.13)

The constraint
∑

j s
c
j = −m can be incorporated into the linear constrain equation

A~x = ~b via

A =

(
K IN
0 1 . . . 1

)
. (5.14)

and

~b =

(
~s
−m

)
, (5.15)

Additional conditions for all sources are 0 ≤ sbj ≤ sj and for sinks sj ≤ sbj ≤ 0.

So far, Equation (5.2), ~P = B′~δ, is not implemented explicitly. As argued in
Section A.2.4, the matrix B′ is formally equal to the admittance matrix Yres describing

3M denotes the number of edges.
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a resistor network. The flow obeying Kirchhoff’s laws is known to minimize the
dissipation in a resistor network [19]. The dissipation pdij at the link i→ j is the product
of the current fij and the voltage difference (ui − uj) at the resistor Rij. With Ohm’s
law, we find

pdij = fij (ui − uj) = Rijf
2
ij . (5.16)

The dissipation of the whole network is defined as the sum of the energy dissipated at
all links

pd =
∑
ek∈E

Rekf
2
ek

(5.17)

with E the set of edges and ek denoting an edge i → j, so that e.g. Rek = Rij. For
Rij = 1, Equation (5.17) is equal to the objective function in Equation (5.9). As shown

in Section A.2.4, Kirchhoff’s current law can be written as ~sb = K~fij, where K is the
incidence matrix. By Thomson’s Principle4 [73], we know that if the current law is
met and the flow is minimal, Kirchhoff’s potential law is also fullfilled. Because of
the formal equality of B′ and Yres and of the conservation of energy, ~P = B′~δ (see
Equation (5.2)) has to be satisfied for Bij = 1. Arbitrary Bij can easily be implemented
by extending the vector ~x in Equation (5.10) with a vector containing the voltage phases
~δ. Further, the constraint X KT~δ − ~f = 0, where X is a diagonal matrix with the
susceptances on the diagonal, is added to the matrix A in Equation (5.14) together with
further zeros in Q in Equation (5.9). This is not done here, since we use only uniform
susceptances Bij = 1 in this work. Equation (5.5) is consequently fullfilled because the
flow is minimal and the additional constraints would only cause a higher complexity for
numerical evaluation that is thus avoided.

5.1.1.2. Global Factor Policy

A very simple approach is to divide mismatches with equal shares over all vertices.
For shortages, all vertices have to shed a fraction of the load and the same is true for
surpluses concerning generation. Sinks and sources at each vertex are then multiplied
with a common factor in order to match generation and load,

gbi = (1− α′)gi lbi = (1− β′)li . (5.18)

To ensure that for m =
∑

i si =
∑

i gi + li > 0 only the generation is reduced, we require
that 0 ≤ α′ ≤ 1 with β′ = 0. α′ = 0 and 0 ≤ β′ ≤ 1 causes loads to be shedded only for
negative m.

4The currents in a resistor network that fullfill Kirchhoff’s circuit laws, are the unique flows that
minimize the dissipation [73].
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With the requirement that
∑

i

(
gbi + lbi

)
= 0, the values of α′ and β′ follow for positive

mismatch m > 0 as

α′ =
m∑
i gi

= 1 +

∑
i li∑
i gi

β′ = 0 . (5.19)

For m < 0, we find

β′ =
m∑
i li

= 1 +

∑
i gi∑
i li

α′ = 0 . (5.20)

This policy can be implemented very efficiently, as the factors α′ and β′ are calculated
simply by adding up all load and generation. These factors can then be applied to all
vertices, yielding a low numerical complexity.

5.2. Definition of the Model

The model presented here, serves as a base for the following studies. It is focused on
fluctuating generation and various distributions of generators and consumers in the
network. The generation gi is defined to be a random variable to account for fluctuations
in the renewable power generation. The load is modeled by a constant value, since the
timescale of variations in the load is much larger than the timescale of fluctuations in
the renewable power generation. This is plausible on the level of the transport network,
since only aggregated loads have to be considered. Besides that, the strength of the
variations in the load is much smaller than the variation in the generation, see Chapter 3,
and the daily load curves are well known by utility companies [107]. Consequently,
mainly fluctuations in the generation due to e.g. weather effects constitute a problem,
eventually leading to shortages or excess of power. We assume that for cases of shortages,
load is either shedded or met with additional local balancing generation, and that excess
generation is discarded.

To test different scenarios for the distribution of the load and the generation over the
vertices, the mean values of the generation and consumption are varied in the network.
We interpolate between a homogeneous distribution and a separation between center
and periphery in terms of the degrees of the vertices, so that load is located in the center
and generation in the periphery. A vertex with high degree is considered to be more
central than low degree vertices. This is plausible since e.g. a large share of wind power
can be expected to be generated offshore or close to the sea and each generator to be
connected only by few links. Consumption centers should be connected to the grid by
many links to ensure a high reliability of the system. Various other spatial separations
could be defined, but to restrict degrees of freedom of the model, only these scenarios
are considered.

The parameters βg and βl, determine the strength of the spatial separation of the
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generation and load. The mean generation at vertex i is defined to be

〈gi〉 = cg (ki − kmin + 1)−βg (5.21)

and the load

〈li〉 = li = −cl (kmax + 1− ki)−βl , (5.22)

with the normalization factors cl and cg. The higher βL and βg the more power is
consumed in the center and produced in the periphery. kmax and kmin denote the
maximal and minimal degree of the network.

To compare different networks, the sum of the generation and of the load are normal-
ized so that

∑N
i 〈li〉 = −1 and

∑N
i 〈gi〉 = κ. The parameter κ is the ratio of the power

produced to the power consumed. The prefactors cl and cg then follow as

cl =

(∑
i

(kmax + 1− ki)−βl
)−1

cg = κ

(∑
i

(ki − kmin + 1)−βg

)−1

. (5.23)

The choice of the probability distribution of the generation was made such, that it is
“easy to work with” but on the other hand plausible with respect to real data. In the
model, the generation gi is drawn from a uniform distribution, since it is the simplest
continuous distribution supported on a bounded interval and has e.g. a well defined
characteristic function. The uniform distribution is denoted by U(x; a, b), where a and
b denote the upper and lower bound. The lower bound for the generation is defined to
be zero and the upper bound follows as twice the mean generation 〈gi〉. The generation
at each vertex is assumed to be independent and successive fluctuation realizations to
be uncorrelated.

The transport networks are created with the geometric p network approach described
in Section 2.1.2. Power grids were modelled by networks with exponential degree

distribution p(k) = γ−1 exp
(
−k
γ

)
with λ = {1, 1.8} as these mimic the European grid,

see Section 2.1.3. For comparison, also scale-free degree distributions, with α = {2.3, 2.8},
and Poisson degree distributions, with λ = {1.5, 1.8}, are analyzed. The latter also
resemble the simplified grid in Chapter 6, as this is close to a geometric network with
Poisson degree distribution [39]. Networks for the above configurations were created
with pcc = 0 and pcc = 1, to obtain a low and a high clustering coefficient, respectively,
as described in Section 2.1.2. The probability that a randomly selected vertex has
degree one is set to 10% of the probability of a vertex with degree two to account for the
features found for the network of power grids, see Section 2.1.3. One typical realization
of each network is considered and their properties are summarized in Table 5.1. For
simplicity all susceptances of the links are set to one, Bij = 1.

The model is evaluated using the Monte Carlo method. In the following 104 fluctuation
realizations for the generation gi are drawn for each vertex from the respective uniform
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Exponential Scale-free
λ = 1 λ = 1.8 α = 2.3 α = 2.8

pcc 0. 1. 0. 1. 0. 1. 0. 1.

〈k〉 2.498 2.498 2.108 2.108 3.772 3.772 2.898 2.898
〈distance〉 9.701 21.469 22.343 69.217 4.809 7.068 6.667 11.582

cc 0.002 0.115 0.000 0.054 0.009 0.249 0.002 0.166

Poisson
λ = 1.5 λ = 2.5

pcc 0. 1. 0. 1.

〈k〉 2.554 2.554 3.172 3.172
〈distance〉 9.401 23.226 6.529 14.284

cc 0.000 0.129 0.000 0.134

Table 5.1.: Measures of the graphs that are used in the simulations. pcc is the parameter of
the network generator to tune the clustering coefficient (cc), see Section 2.1.2.

distribution. For each fluctuation realization the resulting transport flows are calculated.
This is done as follows: One of the matching policies introduced in Section 5.1.1 is
applied to the load li and generation gi for each vertex, yielding the balanced load lbi
and generation gbi that satisfy

∑
i

(
lbi + gbi

)
= 0. The balanced load allows to define the

flow into or out of vertex i, given by

sbi = lbi + gbi . (5.24)

The DC flow approximation is used to calculate the flows in the transport network; see
Section 5.1 and Section A.2.3. From the equations of the DC-flow follows that

~sb = B′~δ , (5.25)

with the voltage phase angle δi at vertex i. To calculate the phases the Moore–Penrose
pseudoinverse B′+ is used (see Section A.2.4.1) since the matrix B′ is not directly
invertible:

~δ = B′+~sb . (5.26)

The flow fij along a the link i→ j is given by

fij = Bij [δi − δj] = Bij

[
N∑
k=1

(
B′+ik −B′+jk

)
sbk

]
. (5.27)

When considering all fluctuation realizations, an ensemble of flows for each link is found.
This allows to derive probability distributions for the flows of each link.
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5. Flows in Power Grids: Model

The proposed model greatly simplifies the findings in Chapter 3. This includes the
systematic behavior on the seasonal and daily timescales for the load and generation.
On the other hand, this approach reduces the parameters of the model and allows for a
systematic analysis and analytical estimations of the flows.

5.3. Simulation Results Overview

To get an overview of the behavior of the model and the dependencies on the parameters,
we sampled a part of the parameter space. All combinations of the parameters βS =
{0, 1}, βL = {0, 1}, κ = {0.5, 1, 2}, and pcc = {0, 1} were used togeher with the matching
policies introduced in Section 5.1.1. Networks with exponential degree distribution,
with λ = {1, 1.8}, scale-free degree distribution, with α = {2.3, 2.8}, and Poisson degree
distribution, with λ = {1.5, 1.8} are studied. Their main properties are shown in
Table 5.1.

The aggregated flows over all links

FA =
∑
k∈E

|fk| (5.28)

averaged over 104 fluctuation realizations are shown in Figure 5.1. As defined in
Section 5.2, the sum of all unbalanced loads are normalized to one and the unit of the
flow is arbitrary. The difference between the data for different clustering coefficients,
pcc = 0 and pcc = 1, is mainly an up-scaled sum of the flow when using the global
factor policy. For the minimum dissipation policy this is only true for κ = 1. For βl or
βg equal to one, the sources and sinks are spatially separated, so that the aggregated
flows increase compared to βl = βg = 0. Both cases of βl with βg = 1 show a higher
flow than the corresponding cases with βg = 0. This is not surprising as the load of all
vertices is constant and so for βg = 0 there is a high probability for a generator to be
close to a load. For βg = 1, the generation is located in the periphery and needs to be
transported over longer distances, causing a higher aggregated flow. Varying the ratio
between sources and loads κ has a different effect on the global factor policy compared
to the minimum dissipation policy. The latter show the maximal flow for κ = 1 and the
flow for both the κ = 0.5 and κ = 2 cases is significantly lower. This is due to the fact
that the minimum dissipation policy first serves the local demand. For κ = 0.5, most of
the time the source can not even satisfy the local load and so little power is injected
into the network causing a small aggregated flow. The opposite takes place for κ = 2,
almost all loads can be satisfied locally, so that little transport is needed. For κ = 1,
the probability that a load can not be satisfied locally or within it’s near neighborhood
is high, so that the average accumulated flow is relatively large. For the global factor
policy there is no preference to serve local loads first. Any pair i, j of vertices might be
chosen for matching so that there is a high probability for transport for all κ.

When looking at the average distances of the networks in Table 5.1 together with the
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mean(∑
i

|fi|)

beta S/L: 0/0

beta S/L: 0/1

beta S/L: 1/0
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0.0 0.5 1.0 1.5 2.0 2.5

kappa: 0.5

Exponential, lambda: 1

kappa: 1

Exponential, lambda: 1

0.0 0.5 1.0 1.5 2.0 2.5

kappa: 2

Exponential, lambda: 1

beta S/L: 0/0

beta S/L: 0/1

beta S/L: 1/0
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kappa: 0.5

Exponential, lambda: 1.8
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Exponential, lambda: 1.8
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Poisson, lambda: 2.5
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Poisson, lambda: 2.5
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Powerlaw, alpha: 2.3

kappa: 2
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Powerlaw, alpha: 2.8
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kappa: 2

Powerlaw, alpha: 2.8

Figure 5.1.: The average sum over all flows
〈∑

k∈E |fk|
〉

for different configurations for one

network realization of each degree distribution as denoted in the plot. The flows

have arbitrary units. Colors / symbols: O Minimum dissipation with pcc = 0, �
minimum dissipation with pcc = 1, ◦ global factor with pcc = 0, and + global
factor with pcc = 1.
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(b) κ = 1, global factor policy
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(c) κ = 2, global factor policy

10 20 30 40 50 60 70

0
.5

1
.0

1
.5

2
.0

<d>

<
∑

|f i
j|>

xxxxx
x

x

x

x

x

x

x

x
x

x
x

x

x
x
xxx
x

x

x

x

x

x
x

x

x
x

x
x

x

x

xxxx
x

x

x

x

x

x
x

x

x
x

x
x

x

x
x
xxx

x

x

x

x

x

x
x

x

x
x

x
x

x

x

(d) κ = 1, minimum dissipation policies

Figure 5.2.: Scaling of the averages of the sums of all flows
〈∑

j fej

〉
with the mean distances

of all networks listed in Table 5.1 with different κ. The crosses indicate the average
aggregated flow and the mean distances for a each network. For the fitted dashed
line see text.
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aggregated flows in Figure 5.1, a scaling between the average accumulated flow and the
mean distances of the networks seems likely. In Figure 5.2, this scaling is shown for all
networks generated with pcc = 0 and pcc = 1. The different average distances arise from
different degree distributions and clustering coefficients, see Table 5.1. For the global
factor policy and the minimum dissipation policy for κ = 1, there is a dependence of the
mean aggregated flow to the average distance that can be fitted in good approximation
with 〈∑

j

fej

〉
∝ (〈d〉 − c)a . (5.29)

For the configurations shown in Figure 5.2, 0.6 ≤ a ≤ 0.825 was found indicated by
the dashed lines. No such scaling could be found for the minimum dissipation policy
with κ = 0.5 and 2. This finding is only discussed qualitatively, here. The global
factor policy implements a matching that ensures that all vertices receive a fraction of
their load independent of their positions. Larger distances between generator and load
cause a higher aggregated flow, so the scaling with the average network distance is not
surprising. With respect to the aggregated flow, the network properties, like degree
distribution, clustering coefficient etc., are dominated by the resulting average network
distance. The interesting observation is that both policies show a similar qualitative
behavior for κ = 1, indicating that in this regime their influence on the flows is small.
Further, the comparison with the shortest path transport reveals important properties
of the DC flow. With a simple reasoning, we find a ≈ 1 for shortest path transport.
The mean distance is the sum over all distances between all vertex pairs normalized by
the number of pairs of vertices N(N − 1). This can also be calculated by counting all
edges that are part of a shortest path between two vertices normalized to the number
of all vertex pairs, since both sums have to be the same. This yields

〈d〉 =
1

N(N − 1)

∑
k∈E

(∑
j∈V

∑
i∈V6=j

path([i→j]; ek)

)
(5.30)

(see also Equation (2.18)). The flow over link fk using shortest paths is given by

fk =
∑
j∈V

∑
i∈V6=j

αijpath([i→j]; ek) , (5.31)

where αij is the flow from i to j. If we assume that the flows between two vertices are
similarly distributed for all pairs of vertices5, the average of the factors 〈αij〉 can be
drawn in front of the summations, so that the average accumulated flow FA =

∑
k∈E fk

in the network follows as

FA =
∑
k∈E

fk = 〈αij〉
∑
j∈V

∑
i∈V6=j

path([i→j]; ek) = N(N − 1) 〈αij〉 〈d〉 ∝ 〈d〉 (5.32)

5E.g. for the case of βL = βS = 0, the average flows between all pairs of vertices are equal.
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(a) Minimum dissipation policy
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Figure 5.3.: Histograms of typical flow distributions on links using the global factor and the
minimum dissipation policy, here: Exponential degree distribution with λ = 1.8,
βS = 1, βL = 1, N = 1000 and κ = 1. The symbols indicate different links.

and show a scaling exponent of one. The fact that the DC flow exhibits a < 1 is thus
remarkable. It can be explained by the fact that the DC flow is indistinguishable, in
the sense that a load can not discriminate between the generating vertices it receives
power from. Because of the potentials that follow from Equation (5.2), a large fraction
of the generation flows to the nearest load, so that there is an inherent tendency for
the effective flows between the vertices to be minimal. Therefore, the increase of the
average aggregated flow increases slower than the average distance.

After considering the aggregated flow, we now analyze the probability distributions
of the flow over the individual links. In general, it can be expected that the flows
over many links are distributed close to a normal distribution as will be argued in the
following. However, some links may be dominated by the flow of only few vertices, so
that the probability distribution of the flows may be close to the distribution of the
dominating vertex, which is a uniform distribution by definition.

Some typical flow distributions are shown in Figure 5.3. As expected, some distribu-
tions are close to uniform and normal distributions. To describe the flow distributions,
the third and fourth standardized moments, called the skewness γ1 and the kurtosis γ′2,

γ1 =
µ3

σ3
γ′2 =

µ4

σ4
, (5.33)

are examined. Hereby, µ3 and µ4 denote the third and fourth central moments. The
skewness is a measure of the asymmetry of a distribution and the kurtosis measures
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(b) Distribution of the excess kurtosis, the
brown lines indicate the kurtosis of the
uniform, the triangular, and the nor-
mal distribution from left to right

Figure 5.4.: Distributions of the skewness and the excess kurtosis of all links for all configura-
tions shown in Figure 5.1 that employed the global factor policy.

how strongly a distribution is peaked. Commonly the excess kurtosis is used, defined as

γ2 =
µ4

σ4
− 3 =

κ4

κ2
2

, (5.34)

where κn is the n-th cumulant and γ2 ≥ −2 by construction [71]. The excess kurtosis has
the advantage that the value for the normal distribution is zero. Thus, the kurtosis can
be used as a test for the Gaussianity of a distribution [71]. The uniform distribution has
an excess kurtosis of γ2 = −6

5
and the triangular distribution, which is the convolution

of two identical uniform distributions, has γ2 = −3
5
.

The distributions of the skewness and kurtosis are shown in Figure 5.4 using the
global factor policy for all parameters that were considered in Figure 5.1. The skewness
is scattered around zero with a small variance, so that the flow distributions are in
good approximation symmetric about the mean. The kurtosis therefore carries the
most information. The kurtosis lies in almost all cases between the excess kurtosis
of the uniform distribution, −6

5
, and zero, i.e. the kurtosis of the normal distribution.

The highest probability is an excess kurtosis close to zero, a strong evidence that
the probability distributions of the flows on most of the links are close to a normal
distribution. Values above zero indicate that the distribution is stronger peaked than a
normal distribution. The first two standardized moments of the link flows using the
minimum dissipation policy, shown in Figure 5.5, are also close to a normal distribution
with the highest probability but the deviations are much stronger. The excess kurtosis
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κ = 1
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(c) Distribution of the excess kurtosis for
kappa = {0.5, 1, 2}

Figure 5.5.: Distributions of the skewness and the excess kurtosis of all links for all configu-
rations shown in Figure 5.1 that employed the minimum dissipation policy. The
y-axis is on a logarithmic scale.

with κ = 1 of all links is shown in Figure 5.5b. Compared to the global factor policy,
the number of links with a flow distribution that is more peaked than the normal
distribution, indicated by an excess kurtosis large than zero, is significantly higher.
When including the values for κ = 0.5 and κ = 2 in Figure 5.5c, we see very high values
for the excess kurtosis. This is explained by the fact that for κ = 0.5 and κ = 2, the
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Figure 5.6.: Typical probability distributions of the flows on links using the global factor policy
on a exponential network with λ = 1 and N = 1000. In (a) links with a low
average flow are shown, in (b) links with a high average. The network parameters
are chosen as in Figure 5.3. The dashed lines indicate the fitted generalized gamma
distribution.

power flows in the network are small, so that the distributions are strongly peaked at
zero, consult also Figure 5.1.

The fact that there is a high probability to find a distribution close to a normal
distribution is not surprising. The DC flow from vertex i to j flows over all possible
paths from i to j. For a given fluctuation realization, the flow over link q can be written
as

fq =
N∑
k=1

%qksk , (5.35)

where %qk denotes the fraction of the in- and outflow of vertex k that flows over link q.
If N is large, enough prefactors %qk are similar and assuming that the correlations are
small, the central limit theorem applies and the distribution is in good approximation a
normal distribution [54].

For some problems, e.g. to determine the required capacity of a link, the direction of
the flow is not important but only its magnitude. Therefore, the absolute flow fa over
the link q, defined as

faq = |fq| , (5.36)

is examined. In Figure 5.6, typical distributions for the absolute flow are shown using
the global factor and in Figure 5.7 for the minimum dissipation policy. In most cases,
these distributions are very good approximated by a generalized gamma distribution.
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Figure 5.7.: Typical probability distributions of the flows on links using the minimum dissipation
policy. The parameters are the same as in Figure 5.6.

The generalized gamma distribution is defined as

f(x; b, d, k) = d
xdk−1

bdkΓ(k)
exp

(
−
(x
b

)d)
, (5.37)

with positive b, d and k, and the gamma function Γ(z) =
∫∞

0
tz−1e−t dt [112]. The

dashed lines in Figure 5.6 and 5.7 indicate the fitted generalized gamma distributions.
The parameters were fitted to the first three raw moments, given by

µ′n = E(Xn) = bn
Γ
(
k − n

d

)
Γ(k)

, (5.38)

as described in Section A.3.2.

A good method to compare two distributions is the so-called Q-Q plot [125], where
the quantiles of the data are plotted against the quantiles of the fitted distribution, in
our case the generalized gamma distribution. The quantile Q denotes the value with
the property, that with probability q the values of the probability distribution p(x)

are smaller than Q,
∫ Q
−∞ p(x)dx = q. The Q-Q plots of all links for βl = βg = 0 and

βl = βg = 1 are shown in Figure 5.8 as a density. All quantiles were normalized to
the maximal quantile in the data of the respective link, so that 0 < Qnorm

data < 1 for all
quantiles of the data. The dark red colors correspond to pairs of quantiles found in
almost all links and the dark blue regions to quantiles only found for single links. The
two policies are shown separately for κ = 1 and κ = 2. For κ = 1, both policies show
the highest densities along the x = y line, indicating, that the quantiles of the data
and the fitted generalized gamma distribution are equal. Only for high quantiles, small
deviations are found that can be expected to be due to the sampling. This is also true
for the global factor policy for κ = 2. However, there are large deviations between the
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(a) Global factor policy, κ = 1
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(b) Global factor policy, κ = 2
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(c) Minimum dissipation policy, κ = 1
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(d) Minimum dissipation policy, κ = 2

Figure 5.8.: Q-Q plot for comparing the quantiles of the data Qnormdata to the quantiles of the
fitted generalized gamma distribution QnormGGamma for all links. The quantiles are
normalized to the values of the maximal quantile of the data for each link to map
all quantiles on the range between zero and one. The quantile plots of all links are
shown as density, red corresponds to a pair of quantiles found in all links and the
dark blue regions are only found for single links. The isolated point are due to the
binning of the data. An exponential network with λ = 1, βS = βL = {0, 1} is used
and N = 1000.

distributions of the absolute flows when using the minimum dissipation policy with
κ = 2 and the fitted generalized gamma distribution on some links. This is discussed in
more detail in Section 5.5.
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5. Flows in Power Grids: Model

5.4. Analytical Approximations for the Uncorrelated
Case

In this section, approximations to the flow distributions for each link are derived
analytically. This allows to predict the flows in the network and assign appropriate
capacities to the links.

In probability theory, most theorems assume uncorrelated random variables. The
unmatched in- and out-flows are uncorrelated by definition in the model. The matching
introduces negative correlations between generation and loads due to the condition that
the sum over the generation has to be equal to the sum over the loads,

∑
i g

b
i = −

∑
i l
b
i .

By systematicly matching generation and load, the correlations between the matched
in- and out-flows sbj, for different vertices are determined by the policy.

Considering a pair of vertices i and j, the correlation between the random variables
of the matched in- and out-flow Sbi and Sbj is defined by [77]

ρi,j = corr(Sbi , S
b
j ) =

cov(Sbi , S
b
j )

σSbi σSbi
=
E[(Sbi − µSbi )(S

b
j − µSbj )]

σSbi σSbj
, (5.39)

with E[X] being the expectation value of the random variable X with mean µX and
standart deviation σX . The correlation is defined so that −1 ≤ ρi,j ≤ 1. Figure 5.9
shows the average correlation of the respective sbi for all pairs of vertices at a given
distance, when using the global factor policy. The correlations found in the data are
in the order of O(N−1). We conclude, that when using the global factor policy, the
correlations are small and can be neglected for N & 100. The derivation done in this
section takes advantage of this fact. As the distributions of the absolute flow are in
good agreement with a generalized gamma distribution, we aim to derive the respective
parameters for each link.

The in- and out-flow at each vertex is given by a probability distribution pi(si). The
effects of the matching will be discussed in detail in Section 5.4.2 and the distributions
p
(
sbj
)

derived. For now, we neglect the influence of the matching policy and assume
sbj = sj . The cumulants and the cumulant generating functions are used for the analysis,
as these allows for an approach similar to the method used in Section 2.3. The properties
of the cumulants are described in Section A.3.1.

For a given realization ~Sb of the in- and out-flow at each vertex, the flow over the
link q → r is given by

Fqr = Bqr

N∑
k=1

(
Y +
qk − Y

+
rk

)
Sbk , (5.40)

consult also Equation (5.27). For notational simplicity, Y is used to describe the
DC-flow instead of B′, see Section 5.1. Fqr is thus a weighted sum over N random
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(b) κ = 2, exponential degree distribution
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(c) κ = 1, scalefree degree distribution
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Figure 5.9.: Average correlations of the matched in- and out-flows sj of all pairs of vertices
at a given distance introduced by the global factor matching policy. The data
for a graph with exponential degree distribution with λ = 1.8 and for a scalefree
network with α = 2.3 are shown, both with N = 1000 and pcc = 0. The dashed
line indicates the mean distance of the graph.

values. This means that the probability distribution of the flow at each edge is given by
the convolutions of the probability distributions of the in- and out-flows p

(
sbj
)

pfqr(fqr) = psb1

(
sb1; γ1

qr

)
∗ psb2

(
sb2; γ2

qr

)
∗ · · · ∗ psbN

(
sbN ; γNqr

)
, (5.41)

with γjqr = Bqr

(
Y +
r,j − Y +

q,j

)
. psbj

(
sbj; aj

)
describes random values, Sbj , drawn from the
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5. Flows in Power Grids: Model

probability distributions psbj

(
sbj
)

scaled with the factor aj. The convolution is denoted

by ∗.

By definition, the in- and out-flows Sj are drawn from a uniform distribution
U(x; a′, b′), so that all values on the closed interval from a′ to b′ have an equal probability
and since the balancing is neglected here, we have

pfqr(fqr) = U
(
sb1; γ1

qra
′
1, γ

1
qrb
′
1

)
∗ U
(
sb2; γ2

qra
′
2, γ

2
qrb
′
2

)
∗ · · · ∗ U

(
sbN ; γNqra

′
N , γ

N
qrb
′
N

)
. (5.42)

The scaling factors γjqr from Equation (5.41) are implemented by scaling the bounds
of the distribution, see Section A.3.1. Still calculating Equation (5.41) and (5.42) is
rather nontrivial. Bradley and Gupta [21] derived a series representation of the sum of
N non-identically distributed uniform variables and a closed form solution could not be
found in literature. The distribution of the sum of N nonidentical independent random
variables uniformly distributed on the closed interval [ci − ai, ci + ai] is then given by
[21]

fN(x) =
1

(N − 1)! 2N+1

(
N∏
j=1

aj

)−1
 ∑
~ε∈{−1,1}N

(
z~ε(x)

)N−1

sign(z~ε(x))
N∏
j=1

εj

 (5.43)

with

z~ε(x) = x+
N∑
j=1

(εjaj − cj) . (5.44)

The derivation of Equation (5.43) is outlined in Section A.3.3. The sum over ~ε indicates
that the summation has to be done over all 2N vectors of signs ~ε = (ε1, . . . , εN) with
εj = ±1. Using Equation (5.43) the probability distribution of the directed flows can
be calculated when inserting γ1

qra
′
1 and γ1

qrb
′
j for ci − ai and ci + ai, respectively. This

equation cannot be numerically evaluated6 as will be discussed in Section 5.4.1.1 on
Page 98.

5.4.1. The Moments of the Absolute Flows

The absolute flow faij = |fij|, without the information on the direction, is of great
interest. It was discussed in Section 5.3 and is crucial to define quantities like the
capacities for the links. The probability distribution of the absolute flow faij can be
calculated from the distribution of the directed flows by

paij
(
faij
)

= H(fij) (pij(fij) + pij(−fij)) (5.45)

6Using high precision numerics, Equation (5.43) was evaluated for small N but the needed resources
were high, so that a Monte-Carlo simulation as done in Section 5.3 is the better approach.

94



5.4. Analytical Approximations for the Uncorrelated Case

where H(x) is the Heaviside function that is one for x > 0, zero for x < 0, and 0.5 at
x = 0. The probability on the negative semiaxis is mirrored and added to the positive
semiaxis.

To calculate the moments, a method similar to the derivation in Bradley and Gupta
[21] is used. They take advantage of the properties of the characteristic function as the
sum over N nonidentical uniformly distributed random variables, like in Equation (5.41),
becomes a product over the respective characteristic functions (see Section A.3.1).

The characteristic function7 of Equation (5.45) is found to be

p̃aij(k) =
1

2π
H̃(k) ∗

(
p̃ij(k) + p̃ij(−k)

)
(5.46)

and the characteristic function, or Fourier transform, of the Heaviside function is given
by

H̃(k) = πδ(k) +
1

ik
(5.47)

so that

p̃aqr(k) =
1

2
·
(
p̃qr(k) + p̃qr(−k)

)
︸ ︷︷ ︸

g̃qr1

+
1

2π

1

ik
∗
(
p̃qr(k) + p̃qr(−k)

)
︸ ︷︷ ︸

g̃qr2

. (5.48)

For g̃qr2 to be finite, the characteristic functions p̃qr(k) and p̃qr(−k) are assumed to
vanish sufficiently fast for high k.

The characteristic function of the uniform distribution U(x; cj − aj, cj + aj) is given
by the modulated sinc function8 Ũ(k; cj − aj, cj + aj) = eicjk sinc(ajk) [21]. From
Equation (5.41), we get

p̃aqr(k) =
N∏
j=1

Ũ
(
k; γjqra

′
j, γ

1
qrb
′
j

)
=

N∏
j=1

eicjk sinc(ajk) , (5.49)

with cqrj = γjqr
a′j+b

′
j

2
and aqrj =

∣∣∣γjqr b′j−a′j2

∣∣∣9.

For the general case, further properties of the moments can be calculated independent
of the underlying distributions psbj

(
sbj; γ

j
qr

)
. The n-sth raw moment10 can be calculated

7The characteristic function of f is marked by a tilde, f̃ .
8The modulation, given by eicjk, accounts for translation and is zero for uniform distributions centered

at zero.
9For simplicity, we define aqrj ≥ 0 without loss of generality

10The raw moments denote the moments about zero, µ′k = E
[
Xk
]
, in contrast to the central moments

that are centered about the mean, µk = E
[
(X − 〈X〉)k

]
.
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from the characteristic function by evaluating the n-sth derivation of the characteristic
function at zero [77]:

〈xq〉 = i(−q)
[
dq

dkq
p̃(k)

]
k=0

. (5.50)

The raw moments of the absolute flow follow from

〈(
faij
)n〉

= i(−n)

[
dn

dkn
p̃aqr(k)

]
k=0

= i(−n)

[
dn

dkn
g̃qr1 (k)

]
k=0

+ i(−n)

[
dn

dkn
g̃qr2 (k)

]
k=0

.

(5.51)

As mentioned above, one of the aims is to estimate the parameters of the generalized
gamma distribution that approximates the distribution of the absolute flows, so we
focus on the first three moments since these are sufficient to calculate the parameters of
the generalized gamma distribution.

The moments of terms g̃qr1 and g̃qr2 in Equation (5.48) are analyzed separately as
follows from Equation (5.51). By using symmetry considerations, the moments of
the term g̃qr1 can be simplified, whereas g̃qr1 is always an even function by definition11.
The derivative of an odd function is always an even function and vice versa [22]. By
construction, odd functions are zero at the origin, so that

〈(g̃qr1 )n〉 = i−n
[
dn

dkn
g̃qr1

]
k=0

= 0 for odd n (5.52)

follows12. From the property of additivity of the cumulants (see Section A.3.1) follows
for n = 2

〈
(g̃qr1 )2

〉
=

(
N∑
j=1

(
Y+
qj −Y+

rj

)2
σ2
j

)
+

(
N∑
j=1

(
Y+
qj −Y+

rj

)
µj

)2

, (5.53)

where µ2
j and σ2

j are the mean and the variance of the in- and out-flow sbj at vertex j.

To analyze the convolution part of Equation (5.48), g̃qr2 is plugged into Equation (5.50)
and 〈(g̃qr2 )n〉 is expanded, so that

〈(gqr2 )n〉 =
i−(n+1)

2π

[
dn

dkn

(∫ ∞
−∞

1

k − s
(p̃qr(s) + p̃qr(−s)) ds

)]
k=0

. (5.54)

The derivation can not be drawn under the integral since 1
k−s is not continuous for k

equal to s. To calculate the integral, 1
k−s is expanded into a Taylor series around k = 0,

11The function f(k) = p̃qr(k) + p̃qr(−k) always satisfies f(k) = f(−k)
12This can also be shown using the cumulants.
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1
k−s = −

(
1
s

+ k
s2

+ k2

s3
+ k3

s4
+ . . .

)
, yielding

〈(gqr2 )n〉 =
1

2πin+1

[
dn

dkn

(∫ ∞
−∞

(
1

s
+
k

s2
+
k2

s3
+
k3

s4
+ . . .

)

(p̃qr(s) + p̃qr(−s)) ds

)]
k=0

(5.55)

= − n!

2πin+1

∫ ∞
−∞

1

sn+1
(p̃qr(s) + p̃qr(−s)) ds (5.56)

which follows from the fact that k can be drawn in front of the integral and that the n-th

derivative gives a prefactor of the form
(

1
sn+1 + k1

sn+2 + . . .
)

to the integral, so that only

the term constant in k is left at k = 0. With the same argument as for Equation (5.52),
we find

〈(gqr2 )n〉 = 0 for odd n , (5.57)

since the sum of p̃qr(s) and p̃qr(−s) is an even function that is multipied with an odd
function 1

sn+1 , yielding an odd function. The integral from minus infinity to plus infinity
over an odd function is zero.

To summarize, for the first three moments of the absolute flow we find〈(
faij
)〉

= 〈gqr2 〉 (5.58)〈(
faij
)2
〉

=
N∑
j=1

σ2
j + µ2

j (5.59)〈(
faij
)3
〉

=
〈

(gqr2 )3
〉
, (5.60)

so 〈(gqr2 )n〉 for odd n is left to calculate. For the following, Equation (5.56) is separated
into

〈(
gqr2+

)n〉
and

〈(
gqr2−
)n〉

, with

〈(gqr2 )n〉 = − n!

2πin+1

∫ ∞
−∞

1

sn+1
(p̃qr(s) + p̃qr(−s) ds) (5.61)

= −

[
n!

2πin+1

∫ ∞
−∞

1

sn+1
(p̃qr(s) ds)︸ ︷︷ ︸

〈(gqr2+)
n〉

+
n!

2πin+1

∫ ∞
−∞

1

sn+1
(p̃qr(−s) ds)︸ ︷︷ ︸

〈(gqr2−)
n〉

]
.

(5.62)

In the next sections, 〈(gqr2 )n〉 for odd n will be calculated exactly as well as using different
approximations.
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5.4.1.1. Exact Moments of the Absolute Flow

First, an exact solution of 〈(gqr2 )n〉 is derived. Inserting the characteristic function from
Equation (5.49) into

〈(
gqr2+

)n〉
, we have

〈(
gqr2+

)n〉
=

n!

2πin+1

∫ ∞
−∞

1

sn+1

N∏
j=1

eicjk sinc(ajk) ds

=
n!

2πin+1

∫ ∞
−∞

1

sn+1
eiyk

N∏
j=1

sinc(ajk) ds (5.63)

with y =
∑N

j=1 cj. This last equation is the same as solved by Bradley and Gupta

[21] except for an additional factor of 1
sn+1 under the integral (see Equation (A.85) in

Section A.3.3). Therefore, Equation (5.63) can be solved with the same method as
described in Section A.3.3. The final result is given by

〈(
gqr2+

)n〉
=

(
2πn!

2N(N + n)!

)( N∏
j=1

aqrj

)−1
 ∑
ε∈{−1,1}N

N∏
j=1

εi

·

(
N∑
j=1

crqj + ~ε · ~aqr
)N+n

· sign

(
N∑
j=1

crqj + ~ε · ~aqr
) (5.64)

where the summation over ~ε is done over all vectors of length N with entries of ±1 as
in Equation (5.43). The same can be done for

〈(
gqr2−
)n〉

, yielding the exact result of〈(
faij
)n〉

for odd n.

Although we found the exact result in Equation (5.64) for the odd moments, it has
some flaws, as it cannot be computed numerically for large N . First, there are 2N

possible vectors for ~ε and thus an equal number of summands that have to be evaluated
in a loop. For N = 100, the number of summands is around 1.268 · 1030, which is
infeasible. Furthermore, the expression

∑N
j=1 c

rq
j + ~ε ·~aqr is raised to the power of N +n

yielding a large number that poses problems on numerical evaluation. Although the
latter problem can be circumvented by using high precision numerics, evaluating the
logarithm of some expressions and using the exponential function on aggregated values,
both problems make Equation (5.64) impractical since there is no advantage over a
Monte Carlo simulation to find the moments.
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5.4.1.2. Gaussian Approximation

A much simpler approach to approximate Equation (5.62),

〈(gqr2 )n〉 = −

[
n!

2πin+1

∫ ∞
−∞

1

sn+1
p̃qr(s) ds︸ ︷︷ ︸

〈(gqr2+)
n〉

+
n!

2πin+1

∫ ∞
−∞

1

sn+1
p̃qr(−s) ds︸ ︷︷ ︸

〈(gqr2−)
n〉

]
, (5.65)

for odd n is to use a Gaussian approximation to the probability distributions of the
in- and out-flows sj at the vertices. The moments of the directed flow are given

by µfij = µij =
∑N

k=1

(
Y +
ik − Y

+
jk

)
sk and σfij = σij =

∑N
k=1

(
Y +
ik − Y

+
jk

)2
s2
k. The

characteristic function of the Gaussian distribution N(x;µ, σ) = 1
σ
√

2π
e−

(x−µ)2

2σ2 is given

by eiµt−
σ2t2

2 .

To solve Equation (5.65), the following integrals are important and thus solved first.
These integrals and the derivations shown in the following are also needed in the next

section. The principal value (PV) of the integral
∫∞
−∞ t

−1eiste−
σ2t2

2 dt can be evaluated
to [21]

PV

∫ ∞
−∞

t−1eiµte−
σ2t2

2 dt = lim
ε→0

[∫ −ε
−∞

t−1eiµte−
σ2t2

2 dt+ (5.66)

∫ ∞
ε

t−1eiµte−
σ2t2

2 dt

]

= lim
ε→0

[
2i

∫ ∞
ε

t−1 sin(µt) e−
σ2t2

2 dt

]
= 2i

∫ ∞
0

t−1 sin(µt) e−
σ2t2

2 dt . (5.67)

To calculate the integral, it is easier to use the fact that the integral in 5.66 is a Fourier
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transformation:

PV

∫ ∞
−∞

1

t
e−

σ2t2

2 eistdt = F−1

(
1

t
e−

σ2t2

2

)
= F−1

(
1

t

)
∗ F−1

(
e−

σ2t2

2

)
=

i

2
sign(s) ∗

√
2π

σ
e−

s2

2σ2

= − iπ√
2πσ

∫ ∞
−∞

sign(t− s) e−
t2

2σ2 dt

= − iπ√
2πσ

(∫ ∞
s

e−
t2

2σ2 dt−
∫ s

−∞
e−

t2

2σ2 dt

)
= −iπ

(
1− 2√

2πσ

∫ s

−∞
e−

t2

2σ2 dt

)
= −iπ

[
1−

(
1 + erf

(
s√
2σ

))]
= iπ erf

(
s√
2σ

)
, (5.68)

where erf(·) is the error function. Again, the convolution is assumed to be finite.
We also used the properties of the Gaussian distribution with respect to the Fourier
transformation and furthermore F−1

(
1
t

)
= iπ sign(s). A second important integral is

[22]

∫ ∞
−∞

eiµte−
σ2t2

2 dt =

√
2π

σ
e−

µ2

2σ2 . (5.69)

We first calculate
〈(
gqr2+

)n〉
from Equation (5.65). With the product rule we find for

n ≥ 1

〈(
gqr2+

)n〉
=

n!

2πin+1

(
iµqr

∫ ∞
−∞

1

ntn
eiµqrt−

σ2qrt
2

2 dt− σ2

∫ ∞
−∞

1

ntn−1
eiµqrt−

σ2qrt
2

2 dt

)
.

(5.70)

For higher moments, we can use the fact that repeated integration by parts of the
integral in Equation (5.70) and resubstituting the result back always yields terms of the

100



5.4. Analytical Approximations for the Uncorrelated Case

form

φmγ

∫ ∞
−∞

t−(m−γ)eiµt−
σ2t2

µ dt+ ψmγ

∫ ∞
−∞

t−(m−γ−1)eiµt−
σ2t2

µ dt

= φmγ
iµ

m− γ − 1

∫ ∞
−∞

t−(m−γ−1)eiµt−
σ2t2

µ dt+

−φmγ
σ2

m− γ − 1

∫ ∞
−∞

t−(m−γ−2)eiµt−
σ2t2

µ dt+

ψmγ

∫ ∞
−∞

t−(m−γ−1)eiµt−
σ2t2

µ dt

=

(
φmγ

iµ

m− (γ + 1)
+ ψmγ

)∫ ∞
−∞

t−(m−(γ+1))eiµt−
σ2t2

µ dt

−φmγ
σ2

m− (γ + 1)

∫ ∞
−∞

t−(m−(γ+1))eiµt−
σ2t2

µ dt+

= φmγ+1

∫ ∞
−∞

t−(m−(γ+1))eist−
σ2t2

s dt+ ψmγ+1

∫ ∞
−∞

t−(m−(γ+1)−1)eist−
σ2t2

s dt

(5.71)

for γ ≤ m− 1. From the above equations follows

φmγ = φmγ−1

iµ

m− γ
+ ψmγ−1 ψmγ = −φmγ−1

σ2

m− γ
, (5.72)

with φm0 = 1 and ψm0 = 0. It can be shown by induction that φmγ and ψmγ are the
prefactors of the respective integrals after γ times integrating by parts. For the case of
m = n+ 1 and γ = m− 1 = n, the two integrals in Equation (5.70) are given by

〈(
gqr2+

)n〉
=

n!

2πin+1

(
φn+1
n

∫ ∞
−∞

t−1e
iµqrt−

σ2qrt
2

µqr dt+ ψn+1
n

∫ ∞
−∞

e
iµqrt−

σ2qrt
2

µqr dt

)
(5.73)

=
n!

2πin+1

(
φn+1
n iπ erf

(
µqr√
2σqr

)
+ ψn+1

n

√
2π

σqr
e
−
µ2qr

2σ2qr

)
. (5.74)

The integrals in Equation (5.73) were calculated in the beginning of this section.

For n = 1, we find

〈
gqr2+

〉
= − 1

2π

(
iµqr

∫ ∞
−∞

1

t
eiµqrt−

σ2qrt
2

2 dt− σ2

∫ ∞
−∞

eiµqrt−
σ2qrt

2

2 dt

)
=

µ

2
erf

(
µqr√
2σqr

)
+

σqr√
2π
e
−
µ2qr

2σ2qr , (5.75)

using Equation (5.72). Since for the characteristic function of the Gaussian distribution
Ñ(−s;µqr, σqr) = Ñ(s;−µqr, σqr) holds, we have

〈(
gqr2+

)n〉
=
〈(
gqr2−
)n〉

, and the first
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moment of the absolute value of the Gaussian distribution is

〈
faqr
〉

= µqr erf

(
µqr√
2σqr

)
+

√
2σqr√
π

e
−
µ2qr

2σ2qr . (5.76)

The third moment is given by

〈(
faqr
)3
〉

=
〈(
gqr2+

)3
〉

=
(
µ3
qr + 3µqrσ

2
qr

)
erf

(
µqr√
2σqr

)
+ 2

µ2
qrσqr + 2σ3

qr√
2π

e
−
µ2qr

2σ2qr (5.77)

using φ4
3 = − i

6

(
µ3
qr + 3σ2

qrµqr
)

and ψ4
3 = 1

6

(
µ2
qrσ

2
qr + 2σ4

qr

)
, see Equation (5.72).

This distribution of the absolute values of Gaussian distributed random variables
can be found as the “folded normal” distribution in the literature [80]. The derivation
was shown here, because φmm−1 and ψmm−1 are needed in the next section. We define the
recursive expressions

φn+1(µ, σ) = φn+1
n (µ, σ) ψn+1(µ, σ) = ψn+1

n (µ, σ) (5.78)

with φn+1
n (µ, σ) and ψn+1

n (µ, σ), see Equation (5.72).

5.4.1.3. Exact-Gaussian Mix Approximation

The sum of independent identical uniformly distributed random variables converges
in good approximation for only a few summands to a Gaussian distribution. But if
there are only few summands that differ substantially from the other summands, e.g.
because of a big prefactor, the distribution of the sum can change drastically. Thus,
we propose the following approach: Groups of vertices with in/out flows that have
a similar distribution and thus similar influence on the link are approximated by a
Gaussian distributions. The in/out flows with strongly deviating prefactors are treated
exact using the solution given in Equation (5.64). Since the convolution of Gaussian
distributions is again a Gaussian, all of the above defined groups can be collected into
one distribution with mean ma and variance σ2

a. With Q being the number of vertices
whose influence on the link q → r are treated exactly and wqrj and uqrj denoting the
respective cqrk and aqrk with adopted indices, we find

p̃qr(k) = G̃
(
k;µa, σ

2
a

)
·
Q∏
j=1

Ũ
(
k;wqrj − u

qr
j , w

qr
j + uqrj

)
. (5.79)
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Using this approach, we calculate 〈(gqr2 )n〉 =
〈(
gqr2+

)n〉
+
〈(
gqr2−
)n〉

as defined in Equa-
tion (5.62). The integral to be solved is

〈(
gqr2+

)n〉
=

n!

2πin+1

(∫ ∞
−∞

1

sn+1
G̃
(
s;µa, σ

2
a

)
·

Q∏
j=1

Ũ
(
s;wqrj − u

qr
j , w

qr
j + uqrj

)
ds

)

=
n!

2πin+1

(
Q∏
j=i

urqj

)−1 [∫ ∞
−∞

1

sQ+n+1
G̃
(
s;µa, σ

2
a

)
· exp

(
is

Q∑
j=1

wqrj

)(
Q∏
s=1

sin(uqrs s)

)
ds

]

=
n!

2πin+1

(
Q∏
j=i

urqj

)−1 [∫ ∞
−∞

1

sQ+n+1

(
Q∏
s=1

sin(uqrs s)

)

· exp

(
is

(
µa +

Q∑
j=1

wqrj

)
− σ2

as
2

2

)
ds

]
. (5.80)

With the same reasoning as in Section 5.4.1, we find

〈(
gqr2+

)n〉
=

n!

2π2QiQ+n+1

(
Q∏
j=i

urqj

)−1 [∫ ∞
−∞

1

sQ+n+1

exp

{
is

(
µa +

Q∑
j=1

εju
rq
j +

Q∑
j=1

wqrj

)
− σ2

as
2

2
+

}
ds

]
.

(5.81)

Using that µa is the sum over all cqrj treated as Gaussian distributions and
∑2Q

j=1w
qr
j is

the sum over the remaining cqrj , the variable θ~ε is defined to be

θ~ε = µa +

(
Q∑
j=1

wqrj

)
+

(
Q∑
j=1

εju
rq
j

)

=

(
N∑
j=1

cqrj

)
+

(
Q∑
j=1

εju
rq
j

)
. (5.82)
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This can be used to transform Equation (5.81) into

〈(
gqr2+

)n〉
=

n!

2π2QiQ+n+1

(
Q∏
j=i

urqj

)−1
 ∑
ε∈{−1,1}2N

ρ~ε

·
∫ ∞
−∞

1

sQ+n+1
exp

{
isθ~ε −

σ2
as

2

2

}
ds

]
(5.83)

with the 2Q vectors of signs ~ε = (ε1, ε2, . . . , εQ) ∈ {−1, 1}Q, ρε =
∏Q

j=1 εj. It can be
seen that the integral in Equation (5.83) is the same as Equation (5.74). The solution
is thus

〈(
gqr2+

)n〉
=

n!

2QiQ+n+1

(
Q∏
j=i

urqj

)−1
 ∑
ε∈{−1,1}Q

(
Q∏
j=1

εj

)
(
ψ(Q+n)(θ~ε, σa)

1√
2πσa

e
−

θ2~ε
2σ2a + φ(Q+n)(θ~ε, σa)

i

2
erf

(
θ~ε√
2σa

))]
(5.84)

with φn(·, ·) and ψn(·, ·) as defined in Equation (5.72) and Equation (5.78),

φn+1(µ, σ) = φn+1
n (µ, σ) = φmγ = φmγ−1

iµ

m− γ
+ ψmγ−1 (5.85)

ψn+1(µ, σ) = ψn+1
n (µ, σ) = ψmγ = −φmγ−1

σ2

m− γ
. (5.86)

with φm0 = 1 and ψm0 = 0.

In the limit Q → N , the Equation (5.86) has to be equal to the exact solution in
Equation (5.64). In that case the Gaussian distribution can be understood to have zero
mean and σa → 0. For that case, the error function converges to the sign(θ~ε) function

and φ(Q+n)(θ~ε, σa) = i(Q+n)

(Q+n)!
θ

(Q+n)
~ε . The behavior of the first part for σa can be derived

from Equation (5.73): The integral corresponding to the term e
−

θ2~ε
2σ2a goes to zero for

σa → 0. Thus, in the limit Q → N , Equation (5.86) is equal to the result found in
Section 5.4.1.1.
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For the same reasons as in Section 5.4.1.2, we have
〈(
gqr2+

)n〉
=
〈(
gqr2−
)n〉

, so that

〈
faqr
〉

=
2

2QiQ+2

(
Q∏
j=i

urqj

)−1
 ∑
ε∈{−1,1}Q

(
Q∏
j=1

εj

)
(
ψ(Q+1)(θ~ε, σa)

1√
2πσa

e
−

θ2~ε
2σ2a + φ(Q+1)(θ~ε, σa)

i

2
erf

(
θ~ε√
2σa

))]
(5.87)

〈(
faqr
)3
〉

=
12

2QiQ+4

(
Q∏
j=i

urqj

)−1
 ∑
ε∈{−1,1}Q

(
Q∏
j=1

εj

)
(
ψ(Q+3)(θ~ε, σa)

1√
2πσa

e
−

θ2~ε
2σ2a + φ(Q+3)(θ~ε, σa)

i

2
erf

(
θ~ε√
2σa

))]
.(5.88)

For the result in Equation (5.88) to have computational advantages over Equa-
tion (5.64), Q has to be maximally in the order of ten, so that Equation (5.88) is
numerically feasible. The approximations can be expected to be better than the results
in Section 5.4.1.2, as at least some of the source and sink distributions are treated
exactly. The question that arises is which sources and sinks should be treated exactly
and which can be collected into the Gaussian approximation.

As can be seen in Equation (5.64), only the contribution of the ~aqr to the exact
solution varies for changing ~ε, while the contribution of the ~cqr stays constant. Thus,
the ~aqr values of Equation (5.64) have to be considered for deciding which sources or
sinks to treat exactly for a given link. Two methods were tested. First, the ~aqr values
are clustered, so that the prefactor aqrj is assigned to the cluster qk when the distance∣∣qk − aqrj ∣∣ < rmax is smaller than a given maximal distance rmax. As sums of n i.i.d.
random values drawn from a uniform distribution converge to a Gaussian distribution
very fast, e.g. n = 4 yields a distribution that has only little deviations, all prefactors aqrj
that belong to clusters with less than 4 elements are now treated exactly13. The second
method is to consider the Q largest aqrj values, as these can be expected to dominate
the moments.

Both methods were found to perform equally good for a given number of Q. However,
the first method described is harder to control, as the number of Q, which follows from a
given rmax is not fixed. The selected aqrj are almost always the largest in both methods,
so consequently in the following, we are using the second method and treat only the Q
largest values of the aqrj exactly in Equation (5.82). The following results are shown for
Q = 6.

13As all aqrj belonging to one cluster deviate by no more than 2rmax, the convergence of the sum of
the in- and out-flows weighted by these aqrj are assumed to have a similar convergence as the case
of i.i.d. uniform distributed random variables.
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5.4.2. Matching of Load and Generation

As said before, there are unlimited possibilities how to balance a mismatch
∑

j gj+lj 6= 0.
Only for the global factor policy (see Section 5.1.1.2), we found an analytical description
of the distribution of the matched in- and out-flow at each vertex. This is presented in
this section.

We assume that the generation and load at each node are given by the random
variables gi and li, whereas the generation is drawn from a uniform distribution of values
between a and b. The balanced generation gbi and load lbi are defined by

gbi = αgi and lbi = βli , (5.89)

where α and β are chosen such that∑
i

(
gbi + lbi

)
= 0 , (5.90)

with 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 to ensure that no artificial generation and load is
introduced. This constraint is equal to 0 ≤ gbi ≤ gi and 0 ≤ lbi ≤ li. The mismatch in
the unbalanced in- and out-flow is given by

M =
∑
i

gi +
∑
i

li . (5.91)

For M > 0, there is an excess of power, so that β = 1 and

α = −
∑

i li∑
i gi

. (5.92)

ensures that Equation (5.90) holds. With the same reasoning, we find α = 1 and

β = −
∑

i gi∑
i li

(5.93)

for M < 0.

The distribution of α for M > 0 is a ratio distribution of the sum of all generation
and all load. Let qG be the probability that M > 0, so that α is one and thus gbj = gj.
With probability 1− qG, we have M < 0 and the matched in- and out-flow is given by
αgj so that

pgbi (x) = qG · pgbi (x|M > 0) + (1− qG) pgj(x) . (5.94)

The distribution of gbi consists of two distributions weighted by qG.

To calculate pgbi (x|M > 0), the ratio distribution of α = −
∑
i li∑
i gi

has to be calculated

and subsequently the product distribution of α · gi. The sum of all loads and the sum
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of all generations are independent by definition. For the product distribution of α · gi,
we assume that the contribution of the single gi to the sum

∑
i gi is small enough so

that the correlation of each generator with the sum is negligible and further α and gi
are assumed to be independent. The same has to be done for β and the distribution
plbi (x|M < 0).

In general, the distribution function of the ratio Z = Y
X

with independent Y ∼ pY (y)
and X ∼ pX(x) with X, Y > 0 is given by [70]

pZ(z) =

∫ ∞
0

y pY (y) pX(zy)dy . (5.95)

For large enough N , the sums
∑

i li and
∑

i gi may converge to a Gaussian distribution
and we assume that this is the case. Furthermore, the sum of all loads and the sum of all
generation are uncorrelated by construction. The ratio distribution of two independent
Gaussian distributions was shown to be [65]

pZ(z) =
b(z) · c(z)

a3(z)

1√
2πσxσy

[
2Φ

(
b(z)

a(z)

)
− 1

]
+

1

a2(z) · πσxσy
e
− 1

2

(
µ2x
σ2x

+
µ2y

σ2y

)
(5.96)

with

a(z) =

√
1

σ2
x

z2 +
1

σ2
y

, b(z) =
µx
σ2
x

z +
µy
σ2
y

, (5.97)

c(z) = e
1
2
b2(z)

a2(z)
− 1

2

(
µ2x
σ2x

+
µ2y

σ2y

)
, (5.98)

and Φ(z) =
∫ z
−∞

1√
2π
e−

1
2
u2 du. If µx = µy = 0, Equation (5.96) becomes a Cauchy

distribution [38, 82].

Assuming that the absolute values of the coefficients of variation |cv| =
∣∣∣σµ ∣∣∣ are small

enough, Equation (5.96) can be approximated by [65]

pα (z) =
σ2
Y µX + σ2

XµY z√
2π (σ2

Y + σ2
Xz

2)
3

exp

(
− (µY − µXα)2

2 (σ2
Y + σ2

Xz
2)

)
. (5.99)

Hayya et al. [62] approximate the mean ωαi and variance (ζαi )2 of pα for the case of a
normal ratio distribution with a second order Taylor series expansion, finding

ωαi ' −
(
µl
µg

+
σ2
gµl

µ3
g

)
(ζαi )2 '

σ2
gµ

2
l

µ4
g

+
σ2
l

µ2
g

, (5.100)
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where µg, σ
2
g and µl, σ

2
l are the mean and the variance of the aggregated generation

and load, respectively. The minus sign for ωαi is due to the sign in Equation (5.92).

For the following calculations, Equation (5.99) is not practical. The lognormal,
Weibull and gamma distributions are found to be very similar to the ratio distribution
in Equation (5.99), at least for parameter ranges considered here. Using a gamma
distribution, the calculation of the product distribution of α · gi has been found to be
feasible.

The gamma distribution is defined as

Gamma(x; k, θ) = xk−1 e−x/θ

θk Γ(k)
, (5.101)

for x > 0 and k, θ > 0. With the mean kθ and the variance kθ2, the distribution pα can
be approximated by a gamma distribution with the parameters

kαi =
(ωαi )2

(ζαi )2 (5.102)

θαi =
(ζαi )2

ωαi
(5.103)

by the use of Equation (5.100).

To find the distribution of the product αgi, we then used

pgbi (z|M > 0) =

∫ 1

x=0

∫ ∞
y=0

Gamma(x; kαi , θ
α
i ) U(y; 0, b) δ(z − xy) dxdy , (5.104)

for z > 0 and pgbi (z < 0|M > 0) = 0. The integration for x from zero to one reflects
that 0 ≤ α ≤ 1 by construction. The generation is drawn from a uniform distribution
U(y; 0, γgi ) by definition of the model, see Section 5.2, where γgi denotes the upper bound
of the generation at vertex i. The product distribution X · Y for two independent
random variables is given by [70]

p(x) =

∫ ∞
0

1

y
f

(
x

y

)
g(y) dy , (5.105)

where X > 0 is drawn from the distribution f(x) and Y > 0 from the distribution g(x).
Thus using U(x; 0, γgi ) = 1

γgi
(H(x)−H(x− γgi )), the product distribution becomes

pgbi (z|M > 0) =
1

γgi

∫ 1

0

1

x
Gamma(x; kαi , θ

α
i ) (H(z/x)−H(z/x− γgi )) dx (5.106)

for z > 0, where H(·) is the Heaviside function. Since z/x under the integration is always
positive or zero, as z is describing the generation, the first Heaviside is always one
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and the second H(z/x− γgi ) is zero for x > z/γgi . This defines the range where the two
Heaviside functions do not cancel each other, so that

pgbi (z|M > 0) =
1

γgi

∫ 1

z/γg
i

1

x
Gamma(x; kαi , θ

α
i ) dx (5.107)

for z ≤ γgi and pgbi (z > γgi ) = 0, because of the α ≤ 1 condition. This integral evaluates
to

pgbi (z|M > 0) =
1

γgi θ
α
i

Γ
(
kαi − 1, z

γgi θ
α
i

)
− Γ

(
kαi − 1, 1

θαi

)
Γ(kαi )

, (5.108)

where Γ(·) and Γ(·, ·) are the Gamma and the incomplete Gamma function, respectively
and we find

pgbi (z) =
1

γgi θ
α
i

Γ
(
kαi − 1, z

γgi θ
α
i

)
− Γ

(
kαi − 1, 1

θαi

)
Γ(kαi )

+ (1− qG) pgj(z) (5.109)

for 0 ≤ z ≤ γgi .

The raw moments are calculated by evaluating the integral

µni =

∫ γgi

0

xnpgbi (x)dx , (5.110)

so that we find

µgbi =
γgi
2
θαi

(
kαi −

Γ(kαi + 1, 1/θαi )

Γ(kαi )

)
+ (1− qG)

γgi
2

(5.111)

σ2
gbi

=
(γgi )2

3
(θαi )2

(
kαi (kαi + 1)− Γ(kαi + 2, 1/θαi )

Γ(kαi )

)
+ (1− qG)

(γgi )2

3
−
(
µGi
)2

.

(5.112)

The contribution from the first term, representing the influence of the balancing does
not have a factor of qG since this is already considered in the integration limits that
follow from 0 ≤ α ≤ 1. To ensure the normalization of the distribution, the qG used for
evaluating Equation (5.111) and (5.112) is calculated from

qG =

∫ γgi

0

pgbi (z)dz = 1−
Γ
(
kαi ,

1
θαi

)
Γ(kαi )

, (5.113)

as due to the approximations
∫∞

0
pgbi (z)dz = 1 is not guaranteed.

To calculate the distribution of the matched load, the same method can be employed.
The distribution of the factor β is approximated by a gamma distribution with the
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parameters

kβi =

(
ωβi

)2

(
ζβi

)2 and θβi =

(
ζβi

)2

ωβi
(5.114)

which are derived from the first central moments

ωβi ' −
(
µg
µl

+
σ2
l µg
µ3
l

)
(5.115)(

ζβi

)2

'
σ2
l µ

2
g

µ4
l

+
σ2
g

µ2
l

. (5.116)

As argued in Section 5.2, the load fluctuates on a much smaller timescale than the
generation and thus is assumed to be constant with value γli. The constant load is
multiplied by β, so that we find for the distribution of the balanced load

plbi (z|M < 0) =

∫ 1

0

pβ(x) δ
(
xγli − z

)
dx =

1

|γli|
pβ

(
z
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)
. (5.117)

This yields

plbi (z) =
1

|γli|
pβ

(
z

γli

)
+ (1− qL) plj(z) (5.118)

for γli ≤ z ≤ 0, with pβ(x) ' Gamma
(
x; kβi , θ

β
i

)
. Analogous to Equation (5.94), we find

the mean

µlbi = γli θ
β
i

Γ
(
kβi + 1

)
− Γ

(
kβi + 1, 1/θβi

)
Γ
(
kβi

) + (1− qL) γli

= γli θ
β
i

kβi − Γ
(
kβi + 1, 1/θβi

)
Γ
(
kβi

)
+ (1− qL) γli (5.119)

and the variance
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The probability that M < 0 is given by

qL =

∫ γli

0

pgli(z)dz = 1−
Γ
(
kβi ,

1

θβi

)
Γ
(
kβi

) . (5.121)

Both the central moments of the generation and of the load contain a term of the form
Γ(k+n,z)

Γ(k)
with n ≥ 1. This is numerically not feasible for large k since the gamma function

diverges so that the numerator and the denominator are beyond numerical limits even
if the ratio is numerically feasible. Using Γ(k + 1) = kΓ(k) and the regularized gamma

function Q(s, x) = Γ(s,x)
Γ(s)

, this term can rewritten to

Γ(k + 1, z)

Γ(k)
= kQ(k + n, z) and

Γ(k + 2, z)

Γ(k)
= k(k + 1)Q(k + n, z) . (5.122)

The moments thus can be written as
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and
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β
i k

β
i

[
1−Q
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) ]
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(5.126)

The regularized gamma function Q(s, x) is implemented in numerical libraries, like the
Gnu Scientific Library [57] that is used in the simulations. Using Equations (5.123) to
(5.126), no numerical problems occur for large k.

The derived equations and moments are compared to the data in Figure 5.10. As
can be seen, the mean and the variance for the generation in Equation (5.123) and
Equation (5.124), as well as the load in Equation (5.125) and Equation (5.126) match
the moments from the data with very good precision. The distribution functions of the
generation Equation (5.109) and the load Equation (5.117) are in good agreement with
the data. Only for higher values of the generation there are larger deviations. This can
be expected to be due to small correlations of the generation at a vertex to the sum
over all generation, which were neglected in the calculations.
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Figure 5.10.: The data for the matched generation and load and the analytical approximations.
The black circles indicate the unmatched load and generation, the red circles
the respective matched values. The green lines indicate the analytical derived
distributions. The red vertical lines show the mean and the second raw moments
for the data and the green the moments as derived analytical. For the consumption,
the delta function is not shown and the unmatched load is indicated by one
black circle. The figures are done for N = 1000, βg = βl = 0 and an exponential
network with λ = 1.

5.4.3. The Flow Distributions of the Links

In the previous sections, approximations to the moments of the flow over the links and
the mean and variance of the matched generation and load were calculated. In this
section, these results are put together and compared to simulation data.

First, the variance of the absolute flow can be calculated without any approximations
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Figure 5.11.: The second raw moment from the data (black) compared to the analytical
derived results (red) shown in (a) and (b) for a network with exponential degree
distribution with λ = 1 and βL = βS = 1 for 104 fluctuation realizations. In (c)
and (d) histograms of the analytical results relative to the second moments of
the data are plotted. For details see text.

when neglecting the matching, see Equation (5.53). To incorporate the effects of the
matching, the mean and variance of the matched in/out flow (see Equations (5.123) to
(5.126)) are used for each vertex instead of the unmatched moments. This approach
is a correction of the first two moments of the in/out flow, neglecting all higher order
corrections.

In Figure 5.11, the second raw moments calculated analytically are compared to
the second raw moments from the data. The black points represent the unmatched
analytical calculated second moments against the second moments from the data, the
red points are the analytical calculated second moments using the matching correction.

113



5. Flows in Power Grids: Model

As can be seen in Figure 5.11a and Figure 5.11b, the red dots lie on the line x = y,
indicating that the analytical second moments are close to being equal to the second
moments from the data. In both cases, the matchinging correction improves the result,
especially for κ = 2 in Figure 5.11b. The histograms of the analytical second moments
normalized by the second moments calculated from the data are shown in Figure 5.11c
and Figure 5.11d. Figure 5.11c shows the distributions of the relative deviations for
κ = 1. The deviations are smaller than four percent when the matching corrections are
used.

The first and third moments can only be calculated using approximations as derived
in Section 5.4.1. Therefore, the deviation for the second moments is the best result
that can be achieved with our approach, as no approximations were used. The case
of κ = 2 in Figure 5.11d shows the large deviations for the unmatched flow and that
the matching correction achieves the goal of correcting the moments. The plots of the
moments are shown for N = 100 for clarity, the histograms are done with N = 1000, in
both cases 10000 fluctuation realizations are used to obtain the simulation data.
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Figure 5.12.: The relative deviations of the first and third raw moments to the moments of
the data using the Gaussian approximation (red) and the mixed approximation
(green) for a network with exponential degree distribution with N = 1000, λ = 1,
and κ = 1 as well as βL = βS = 1. The dashed lines show the respective
approximations without the matching correction, for comparison.

The approximations for the first and third raw moments, derived in Section 5.4.1.2 and
5.4.1.3, are tested against the moments of the data in Figure 5.12. Both approximations
show only small deviations from the data, comparable to the deviations of the second
moments in Figure 5.11c. However, the mixed approximation exhibits smaller deviations.

This finding is supported by Figure 5.13, where histograms of the absolute flows for
selected links are shown. Similar to the work in Section 5.3, for each link the generalized
gamma distribution is fitted to the moments (see Section A.3.2) using the moments
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Figure 5.13.: Typical distributions of the absolute flow and the analytical approximations.
The black dots indicate the histogram of the data, the black line the fit with
the generalized gamma distribution based on the moments of the data, and the
vertical dashed line the 99.9% quantile calculated directly from the data. The
red lines indicate the generalized gamma distribution based on the Gaussian
approximation and the 99.9% quantile from this distribution, the green lines the
corresponding using the mixed approximation. The dashed colored lines indicate
the distributions based on the respective approximations without the matching
correction. The plots are done for a network with exponential degree distribution
with λ = 1 and N = 100 with 10000 fluctuation realizations.

approximated analytically. For some edges the fitted distribution describes the data very
good and collapses to almost one line together with the generalized gamma distribution
that is calculated from the moments of the data, see Figure 5.13a and Figure 5.13b. For
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edges with a high excess kurtosis of the directed flow distribution, the approximation
based on the Gaussian approximation shows larger deviations from the data. The mixed
approximation is in good agreement with the data for the distribution and the quantile,
as can be seen in Figure 5.13c and Figure 5.13d. The dashed lines indicate the respective
approximations without the matching correction, showing the approach of correcting the
mean and variance of the in/out flow of each vertex significantly improves the results.
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Figure 5.14.: Deviations of the 99.9% quantile calculated from the data and from the generalized
gamma distribution with parameters fitted to the moments obtained from the
data (black), the Gaussian approximation (red) and the mixed approximation
(green). The plots are done for a networks with N = 1000.

By inspecting all edges, we find that the generalized gamma distribution based on
the moments of the Exact-Gaussian mix approximation is in very good agreement
with the generalized gamma distribution based on the moments of the data. This is
also supported by Figures 5.14a and 5.14b. The black curve illustrates the deviations
between the simulation data quantiles and the quantiles calculated from the generalized
gamma distribution directly fitted to the data. The deviations using the Exact-Gaussian
mix approximation almost collapses with the deviations when the fitting is done directly
to the similation results. To show that this does not only hold for networks with
exponential degree distribution, results for a network with scalefree degree distribution
are also shown in Figure 5.14.
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Figure 5.15.: Non-failure probabilities for capacity layouts based on the Gaussian and the
Exact-Gaussian mix approximation and the (1− α) ·mean layout using the global
factor matching policy on a network with exponential degree distributions with
λ = 1.

5.4.4. A Capacity Layout Based on the Flow Distributions

Based on the approximated flow distributions, we are able to define capacity layouts for
each link. These layouts are compared to a very simple layout [85]

ci = (1 + α)mi , (5.127)

where mi is the mean of the absolute flow of link i, referred as the “(1− α) · mean”
layout in the following. For the capacity layouts based on the Gaussian approximation
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and the mixed approximation, the capacity is chosen such, that the probability that
an edge is not failing is q. In Figure 5.15a and Figure 5.15c, the quantiles are plotted
against the minimal non-failure probabilities of all links. We see that the Exact-Gaussian
mix approximation is almost on the y = x line, while the Gaussian approximation
overestimates the non-failure probability for q smaller than ≈ 0.85. If we consider the
investment costs, defined as the sum over all capacities, the difference between the
layouts in terms of the investment cost for high q is small. But it has to be kept in
mind that for the (1− α) ·mean layout, the mean values have to be calculated and the
non-failure probability is unknown.

5.5. Analytical Approach for the Correlated Case

As discussed in Section 5.4, the correlations in the matched in- and out-flows sbj are
important for the applicability of theorems from probability theory. Figure 5.16 shows
the correlations of sbj for pairs of vertices with a given distance, generated using the
minimum dissipation policy. In all cases the correlations between vertices that are only
few hops apart, is significantly higher than for pairs that have a distance larger than
the average distance of the network. This indicates, that generation is assigned to the
closest loads in terms of the hop distance, when using the minimum dissipation policy.
The order of magnitude of the maximal correlations for κ = 1 is comparable to the
correlations found in Section 5.4 for the global factor policy. This is in agreement with
the similarities between the flows when applying the two policies for κ = 1, that are
described in Section 5.3. For κ = 2, the short range correlations amount to almost −0.4
and have to be considered.

We have not found an analytical description of the distribution of the sbj for the case
of the minimum dissipation policy. Furthermore, the approach from Section 5.4 can
not be applied if the correlations sbj are significant. On the other hand, we have seen
in Section 5.3 that for κ = 1 the qualitative behavior of the two discussed policies is
similar. Therefore, the results of Section 5.4 are applied to data, which is calculated
using the minimum dissipation policy. As done in Section 5.4.3, the minimal non-failure
probability of the absolute flow are compared with the quantiles derived from the
approximations and the resulting investments illustrated. This is shown in Figure 5.17.
For κ = 1 in Figure 5.17a, the non-failure probability is slightly underestimated for
q & 0.85, but in good agreement with the data for both approximations. The case κ = 2
shown in Figure 5.17c, reveals that the high correlations introduce qualitative different
flows in the network and the predicted non-failure probabilities of the capacity layout
from Section 5.4 are not adequate.

In terms of the needed investment, the case of κ = 1 behaves like the global policy in
Section 5.4, see Figure 5.17b, whereas for κ = 2 in Figure 5.17d the approximations
perform much worse than the (1− α) · mean capacity layout. Thus, for κ = 1, the
Gaussian and the Exact-Gaussian mix approximation can be used to obtain an estimate
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Figure 5.16.: Average correlations of the matched in- and out-flows sj of all pairs of vertices
at a given distance introduced by the minimum dissipation matching policy. The
data for a graph with exponential degree distribution with λ = 1.8 and for a
scalefree network with α = 2.3 are shown, both with N = 1000 and pcc = 0. The
dashed line indicates the mean distance of the graph.

of the capacities needed at each link when using the minimum dissipation policy.
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Figure 5.17.: Non-failure probabilities for capacity layouts based on the Gaussian and the
Exact-Gaussian mix approximation and the (1− α) · mean layout using the
minimum dissipation matching policy for a network with exponential degree
distributions with λ = 1.

5.6. Summary

We have introduce a model that allows to analyze fluctuating generation and various
distributions of generators and consumers in the transmission network. It is based on
stylized facts that were found in the data. Two policies to match generation and load
were proposed. Using the Monte Carlo method, the effect of fluctuations on the flow in
the network was studied. The distributions of the absolute flows of the links was found
to be close to a generalized gamma distribution.
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5.6. Summary

The policies influence significantly the flows in the network. The minimum dissipation
policy was found to assign load and generation such that they are close together thus
introducing short range correlations. The global factor policy introduces only small
correlations and analytical approximations to the flows of each link could be derived.
These derivations include a description of the global factor policy and the flows in the
network. Based on the approximated flow distributions, a capacity layout was defined.
The non-failure probability can be predicted in very good agreement with the simulation
results. Although the approximations do not improve the security for a given investment,
compared to a very simple capacity layout, they allow to tune the investment such that
a given non-failure probability can be achieved.

For the case that the generation is on average equal to the load, κ = 1, the effect of
the two policies are very similar. This allows to apply the results derived for the global
factor policy to the minimal policy.

From the analytical considerations, we conclude that for uncorrelated in- and out-flows
only the influence of the in- and out-flows of a few vertices have to be considered exactly.
The in- and out-flows of the remaining vertices can be summarized by a Gaussian
distribution. Which vertices are important can be quantified in terms of the pseudo
inverse of the admittance matrix and the variances of the vertices.
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6. Transport Flows Based on the Weather
Data

In Chapter 4, it was found that European cooperation, in the sense that power is
exchanged, significantly reduces the required balancing and storage energies. Further,
we analyzed a simplified model of power systems with fluctuating generation in Chapter 5
and analytically derived approximations to the power flow distributions of the links. In
this chapter, the power flows based on the data introduced in Chapter 3 are discussed.
The two objectives are to quantify the transport flows resulting from weather data
driven fluctuations of the power generation and to compare the model based results to
real world data.

In Section 6.1, the transmission network and the scenario that is analyzed is introduced.
The resulting flows are discussed in Section 6.2. Finally, the approximations derived in
Chapter 5 are tested and discussed in Section 6.3.

6.1. Transmission Network and Methods

The transport flows are evaluated on a simplified transmission network. This is due to
the fact that the network data of the European power grids are not publicly available.
Further, the consumption data is only available on the scale of regions, so that a fine
grained transport analysis would involve an estimation of the consumption on a finer grid,
see also Section 3.2.3. Thus, the approach chosen here is to estimate the transport flows
between the regions. The corresponding network is derived based on the partitioning of
the regions and their spatial arrangement. We basically connect neighboring regions as
shown in Figure 6.1, yielding a network, that is reminiscent to a geometric network, see
Section 2.1.2.

Various scenarios were analyzed in Chapter 3 with respect to the required balancing
and storage energies and power. The case using only balancing generators resembles
the assumptions that were used in Chapter 5. Analyzing transport flows incorporating
storage would give rise to the additional questions how hypothetical future storage
capacities will be set up and what their spatial distribution will be. When using the
transitional scenario, as discussed in Section 3.5, a similar problem occurs: A fraction of
conventional generation has to be assigned to every region. The spatial distributions of
storage and conventional generation has a big influence on the resulting transport flows
and requires a detailed evaluation that is is beyond the scope of this work. For these
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Figure 6.1.: Transport network for the inter-region flows. Different regions are indicated by
different colors, the links are drawn between the center of masses of the regions.

reasons, we focus on the hundred percent and the over installation scenario using only
local balancing generation to compensate shortages, see Sections 3.4 and 3.6. Sufficient
balancing generation capacities are assumed for every region. The optimal mix is chosen
according to the minimal balancing energy, a ' 0.8, as shown in Figure 3.21.

The flow along the links is calculated using the DC power flow approximation as
described in Section 5.1. For simplicity uniform suceptances of one are assigned to
all links. The matching is done using the minimum dissipation and the global factor
policies as described in Section 5.1.1.

6.2. Aggregated Flows, Link Flows and Matching
Policies

A first quantity studied, is the aggregated absolute flow in the whole network. It is
calculated by summing up the absolute flows |fij| of all links, for each hour separately.
The case of over installation with one hour averaging is shown in Figure 6.2a and 6.2b,
for c = 0 and a = 0.8. The values for γ = 1 are equal to the hundred percent scenario
discussed in Section 3.4. For that scenario, the average transport using the minimum
dissipation policy is in the order of the average European consumption. This is equal to
the case, that on average the whole power consumed has to be transported from one
region to a neighboring one. The maximal aggregated inter-region flow is around three
times the average load, meaning that for these cases the whole generated power has to
be transported over a large part of Europe, see Figure 6.1. The average transport using
the minimum dissipation is about one third of the average hourly load smaller than the
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Figure 6.2.: The quantiles of the aggregated inter-region transport for overproduction γ ≥ 1
considering one hour averages normalized to the mean load per hour over Europe.
The minimum dissipation and the global factor policy are shown. The inter-region
transport is the aggregated flow of all links, with the summation done for each
hour separately. The colors indicate the quantiles, meaning that e.g. for the
value of 0.9, all but 10% of the aggregated flows are lower than the corresponding
aggregated flow. The parameters used are a = 0.8 and c = 0.

inter-region transport when using the global factor policy.

For increasing overproduction, the aggregated inter-region transport exhibits a dif-
ferent behaviour for the two policies. For the minimum dissipation policy, the average
aggregated flow increases slightly first, before it decreases to a value a bit lower than
for γ = 1. This is a disagreement with the findings for the model in Figure 5.1, where
the flows are significantly lower for γ = 2 compared to the case of γ = 1 when using the
minimum dissipation policy. When employing the global factor policy the aggregated
inter-region flows increase for higher overproduction, a result that is close to the findings
for the model (see Figure 5.1). For both matching policies and γ = 1, a large fraction
of the probability mass is close to the mean. The difference of the mean value to the
90% quantile is around two thirds of the average European load, whereas the difference
from the mean to the 99.9% quantile amounts to almost twice the average load. For an
overproduction factor of γ > 1, the spread increases for the minimum dissipation policy
while it stays in good approximation constant for the global factor policy indicating
that for rare events large transport flows can not be avoided.

In Figure 6.3, the flows are shown for two points in time. For both policies the maximal
inter-region flow is illustrated that occurs at noon and at eleven pm. Furthermore, the
matched in and out flows normalized to the average European hourly load for each region
are indicated by the color of the respective region. These flows capture characteristic
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Figure 6.3.: Matched in and out flow for each region and the flows on the links for the
maximal aggregated inter-region flow at noon and midnight. The colors indicate
the matched in and out flow sj normalized to the average hourly load for each
region. The thickness of the arrows indicate the magnitude of the flow. The data
for the minimum dissipation and global factor matching policies are shown. The
parameters are a = 0.8, c = 0 and γ = 1, see Equation (3.1).

features found for all time steps. The links from Spain to France transport relatively
large amounts of power but almost always from Spain to the North and mostly during
daytime. Another link that has to carry large amounts of energy is the connection
from France to Great Britain but flows in both directions were found, see Figure 6.3.
Besides that, there is a general tendency that, during daytime, the transport takes place
from South to North while at night the power flows from North to South. Also, from
offshore regions more power flows onshore during night compared to the situation at
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noon, see e.g. the German, Portuguese or Swedish offshore regions in Figure 6.3. This
is presumably due to the solar generation during daytime. The largest consumption
can be found in England around London, Eastern France and the North of Italy. North
Germany on the other hand exports power almost all of the time.
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Figure 6.4.: Average reserve power needed relative to the average load for every region. Results
for the minimum dissipation and global factor matching policy are shown. For the
latter the values are almost the same for all regions with deviations around two
percent. The parameters used are a = 0.8, γ = 1, and c = 0.

The installed capacities planed according to the national targets for 2020 were
discussed in Section 3.2.2 and Figure 3.7. We see that the wind and photovoltaic
generation capacities are planed to be installed mainly in the North, South, and West.
For Eastern Europe only small capacities for renewable generation are planed. This
spatial segregation of the generation capacities can be expected to strongly influence
the spatial distribution of the mismatch and the required matching capacities. The
difference between the minimum dissipation and global factor matching policy seems to
be minor, when considering Figure 6.3. But the two policies cause a different spatial
allocation of the employment of balancing power. In Figure 6.4 the average balancing
power for each region normalized to its average load is shown. The minimum dissipation
policy causes a strong spatial separation, almost no balancing is used in Western Europe,
Northern Germany and Denmark, while Eastern Europe and the North have on average
a high need for balancing power (see Figure 6.4a). In contrast, the global factor policy
causes a uniform average reserve power employment and thus a higher flow.

The spatial distribution of the flows in Figure 6.3 for different hours of the day can
be an explanation of the discrepancy between the aggregated flows in the model and in
Figure 6.2a when using the minimum dissipation policy. The characteristic behaviour
of solar and wind power generation over a day, together with the spatial separation of
these power sources, poses additional constraints on the matching policy. During night
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Figure 6.5.: Selected edges, the colors correspond to the colors in the histograms in Figure 6.6
and 6.7.

no solar power is generated, so that only the power from wind energy, that is mainly
located in the North and North East, can be allocated to consumers. In summer, when
the wind generation is lower, see Figure 3.10, during daylight mainly the solar generation
is available. Therefore even for high overproduction, the aggregated transport decreases
only little when using the minimum dissipation policy for the data.

To further study the flow, the probability distributions of the flows along the links
are discussed. The network of Europe considered here consists of of 129 links but only
the histograms of some typical links, indicated in Figure 6.5, can be shown. Links with
the highest average flow are shown in Figure 6.6a and 6.6c for the minimum dissipation
and the global factor policy, respectively. We see, that the magnitudes of the flows in
the network can be very high for some links. The links from offshore regions have to
transport all power generated there and thus the maximal flow depends on the installed
offshore capacities. The links from Northern Spain to South-West France and from
there to South-East France carry in the extreme cases a large fraction of the power
generated on the Iberian Peninsular and South West France to Northern Europe. This
amounts to a peak load of around a third of the European hourly consumption that
corresponds to around 110GW as the average aggregated hourly consumption of Europe
from our data is 342 GW. It is unlikely that these capacities can be build up. In the
opposite direction the flow is comparably low, although the flow towards the Iberian
Peninsular is high compared to the other links, as shown in Figure 6.6b and 6.6d.
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Figure 6.6.: Histograms of the flow over selected edges. The inter-region power flows are
calculated using the global factor and the minimum dissipation policies and
normalized to the average European consumption. The spatial positions of the
links are shown in Figure 6.5. The parameters used are a = 0.8, γ = 1, and c = 0.

The distributions are quite diverse, some have only one distinct peak but e.g. the
link from North of Finland to North of Sweden is almost bimodal when using the
minimum dissipation policy. Only few vertices have a distribution close to a normal
distribution, which is surprising as in real systems many random variables converge to
a normal distribution [54]. The shapes of the distributions belonging to the different
matching policies are not quantitatively different, but considering the individual link
the distributions are significantly different when comparing the flows based on the two
matching policies.

An important quantity is the undirected flow, given by the absolute value of the flow.
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Figure 6.7.: Histograms of the absolute flows over selected edges. The inter-region power flows
are calculated using the global factor and the minimum dissipation policies and
normalized to the average European consumption. The spatial positions of the
links are shown in Figure 6.5. The dot-dashed lines indicate the fitted generalized
gamma distributio, see text. The parameters used are a = 0.8, γ = 1, and c = 0.

These are shown in Figure 6.7 for the same links as in Figure 6.6. The absolute flows
illustrate even more the high power flows on some links. The qualitative form of the
distributions resemble the distributions found in Chapter 5, shown in Figures 5.6 and
5.7. Therefore, the generalized gamma distribution is fitted to the moments calculated
from the data, indicated by the dot-dashed lines in Figure 6.7. The resemblance when
using the minimum dissipation policy is worse than for the case of the global factor
policy. As in Section 5.3, the agreement of the generalized gamma distribution is tested
using a Q-Q plot, where the quantiles of the data are compared to the quantiles of
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Figure 6.8.: QQ-plots of the quantiles of the fitted generalized gamma distribution to the
qunatiles of the data. As in Figure 5.8, the quantiles are normalized to the
maximal values of each link and shown as a density for all links in the network.
The parameters used are a = 0.8, γ = 1, and c = 0.

the fitted generalized gamma distribution. The normalized quantiles for all links are
plotted as a density for both matching policies in Figure 6.8. Besides few links that
show large deviations, the quality of the approximation for the global factor matching
policy in Figure 6.8a is surprisingly good. When using the minimum dissipation policy
in Figure 6.8a, the deviations are significantly larger, which can be attributed to the
correlations introduced by the minimum dissipation policy, as discussed in Section 5.5.

6.3. Analytical Results and Data

Looking at the results from Section 5.4 and 5.5, the questions arises how to describe
the flow distributions along the links of a power system considering real data, therefore
the derived approximations are tested for how good the inter-region transport can be
approximated.

As the matching in Section 5.4.2 is derived for uniformly distributed fluctuations only,
the matched in and out flows from the data are inserted directly into Equations (5.59),
(5.76), and (5.77). To avoid systematic effects due to day/night changes and due
to temporal correlations, only the data at noon and the hour before and after are
considered.

The second raw moments from the data in Chapter 6 are plotted against the analytical
second raw moments in Figure 6.9 for tranport using the global factor policy, a = 0.8,
and γ = 1. The analytical moments are calculated using Equation (5.59). Almost all
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Figure 6.9.: Second raw moments from the data from Chapter 6 compared to the analytical
second raw moments in a (a) semi-logarithmic and (b) double-logarithmic plot.
The transport is calculated using the global factor policy and a = 0.8, γ = 1, and
c = 0. Details see text. The different colors and and symbols indicate a pooling of
data over different time spans centered on the first of Juli.

points scatter around the y = x line, indicating that the approach yields results that are
close to the results calculated from the data. There are some systematic deviations for
the small second raw moments and for values around 10. As no approximation enters
Equation (5.59) besides the assumption that the data is uncorrelated, the deviations
can be expected due to spatial correlations in the in- and out-flows of nearby regions.
For most links, the data is in good agreement with the analytic predictions, so that the
correlations are assumed to be small enough. To test for a seasonal dependence in the
approximations, the calculations are done for different periods of time around the first
of Juli. The results for 12, 22, and 342 days are very similar, so that we conclude that
the seasonal influence does not affect the approximations.

The analytical approximations to the first and third moments, derived in
Sections 5.4.1.2 and 5.4.1.3, were used to estimate the parameters of the generalized
gamma distribution. As before the agreement between the transport flow distributions
of all links and the approximated generalized gamma distribution are compared in a Q-Q
plot shown in Figure 6.10. Large deviations are found between analytical approximations
and the data for some links. The gaussian approximation performs better than the
Exact-Gaussian mix approximation, which is not surprising, as the latter is specifically
tuned for in- and out-flows that are uniformly distributed.

Based on the approximated distributions a capacity layout can be defined. For a given
non failure probability q, the capacities of the links are chosen such that the flow in
the network is smaller than the capacity with probability q, see also Section 2.3.2. The
capacity layouts are tested in Figure 6.11. The black circles show that the approximation
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Figure 6.10.: Q-Q plots of the quantiles of the generalized gamma distribution derived using
the Gaussian approximation and the Exact-Gaussian mix approximation, see
Section 5.4.1. As in Figure 5.8, the quantiles are normalized to the maximal
values of each link and shown as a density for all links in the network. The
parameters used are a = 0.8, γ = 1, and c = 0.
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Figure 6.11.: Non failure probabilities for capacity layouts based on the Gaussian and the
Exact-Gaussian mix approximation using the global factor matching policy with
a = 0, γ = 1, and c = 0. The black circles indicate the failure probability of the
worst link, the red triangles the average failure probability.

for the link, whose non failure probability is overstimated the most, is far from the
desired q. On average, the approximation performs pretty well, indicated by the red
triangles. The Exact-Gaussian mix approximation overestimates the required capacities,
so that it seems to perform better on average but as can be seen when looking at the
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whose parameters are derived using the Gaussian approximation, the Exact-Gauss
mix approximation and directly from the data, against the resulting non failure
probabilities q. The solid lines indicate the worst case link the dashed lines the
average non failure probability. The investment costs, given in arbitrary units,
are assumed to be equal for all links and calculated as the sum over all capacities.
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Figure 6.13.: Selected in and out flows for selected regions with (a) high and (b) low mean
values of the in and ouflows. The parameters used are a = 0.8, γ = 1, and c = 0.

investment costs, this is due to the fact that most of the capacities are chosen too high.
The investment costs are assumed to be equal for all links and evaluated by summing up
all capacities. These are shown in Figure 6.12 compared to the non failure probability q.
When comparing the investment costs to the non-failure probabilities, we see that only
the capacity layout using the generalized gamma distribution derived directly from the
data performs acceptably for the worst case link. However, on average the three tested
layouts perform similar.
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6.4. Discussion

The fact that some links are pretty badly approximated with the derived approxima-
tions from the model in Chapter 5 is not surprising. In the model, the generation is
approximated by an uniform distribution and the load assumed to be constant but the
data time series is much more complex. In Figure 6.13, in- and out-flow distributions
for select regions are shown. While the uniform distribution is a good approximation
for e.g. Luxembourg, the distribution for Eastern Spain or Northern Norway deviate
strongly. However, we have seen in Section 5.4.4, that a specific treatment of the most
influencial vertices of a link can improve the estimation of the flow distributions. The
good agreement of the second moment with the data suggest that the approach generally
works. Also, the global factor matching policy can be most probably adjusted to the
more complex requirements of the data.

6.4. Discussion

Highly intermittend renewable energy generation causes large power flows over Europe.
Here, only a simplified transport network was analyzed to estimate the power flows
between the regions. The findings, using this approach, indicate that over installation of
generation capacities, in the sense that the national targets for 2020 are scaled up, does
not decrease the needed transport capacities. From the point of view of a minimization
of the transport capacities, a more homogeneous distribution of the generation capacities
could be desireable as generators located close to the consumers trivially elicit less
transport and the day/night effect in the transport could be weakened.

The distribution of the flows show that there are links, that exhibit very high power
flows. For links connecting offshore regions, this is not surprising, because flows up
to the installed offshore generation capacities can arise. The link connecting Spain to
France or other links in Southern France need to transport up to 100 GW in extreme
cases, a value that is extremely high and unlikely to be installed. Regional storages are
expected to cut extreme flows and allow for a higher utilization of the links.

When testing the analytically derived approximations of the flows in the model with
the data, we find that the proposed capacity layouts perform on average acceptably
good. However, the approximation of the flow distributions of some links are far away
from the flows in the data. A more detailed analysis of the in and out flows of the
regions is expected to improve these results.
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7. Summary and Discussion

Due to limited resources and waste problems, generation from renewable energy sources
will play a crucial role in the future supply of energy. However, fluctuations in the
generation pose new challenges when implementing a reliable power system. This work
consists of an evaluation of the required energy and power to balance shortages in power
systems with a high share of renewable energy generation. For that purpose, the storage
of excess generation or the usage of balancing generators is assumed. An analysis of
power flows in networks is also presented, for both a generic model and for a data time
series derived from weather data. Furthermore, the effects of fluctuating sources on
cascading failures, when using a transport paradigm that is widely used in the literature
of complex networks, has been studied analytically and numerically.

For planning an efficient transition of todays to future power systems, it is important
to understand the properties of these future systems. This is also crucial when defining a
model to evaluate power flows within a controlable framework. Therefore, we analyzed a
data time series of wind and solar generation with a high temporal and spatial resolution,
together with a load time series based on publicly available consumption data from
utility companies.

Based on the data time series, we found that optimal mixes between the installed
capacities of wind and solar generators exist, so that the storage or balancing energies
can be minimized. This is due to distinct seasonal characteristics of the said energy
sources and the consumption. Using an optimal linear combination of the different
energy sources, the mismatch between generation and load can be minimized. This
finding is analyzed for different scenarios. We show that an over installation of wind
and solar generation capacities of around 50% of the average consumption brings the
required storage or balancing energies down to values that will presumably be feasible.
This is analyzed for the cases where either only storage or only balancing generation is
employed. Two distinct optimal mixes were found, a ratio of 60% wind and 40% solar
generation when minimizing the required storage energy, and 80% wind and 20% solar
generation to minimize the balancing energy. These different ratios are caused by the
fact that the storage and the balancing energy are sensitive to the dynamics on different
time scales. For the balancing energy, fluctuations on the daily time scale are crucial,
especially the day/night changes. The storage energy is determined by time scales in
the order of weeks or months.

These optimal mixes can also be found for individual countries. Depending on the
geographical locations, the seasonal characteristics of the wind and solar generation
and the load change. In the South, the fluctuation strength of the solar generation is
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much lower than for Northern countries. Also, the seasonal consumption differs. This
leads to different optimal mixes for each country, with a significant correlation to the
latitude of the respective center of mass. The optimal mixes for the storage energy
show a strong dependence on the latitude, while the deviations in the optimal mixes
for balancing energy are small. This again can be explained by the dependence of the
storage and balancing energy on different timescales. Comparing the aggregated storage
and balancing energies over the individual countries to these calculated for whole Europe,
which are calculated with a uniform optimal mix of wind and solar generation for all
regions and with the assumption of unlimited power exchange between the regions, we
find that the storage and balancing energies for the latter case are significantly smaller.
This illustrates the importance of power transmission.

Fluctuating generation results in power flows on the links with a probabilistic na-
ture. No previous studies have systematically assessed their properties. Therefore, we
introduce a model based on stylized facts derived from the data. This approach allows
to quantify the resulting flows in a framework with a priori known properties. We
account for spatial separation of generation and consumption by assigning the former
to the periphery and the latter to the center. A homogeneous spatial distribution is
also considered. The generation at each node is described by a random variable, drawn
independently from a uniform distribution for each node. The load is assumed to be
constant, and the ratio of the average generation to the load fixed by the parameter κ.
The “DC power flow” approximation used by engineers, is an appropriate paradigm to
describe power flows. To ensure the conservation of energy, two policies are introduced
that match the in- and out-flows of the network, the “minimum dissipation” policy,
that has the a priori known property to minimize the sum of the quadratic flows in the
network, and the “global factor” policy, that assigns shortages and excess generation
uniformly over all vertices relative to their load and generation. The policies were
found to have a strong influence on the resulting flows, only for the case of κ = 1,
the qualitative behavior of the flows based on both policies are equal. For all cases,
the generalized gamma distribution was found to be in very good agreement with the
distributions of the undirected flows on the links.

The correlations in the matched generation and load of different vertices, introduced by
the “global factor” policy, can be neglected. This allows for an analytical approximation
of the undirected flow distributions on each link in the network. First, the raw moments
of the flows are derived. For the second raw moment, no approximations are needed.
The exact equations for the odd raw moments cannot be numerically evaluated for a
system with a realistic size, and so we derive two approximations. A simple approach, in
which the undirected flows are approximated by Gaussian distributions, is presented. For
a given link, these results can be significantly improved by combing the exact equations,
describing the most influential vertices, with a Gaussian distribution that approximates
the flows from the remaining vertices. The distributions of the matched generation and
load for each vertex could be derived for the “global factor” policy. The factors, that
scale the generation and load for each vertex, so that they match, can be expressed as

138



a ratio distribution. This distribution is approximated by a gamma distribution that
allows to calculate the probability distributions of the matched load and generation
for each generator and consumer in very good approximation. The estimated first
moments only exhibit deviations of maximally two percent compared with the first
moments of the data, for the third moments, maximally five percent are observed.
Using these results, the parameters of the respective generalized gamma distribution
are calculated. For almost all links, these distributions are in very good agreement
with the flow distributions found in the simulations. We show, that the quality of the
estimated flow distributions, based on the Exact-Gaussian mix approximation, is as
good as possible, when the undirected flow distributions are assumed to be distributed
according to a generalized gamma distribution.

The derived distributions of the undirected flows for each link allow to define capacities
for each link, so that the flow on the link is, with a given probability, smaller than the
respective capacity. Using the predicted capcities, the non-failure probability of each
link was tested and we found that the proposed capacities almost exactly ensure the
desired security of operation.

The “minimum dissipation” policy is shown to introduce short range correlations
that are significant for κ 6= 1 but can be neglected for κ = 1. We could not derive an
analytical approach similar to the one presented for the “global factor” policy, so we
tested the existing analytical approximations with that policy. For the case of κ = 1,
the results for the high quantiles are in very good agreement with the data and large
deviations are found for κ = 2.

Transport flows based on the data time series were also calculated. We found that
some links exhbit very large flows, e.g. the link connecting Spain to France has a peak
load of around 100 GW. There is a general tendency that power flows during daytime
go from South to the North while the opposite is found during night. This is attributed
to the spatial separation of the installed wind and solar generation capacities. The sum
over undirected transport flows is significantly higher when using the “global factor”
matching policy compared to the case using the “minimal dissipation policy”. In the
over installation regime, the flows decrease only marginally. This is a difference to
the model and is expected to be also connected with the spatial distribution of the
generation capacities.

The power flow distributions of the undirected flows can be described in good
agreement for most of the links with a generalized gamma distribution when using
the “global factor” policy. The deviations are significantly larger for the case of the
“minimal dissipation” policy. For some links, the analytical approximations only poorly
estimate the undirected flow distributions. This is not surprising as the model only
assumes uniform distributed generation which is not appropriate for the case of the
data. Nevertheless, for many links the analytical approximations from the model yield
a acceptable description of the data.
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7. Summary and Discussion

7.1. Discussion and Future Work

In this work, we show that using an over installation of around 50% of the average
consumption, the required storage and balancing energies are in an order of magnitude
that are presumably feasible in the future. However, only the cases using storage only or
balancing generation only are analyzed in this work. These cases can be understood as
the extreme cases, that define the upper bounds of the required storage and balancing
energies. An interesting extension is to combine both cases. Limiting the storage energy
to a fraction of the upper bound allows to evaluate the required balancing power from
the power that cannot be satisfied using the storage. From the discussed time series of
the constrained storage level, we conjecture that the storage energy can be drastically
reduced with only little average annual balancing generation as the storage energy is
dominated by only few large peaks. On the other hand the required balancing generation
capacity can be expected to be high while being only seldomly in operation.

The spatial assignment of the generation capacities is based on the political defined
national targets for the year 2020. For our analysis these capacities are scaled up to
obtain the desired generation capacities. While this is a valid assumption for a first
assessment as the degrees of freedom are thus reduced, a different capacity layout might
allow for further optimization. A rough estimate of the optimization potential, can be
derived from the analysis of the optimal mixes for the individual countries. The effect for
the balancing power can be expected to be small, as the optimal mix for all countries is
close to the European optimum of 80% wind and 20% solar power generation. Regarding
the storage energy, we conjecture on the base of the heterogeneous optimal mixes for the
individual countries that a more optimized assignment of the generation capacities could
reduce the required storage energy. Also, the optimization of the spatial distribution of
the generation capacities should be done with respect to the transport flows, as some
of the found link flows are so high that it is unrealistic that these transport capacities
can be set up. The usage of local short time storage can also help to decrease the
transport flows, so that an assessment of the transport flows using local storages for each
or for selected regions is an important scenario for future work. It is also interesting
to calculate the flows on a finer grid that is closer to the topology of the European
transmission grid but the problem is the availability of the respective network data.
Applying the matching policies and calculating the transport flows is time consuming, so
that for transport related optimizations the analytical approximations might be helpful
as a rough estimate.

The distributions of the transport flows within the presented modelling approach
were predicted with high accuracy by the analytical approximations when using the
“global factor” policy. For the “minimum dissipation” policy with κ = 2 the results are
not accurate enough. An extension to the case of the “minimum dissipation” policy
seems to be possible. We showed that the correlation length is short and concluded that
the matching takes place in a small neighborhood. A possible approach to describe the
“minimum dissipation” policy is thus to calculate the matching within the neighborhood
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as done for the “global factor” policy and calculated the resulting transport flows. The
remaining generation can be matched using the same approach with the network outside
the considered neighborhood. Due to the linearity of the model, the resulting flows of the
two flow distributions for each link can be superimposed. Furthermore, the prediction
of the model based approximations when analyzing the real data could be improved
by systematically analyzing the distributions of the generated energy for each region
and deriving approximations to replace the model assumption of uniformly distributed
energy generation.

Finally, the effect of transient behavior is important to be assessed. As shown in the
literature these can have a significant influence but are neglected in this work. Filatrella
et al. [53], for example, proposed a model that is reduced to the essential characteristics
of power generators and able to account for transient effects. Only little modifications
have to be made to incorporate renewable fluctuating generation.
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A. Appendix

A.1. Power and Transmission Systems Overview

Modern societies are to a high degree depended on a safe, reliable, and economic supply
of electric power [59]. Power systems evolved over the last hundred years to highly
complex and interdependent systems [5]. They consist of a large number of components,
that can be roughly grouped into generators, loads, and transmission components
[107]. Furthermore, for all these components various devices for protection and control
are employed. The challenging task for engineers to implement and control such a
system becomes even more complex with increased power generation from distributed
or fluctuating renewable energy sources.

At the end of the 19th century, during the initial years of electricity distribution
DC-transmission was the system of choice. AC transmission was not understood well
enough, e.g. there was no practical AC motor available [83]. Thomas Edison promoted
strongly DC-transmission, despite it’s obvious drawbacks. As shown in Section A.2.5,
the losses of transmission decrease quadratically with the increase of the voltage, so that
a high voltage is desireable for transmission. But since the voltage in a DC-power system
can not be transformed, the power has to be transmitted at the voltage level it is used at
the consumers side. Thus, for security reasons the voltage can not be too high, so that
huge losses are inevitable and generators had to be close to the consumers. The work of
Nikola Tesla formed the basis of modern AC-Power systems and, together with George
Westinghouse, he commercialized the system in the USA [83]. In Germany the question
how to transport electric power was settled after the International Electro-Technical
Exhibition of 1891 with a successfull demonstration of AC-power transmission [83].

The biggest advantage of AC-Systems is that the voltage can be easily transformed, so
that high voltages can be used for transportation to reduce losses (see Section A.2.5) and
for distribution a lower voltage ensures security and usability. Therefore, AC-Systems
with different voltage levels are used for almost all transmission and distribution systems
today [91].

AC-Systems have an oscillating voltage and current. This allows the use of transform-
ers but also introduces some effects that complicate generation and transmission. All
components have to be able to work with oscillating voltage and current. Almost all
generated power is produced with synchronous machines that are used as generators.
All of these generators have to be in synchrony as otherwise large voltage and current
peaks can occur. If synchronism is lost, the generator has to be detached from the
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power grid or otherwise damage to the generator is possible or even a breakdown of the
whole grid can occur [90]. Engineers take also advantage of the special properties of
AC-Systems. Power to meet additional loads is first taken from the energy stored in the
rotating masses of the generators. That leads to a decreasing frequency that serves the
system as signal to increase the energy input [107]. Besides the stability of the system,
efficient economic dispatch is an important aim, so that operating and control of power
grids is a highly nontrivial task.

Transmission systems are organized hierarchical. The transport network usually
operates at voltages above 220 kV, for large distances up to 765 kV. It is usually meshed,
so that most nodes have more than two connections, ensuring that a breakdown of one
link can be compensated by other links, the so-called N − 1 stability. The direction
of the power flows usually changes with the demand or locations of the currently
cheapest available generators [107]. Power flows are governed by Kirchhoff’s circuit
laws and Ohm’s law and disperse over all parallel paths from the sources to the loads.
Subtransmission systems work with voltages around 110 kV. They can work as transport
networks with a meshed topology and changing power flow directions or as distribution
networks with a tree-like structure and a dominating powerflow direction towards the
consumers [107]. The distribution systems usually have a voltage between 10kV and
30kV and transfer the power over a tree-like network structure to the consumer [107].

AC-Transmission also comes with some disadvantages. The Skin effect, for example,
reduces the effective diameter of wires thus increasing resistances. Furthermore, the
impedances of the links, like mutual impedance or capacities to the ground, gain
importance and have to be taken into consideration [90]. This is discussed in more
detail in Section A.2. All these problems do not occur for DC-Systems. For special
circumstances DC-transmission is used for selected connections in an AC environment to
take advantages of the lower losses and of the insensitivity to reactances. At both ends
of the DC-line an inverter and rectifier couples the line to the AC system. For offshore
windparks with underwater cables DC-transmission is used as well as for transmission
lines longer than 1000km [107]. The lower transmission losses face losses in the inverters
and large investment costs for the additional components. Another application for this
setup is a connection for power exchange between two unsynchronous AC systems.

A.2. Power flow

In this section, methods to describe and calculate the power flow in AC power systems
are presented. In Section A.2.1, the concepts of active and reactive power are introduced.
The exact power flow equations are analyzed in Section A.2.2. Approximations to
these equations are derived in Section A.2.3. The currents flowing in a resistor network
according to Kirchhoff’s rules and the formal analogy to the approximations of power
flows is discussed in Section A.2.4 along with methods to solve the flow equations. The
advantages of high voltages when transmitting power are shown in Section A.2.5.
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A.2.1. Power Factor, Active and Reactive Power

Alternating current (AC) exhibits a more complex behavior of the power flows compared
to DC systems. Not only resistances have to be considered but also capacitances and
inductances. A common way to work with this kind of systems is to assume sinusoidal
voltages and currents with constant frequency, so that the concept of resistances in
DC systems can be extended to capacitances and inductances. The complex-valued
functions for voltage and current are defined as

U(t) = Uej(ωt+φU ) = Uejωt and I(t) = Iej(ωt+φI) = Iejωt , (A.1)

with the phases φ, frequency ω, and the complex amplitudes U = UejφU and I = IejφI .

Ohm’s law can be applied, yielding I(t) = Y ·U(t), where Y is the complex admittance.
For a resistor, the admittance follows as Y = 1/R and for a capacity, that is described

by i(t) = C dv(t)
dt

, we find Y = jωC. The complex admittance for an AC circuit with
constant frequency is thus defined as

Y = G+ jB (A.2)

with the conductance G and the susceptance B.

When using alternating currents, the concept of power has to be extended. For purely
resistive loads the current and the voltage change signs at the same time, so that the
dissipated power is always positive. Energy is dissipated at the resistor, referred to
as active power. For an ideal capacitance or inductance, the current and the voltage
are 90◦ out of phase, so that the product of the current and the voltage is positive
for half a cycle and negative for the other. Thus, for reactive loads the consumed net
power is zero. The power that flows is referred to as reactive power [52, 107]. A good
example is the an LC-circuit, consisting of an ideal inductance and a capacitance. It
can be mathematically described as a harmonic oscillator and the energy flows back
and forth between both components. For ideal components no energy is dissipated and
only reactive power is flowing. In real systems, all components have a resistance, so
that the oscillations will eventually die out.

In the following, a description of active and reactive power is derived. Using the AC
voltage u(t) = U cos(ωt) and the current i(t) = I cos(ωt− ϕ), so that ϕ denotes the
phase difference, the instantaneous power at time t follows as

p(t) = u(t)i(t) = U · I cos(ωt) cos(ωt− ϕ) . (A.3)

Applying the trigonometric identity cos(ωt− ϕ) = cos(ωt) cos(ϕ)− sin(ωt) sin(ϕ), the
instantaneous power follows as [35]

p(t) = U · I cos(ϕ)︸ ︷︷ ︸
P

(
1 + cos2(2ωt)

)
+ U · I sin(ϕ)︸ ︷︷ ︸

Q

sin(2ωt) . (A.4)
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When looking at Equation (A.4), we find that 〈p(t)〉 = P . The second part, containing
the reactive power Q averages to zero. The average power P is referred to as active power.
The power oscillates around P with amplitude P . The second term in Equation (A.4)
denotes the power flowing in and out of the component with the amplitude Q. The
reactive power is not consumed since it is the part of the power flow where U and I
have a 90 degree phase difference. In power systems this can be problematic, e.g. some
of the transported power over long transmission lines is stored in the capacitance of the
line, thus reducing the transported active power. When using the complex voltage and
current from Equation (A.1), the complex power is defined by

S = UI∗ = UIejϕ = Sejϕ , (A.5)

with ϕ again the phase difference between the current and the voltage. Either U or
I have to be complex conjugated, so that the complex power is equal to the power
for DC systems. The complex conjugated current is used by convention [90]. The
absolute value S = |S| = S S∗ =

√
P 2 +Q2 is referred to as apparent power. Using

ejϕ = cos(ϕ) + j sin(ϕ), the complex power can be written as [2]

S = UI cos(ϕ) + jUI sin(ϕ) = P + jQ (A.6)

Thus, the complex power S yields all information if the instantaneous power in Equa-
tion (A.4).

Another important parameter to describe power flow is the ratio of the real power to
the apparent power

pf =
P

S
=
|P |
|S|

= cos(ϕ) . (A.7)

Both the active and reactive power have to balanced for AC power systems to be stable.
In good approximation, unbalanced active power leads to deviations of the frequency
and unbalanced reactive power to deviations from the desired voltage [90, 107]. Both
can be understood by looking at the mode of operation of the synchronous generators.
In the former case the power taken out is larger than the external propulsive power,
so the power stored in the rotating mass is consumed leading to a decaying rotation
speed and thus decaying frequency. In the latter case, the voltage decreases when the
reactive power in the system increases because of an inductive reaction of the armature
[35, 90, 107].

A.2.2. Calculation of the Exact Power Flow

When calculating power flows in a power grid, the admittance matrix Y is used to
describe the system. The entries Yik = Gik + jBik consist of the admittance of the
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link i → k and the diagonal is given by Yii =
∑

k 6=i Yik. In the stationary state, the
complex power at each node is given by

Si = Pi + jQi = Ui

(∑
k

YikUk

)∗
. (A.8)

To describe the transient behavior, the full differential equations of the system have to
be solved. The in/outflow of active and reactive power at vertex j has to equal to the
power that is transfered to or from neighboring vertices [90]. For given complex power

Si at each vertex, the voltage ~U s that solves Equation (A.8) can be found by solving

fj

(
~U s
)

= 0, with

fi

(
~U
)

= Pi + jQi −

(
Ui

(∑
k

YikUk

)∗)
(A.9)

for all vertices. It is an equation second order in the voltage, so that it has a well
defined solution but it can not be derived in a closed form. To find the solution of
Equation (A.9), Newton’s method can be used. It is a well established method for root
finding of nonlinear equations [see e.g. 103, 107]. Newton’s method iteratively refines
an initial guess by repeatedly linearizing the nonlinear function around the current
guess and subsequently solving the linear problem [see e.g. 23, 103, 108]. Newton’s
method is only guaranteed to converge in the vicinity of the solution of the nonlinear
system. Various extensions are proposed to ensure global convergence and to improve
the numerical performance [23, 48]. To find the solution f(x) = b, the method is defined
as

f(xj)− b = f ′(xj) ∆xj (A.10)

with x0 the initial guess and ∆xj = xj+1 − xj.

The entries of Yik and the voltages are complex valued quantities and can be expressed
in cartesic or polar coordinates,

Uk = |Uk|ejδk and Yik = |Yik|ejαik . (A.11)

Thus, the potentials Uk(|Uk|, θk) are to be found that solve Equation (A.8) for given
complex power.

In the following, we will show the derivation of Newton’s method for the power flow
in Equation (A.9) as presented by Oeding and Oswald [90]. Equation (A.8) can be
rearranged to

U Y ~U −
(
~P + j ~Q

)
= ~0 , (A.12)
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with the diagonal matrix U = diag(U1, . . . , UN). Since Equation (A.12) has to be
fullfilled for both real and the imaginary part, the equations

<
[
U Y ~U

]
− ~P = ∆~P (A.13)

=
[
U Y ~U

]
− ~Q = ∆ ~Q (A.14)

have to be solved, so that ∆~P and ∆ ~Q are zero. The voltages at iteration step ν + 1
are normalized to the voltages to the previous iteration step

|u(ν+1)
i | = |U

(ν+1)
i |
|U (ν)

i |
. (A.15)

Defining the state vector

~x = (δ1, . . . , δN , u1, . . . , uN)T , (A.16)

Equations (A.13) and (A.14) yield for the next iteration step ν + 1 using Newton’s
method(

∂∆~P

∂~x

)
(ν)

∆~x(ν+1) + ∆~P(ν) = ~0 and

(
∂∆ ~Q

∂~x

)
(ν)

∆~x(ν+1) + ∆ ~Q(ν) = ~0 ,

(A.17)

with ∆~x(ν+1) = ~x(ν+1) − ~x(ν) and the partial derivations calculated at the point of the
last solution ~x(ν). These can be merged to(

∂∆~P
∂~x
∂∆ ~Q
∂~x

)
(ν)

∆~x(ν+1) =

(
H K
M L

)
(ν)︸ ︷︷ ︸

J(ν)

∆~x(ν+1) = −
(

∆P
∆Q

)
(ν)

, (A.18)

where the Jacobian matrix J(ν) can be written in terms of four submatrices. For every
iteration step, the Jacobian matrix has to be calculated and Equation (A.18) to be
solved to find the refined solution ~x(ν+1) = ~x(ν) + ∆~x(ν+1). There are various algorithms

to solve linear systems of equations of the form A~x = ~b [see e.g. 103].

Oeding and Oswald [90] show that using the matrix

R =

 |U1||Y11||U1|ej(δ11−α11) · · · |U1||Y1N ||UN |ej(δ1N−α11)

...
. . .

...
|UN ||YN1||U1|ej(δN1−αN1) · · · |UN ||YNN ||UN |ej(δNN−αNN )

 (A.19)
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with δik = δi − δk1, the submatrices of the Jacobian matrix J(ν) follow as

H(ν) = = [R]− diag
(
~Q(ν)

)
(A.20)

M(ν) = −< [R]− diag
(
~P(ν)

)
(A.21)

K(ν) = < [R]− diag
(
~P(ν)

)
(A.22)

L(ν) = = [R]− diag
(
~Q(ν)

)
, (A.23)

with diag(~y) indicating a matrix with the vector ~y on the diagonal. On the diagonals of
the matrices H, M, K, and L, the active and the reactive power of the current solution
~U(ν), given by

~P(ν) = <
[
U(ν) Y ~U(ν)

]
~Q(ν) = =

[
U(ν) Y ~U(ν)

]
, (A.24)

are subtracted.

A.2.3. Decoupling of the Power Flow and DC Approximation

The Jacobian matrix J(ν) has to be calculated for every iteration step and might be
expensive to evaluate. Using some approximations, the problem can be simplified, so
that the Jacobian has to be calculated only once. In power grids the differences of the
voltage angles δik are typically small and the impedances dominated by the reactances.
Then the approximations

cos(δik) = 0 and sin(δik − αik) = 0 (A.25)

hold for the case of power grids [90].

The matrix R in Equation (A.19) can then be simplified and the entries of the
matrices M and K in Equations (A.23) go to zero. The remaining system of equations
with the simplified matrices H and L, denoted by H′ and L′, is given by

H′∆δ = −∆p and L′∆u = −∆q . (A.26)

In power grids, the voltages are tried to be kept as uniform as possible. The influence
of the voltages amplitudes |Uk| in Equation (A.8) on vertex i is thus approximated by
the voltage amplitude |Ui| ≈ |Uk|. Together with the above approximations, we then
find

Si = Pi + jQi = |Ui|2
∑
k

Y∗ike
j(δik−αik) . (A.27)

1Since δii = 0, the diagonal elements simplify to |Ui|2|Yii|e−jαii
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Equations (A.26) and (A.27) can be rewritten to

B′∆~δ = Us∆P (A.28)

B′′∆~u = Us∆Q (A.29)

with the matrix elements Us
ii = |Ui|2 on the diagonals and zero for the nondiagonal

elements. The entries of the matrices B′ and B′′ are given by [107]

B′ik = B′′ik = Bik for i 6= k (A.30)

B′ii = −
N∑

k=1,k 6=i

Bik (A.31)

B′′ii = 2Bii +
N∑

k=1,k 6=i

Bik . (A.32)

Only the reactances Bik enter in this approximation, as the resistances in the addmittance
matrix Y are assumed to be small. Bii describe the reactances that connects all vertices
i to a common reference node to account for losses at the nodes. The matrices B′ and
B′′ are constant in ~u, so that the system to be solved is linear. This approach is referred
to as “decoupled power flow”.

Further approximations can be made to derive the “DC power flow”. A uniform
voltage |Ui| = U is assumed, so that Equation (A.29) is zero on the left side and the
reactive power does not need to be considered [90, 107, 126]. Further, the Bii are
assumed to be small. The active power in Equation (A.13) can then be rewritten as

∆~Pi =

[
|Ui|2

∑
k

|Yik| cos (δik − αik)

]
− Pi . (A.33)

Again, the resistances for ∆~Pi are neglected and assumed that the inductive part of the
lines dominates the admittances, so that αik → −π/2. The term cos (δik − αik) is thus
replaced by − sin (δik). For small voltage angle differences δik, the sine function can be
approximated, sin (δik) ≈ δik, so that [90]

∆~Pi ≈ −

[
U2
∑
k

|Yik| (δi − δk)

]
− Pi = U2

(
B′~δ
)
i
− Pi . (A.34)

In matrix notation, this can be expressed as

~P = U2B′~δ . (A.35)

For simplicity, usually a voltage U = 1 is assumed. The power on the line i→ k is given
by [126]

Pjk = Bjk (δj − δk) . (A.36)
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A.2.4. Kirchhoff Flow

Kirchhoffs circuit laws consist of the current law (KCL) and the potential law (KPL)
and state that:

KCL the sum over all currents entering a node in an electrical network has to be equal
to the sum of all currents leaving that node,

KPL the sum of all potential differences around any closed loop is zero.

To transport electrical charges, the currents Ij are injected or drawn at each vertex
j. The current from vertex k to k is denoted by Ijk. With that definition the KCL is
given by

Ij +
∑
k∈Nj

Ijk = 0 . (A.37)

The currents Ij are defined to be positive if current is injected at vertex j and negative

Figure A.1.: A circuit that con-
sists of a network of
three resistors

for current drawn from the vertex. A direction is asso-
ciated to the links2 and a positive current indicates a
flow in the direction of the link, a negative the opposite.
To every vertex a potential Uj is assigned. For a closed
loop s, where s = {s1, . . . , sl, s1} gives the indices of
the vertices, the KPL can be written as

l∑
i=1

(
Usi − Usi+1

)
= 0 . (A.38)

Using the KCL in Equation (A.37) and Ohm’s law,
U = R ·I, the currents in the network can be calculated
for given potentials that satisfy the KPL. For a simple
circuit, as shown in Figure A.1 the currents follow as

Ia = Iab + Iac = (Ua − Ub)R−1
ab + (Ua − Uc)R−1

ac

=
(
R−1
ab +R−1

ac

)
Ua −R−1

ab Ub −R
−1
ac Uc

Ib = Ibc − Iab = −R−1
ab Ua +

(
R−1
ab +R−1

bc

)
Ub −R−1

bc Uc

Ic = −Iac − Ibc = −R−1
ac Ua −R−1

bc Ub +
(
R−1
ac +R−1

bc

)
Ua . (A.39)

The signs are chosen such that a current into the vertex is positive. Equation (A.39)
can be generalized to

~I = Y~U , (A.40)

2As Ijk = −Ikj the direction of the link is not of importance as long as it is known from which node
to which the current flows.
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where Y is the admittance matrix with the properties

Yij = −R−1
ij (A.41)

for i 6= j and

Yii =
∑
j

R−1
ij . (A.42)

Using Ohm’s law, the current along the line from i to j is given by Iij = R−1
ij (Uj − Ui).

When comparing Equation (A.40) with Equation (A.35), we see that formally the
equations are equal. The matrix Y has the same structure as B′, the diagonal elements
are the sums of the respective columns, with the difference that the entries of B′ consist
of the reactances only. The total power sums up to zero as do the currents, to fullfill
the conservation of energy. Thus, current flows governed by the Kirchhoff equations are
equal to power flows resulting from the approximation in Equation (A.35).

The properties of the Kirchhoff flow will be elaborated in the following in more details,
mostly based on Bollobás [19]. These definitions were derived in the context of graph
theory which was introduced in Section 2.1. The incidence matrix as introduced in
Equation (2.2) is defined by

Kij =


1 vi is the initial vertex of edge ej
−1 vi is the terminal vertex of edge ej

0 otherwise
(A.43)

and has a distinct meaning in the context of flows. Since each row of the transposed
incidence matrix Kt has a one at the initial and a minus one at the terminal vertex,
Kt u gives the potential differences (ui − uj) at every edge ei→j. Kirchhoffs potential
law (KPL) postulates that the sum of all potential differences around any cycle is zero.
The sum over the potential differences of a cycle {v1, . . . , vk, v1} is given by(

j−1∑
j

uj − uj+1

)
− u1 = (u1 − u2) + (u2 − u3) + · · ·+ (uk−1 − uk)− u1 = 0 . (A.44)

Thus, the KPL is always fullfilled for voltage differences defined by Kt ~u. The flow along
a link is according to Ohm’s law fij =

ui−uj
rij

, which can be put into the form

~f = R−1Kt~u , (A.45)

with R−1 a M ×M matrix with the admittances of the respective links on the diagonal,

R−1
ij =

{
R−1
ei

for i = j
0 otherwise

, (A.46)
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and ~f a vector of length M that gives the flows along the links. Kirchhoff’s current law
(KCL) as defined in Equation (A.40) can be written as K~f = ~s for all flows that satisfy
Equation (A.45). Thus, Kirchhoff’s law can be put into the form

~s = KR−1Kt~u . (A.47)

The matrix

Y = KR−1Kt (A.48)

maps directly from the potentials to the in and out flows at each vertex. For Rij = 1,
this matrix is equal to the Laplace matrix, see Section 2.1.1. Equation (A.47) can then
be written as

~s = Y ~u . (A.49)

or as

~s = L ~u . (A.50)

for Rij = 1.

A.2.4.1. Solving the Flow Equations

The Laplace matrix L of a graph consisting of one connected component is positive-
semidefinite with one eigenvalue that is zero3. Therefore, Equation (A.49) is an under-
determined system of equations, as ~s is invariant to a translation of ~u with the eigenvector
~v0, that fullfills L~v0 = 0, so that ~s = L (~s+ ~v0) = L~s. L is thus not invertible and the
solution to ~s = L~u for given ~s can not be calculated directly.

In the literature, this problem is often avoided by fixing the potential of a reference
vertex to zero and thus removing the corresponding column and row from the Laplace
matrix. The resulting matrix consists of independent columns and has a unique solution
[see e.g. 89].

A different approach to solve Equation (A.49) for ~u is the use of the Moore-Penrose
pseudoinverse L+ [109, 121], in the following only referred to as pseudo inverse [93]. It
provides a least squares solution to a system of linear equations [94]. Given a system of
linear equations

A~x = ~b (A.51)

it may not be possible to find a vector ~x which solves the equation for an over-determined
system. For an under-determined system, the solution is not unique. For our problem in
Equation (A.49), we have an under-determined system and the pseudoinverse approach

3The multiplicity of the zero eigenvalue is equal to the number of components [17].
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yields the solution that has smallest Euclidean norm |x| [94]. The Laplace matrix is a
symmetric matrix, so a eigendecomposition of the form

L = MΛMt (A.52)

is possible, where M is an orthogonal matrix and Λ is a diagonal matrix of the
eigenvalues λi. Since L is positive-semidefinite all eigenvalues satisfy λi ≥ 0. Using the
eigendecomposition, the pseudo inverse is defined as [94]

L+ = MΛ+Mt (A.53)

with

Λ+
jj =

{
λ−1
j for λj 6= 0
0 otherwise

(A.54)

The solution ~u = Y+~s and ~u = L+~s for Equations (A.49) and Equation (A.50) thus
gives the potential vector ~u with the smallest Euclidean norm and is used in this work
to calculate the potential vector ~u for a given in/out flow vector ~s.

A.2.5. High Voltage Transmission

Transmitting power always implies losses due to the resistances of the wires. The
system should be designed so that these losses are minimal. The power dissipation by a
resistance of the wire is given by Pwire = ∆U · I, where ∆U is the voltage drop along
the line. Using Ohm’s law and the power to be transfered P = U · I, we find

Pwire = Rwire · I2 = Rwire
P 2

U2
. (A.55)

For given line resistance Rwire and power to transport P , the losses Pwire are minimal if
the voltage is maximal. On the other hand, increasing the voltage will result in a higher
current by Ohm’s law or it has to be assumed that the resistance of the consumer is
changed so that the current decreases.

To understand why high voltages are used for transmission, the whole transmission
system and the load has to be taken into account. A schematic circuit diagram is shown
in Figure A.2. The system consists of a transmission line with resistance Rlink and a
transformer with a impedance Zt in the primary circuit. On the secondary side the load
has an impedance Zload. For an ideal transformer the incoming power on the primary
side has to equal the outgoing power on the secondary side, Pin = Up · Ip = Pout = Us · Is,
so that the ideal transformer equation follows as:

Vs
Vp

=
Ns

Np

=
Ip
Is
, (A.56)
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Figure A.2.: Simplified circuit diagram of the transmission from a voltage source over over a
transmissionline with resistance Rlink using a transformer to convert the voltage
for the load with impedance Zload.

where NP and NS are the number of turns of the transformer on the primary and sec-
ondary side, respectively. By Ohm’s law, we have the relations between the impedances,
currents, and voltages

Zload =
Vs
Is
, Zt =

Vp
Ip

. (A.57)

Using Equation (A.56) and Equations (A.57), the impedance of the transformer can be
expressend in dependence of the load impedance and the ratio of the voltages on the
primary and secondary side,

Zt = Zload

(
Np

Ns

)2

= Zload

(
Vp
Vs

)2

. (A.58)

We see that the total impedance in the primary circuit Zt + Rlink increases when
increasing the primary voltage relative to the secondary voltage thus decreasing the
current Ip. This explains why the current can be assumed to decrease in Equation (A.55)
for increasing voltage.

Given the power to be consumed at the load P ∗ = Zload · I2
s , we find in terms of the

primary side

P ∗ = Vt · Ip = Zload

(
Vp
Vs

)2

· I2
p (A.59)

and using the losses at the line

Ploss = R · I2
p , (A.60)

the relative loss follows as

Ploss
P ∗

=
R

Zload

(
Vs
Vp

)2

∝
(
Vs
Vp

)2

. (A.61)

Thus, we obtain the result that increasing the voltage of the primary side, the voltage
used for transmission, by a factor of ten means that the ratio of the transmission loss to
the consumed power decreases by a factor of hundred.
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A.3. Probability Distributions

A.3.1. Properties of Probability Distributions

Some basic properties of probability distribution used in this work are summarized here.
The raw moments of a random variable X drawn from the probability distribution p(x)
are defined as µ′k = E

[
Xk
]
, with the expectation operator

E [g(X)] =

∫ ∞
−∞

g(x) p(x)dx .

The central moments are defined as deviations from the mean µ, µk = E
[
(X − µ)k

]
.

The cumulants generating function of the random variable X is defined as [34]

g(t) = log
(
E
[
etX
])

, (A.62)

The cumulants κn follow as the derivatives of the cumulant generating function at k = 0
[97]

κ1 = µ = g′(0), (A.63)

κ2 = σ2 = g′′(0), (A.64)

...

κn = g(n)(0) . (A.65)

The first cumulant equals the mean, while the second and third are equal to the second
and third central moments.

First, the additivity of cumulants is shown. The cumulants of the sum of two
independent random variables X and Y are calculated using

gX+Y (t) = log
(
E
[
et·(X+Y )

])
= log

(
E
[
etX
]
· E
[
etY
])

= log
(
E
[
etX
])

+ log
(
E
[
etY
])

= gX(t) + gY (t) , (A.66)

so that the cumulant κj of the sum distribution pX+Y is given by the sum of the
respective cumulants of the two distributions. With the same method, it is easy to show
that for the cumulants and the central moments

κn(cX) = cnκn(X) , µn(cX) = cnµn(X) (A.67)

holds. Thus, for random variable Y = αX, with X drawn from a normal distribution
N(x;µ, σ2), follows that Y is distributed as N(y;αµ, α2σ2). If X is uniformly distributed
U(x; a, b), with a and b the upper and lower bound, the distribution of Y is given by
U(y;αa, αb).
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Another important relation is that the distribution of the sum SX+Y of two random
variables X and Y drawn independently from the distributions pX(x) and pY (y) is given
by the convolution of the two distributions

SX+Y (z) = (pX ∗ pY )(z) =

∫ ∞
−∞

pX(z − y) · pY (y)dy (A.68)

This is proved by

SX+Y (z) =

∫∫ ∞
−∞

pX(x) · pY (y)δ(z − (x+ y)) dxdy (A.69)

=

∫ ∞
−∞

pX(x) · pY (z − x)dx =

∫ ∞
−∞

pX(z − y) · pY (y)dy (A.70)

where the integration is done either over x or y. Further, we see that (pX ∗ pY )(z) =
(pY ∗ pX)(z).

A.3.2. Fitting the Generalized Gamma Distribution

The generalized gamma distribution was introduced by Stacy [111]. It is given by

f(x; b, d, k) = d
xdk−1

bdkΓ(k)
exp

(
−
(x
b

)d)
, (A.71)

with positive b, d and k and the gamma function Γ(z) =
∫∞

0
tz−1e−t dt [112]. The raw

moments are given by

µ′n = bn
Γ
(
k + n

d

)
Γ(k)

. (A.72)

Prentice [95] derived a maximum likelihood solution to determine the parameters b,
d, and k from a set of data, but the method often fails to converge and gave in our
simulations poor results. Stacy and Mihram [112] derived a way to calculate the
parameters from the data, but used the mean, variance and skewness of the logarithm
of the data. The latter is not available from the derivations in Chapter 5 so this method
can not be used. The method of moments [see e.g. 112], where the analytical moments
depending on the parameters are compared to the moments calculated from the data,
was far more successfull. The first raw moments µ′n in dependence of the parameters b,
d, and k are given by

µ′1 = b
Γ
(
k + 1

d

)
Γ(k)

(A.73)

µ′2 = b2 Γ
(
k + 2

d

)
Γ(k)

(A.74)

µ′3 = b3 Γ
(
k + 3

d

)
Γ(k)

. (A.75)
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We therefore solve Equations (A.73) to (A.75) directly using an iterative method
similar to the work by Ashkar et al. [11]. The system of two equations

b(µ′1, bi, di, ki)
2 ·

Γ
(
ki + 2

di

)
Γ(ki)

− µ′2 = 0 (A.76)

b(µ′1, bi, di, ki)
3 ·

Γ
(
ki + 3

di

)
Γ(ki)

− µ′3 = 0 , (A.77)

with b(µ′1, b, d, k) = µ′1
Γ(k)

Γ(k+ 1
d)

, is solved iteratively starting from an initial guess b0, d0,

and k0. Equations (A.76) and (A.77) can be solved using a Newton-Krylov method. In
an outer loop the system is linearized using Newton’s method and in the inner loop
the linear system is approximately solved using a method based on Krylov subspace
approximations. Here, the GMRES solver is used [103] to solve the linearized system.
For a nonlinear system Newton’s method is known to converge q-quadratically in the
vicinity of the solution [42], but far away from the solution it is not guaranteed to
converge and might even diverge. To ensure global convergence some methods have
been proposed as summarized by Brown and Saad [23]. Further techniques to speed up
solving the nonlinear root finding problem, is to decrease the accuracy of the inner linear
solver far away from the solution [48]. The above described methods are implemented
in the package PETSc [12, 13], that we used to solve Equations (A.76) and (A.77)
numerically.

Newton’s method needs the Jacobian matrix of the Equations (A.73) to (A.75), which
is given in Ashkar et al. [11]. Since the gamma functions are highly nonlinear for
negative arguments and b, d, and k larger have to be larger than zero by definition, we

substituted the term
Γ(k+n

d )
Γ(k)

in Equation (A.73) to Equation (A.75) by

γn =

{
Γ(k+n

d )
Γ(k)

for k > 0 and d > 0

(−d+ 1)α + (−k + 1)α else
, (A.78)

with α � 1. This definition forces negative values of d and k back to the positive
semiaxis. Numerically the values of the gamma functions might give extremely large
values while the ratio may stay small. This is implemented by taking the logarithm of
the fraction using functions that return the logarithm of the gamma function ΓL(·) that
are implemented for example in the C++ library boost [20], and taking the exponent of
the differences

Γ
(
k + n

d

)
Γ(k)

= exp
(

ΓL

(
k +

n

d

)
− ΓL(k)

)
(A.79)

allows to calculate the fraction of the gamma functions numerically. Further, the raw
moments are sometimes not easy to handle numerically, as they might be very large or
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small, due to the exponents. This can be circumvented by using

βµ′1 = b′γ1 (A.80)

β2µ′2 = b′2γ2 (A.81)

β3µ′3 = b′3γ3 . (A.82)

so that b is given by b = b′

β
. The factor β is chosen larger than one if the higher

moments are small, which is the case for our problems. To calculate the parameters of
the generalized gamma distribution in Chapter 5, β = 10 is used.

With this approach the parameters of the generalized gamma distribution could be
estimated robustly from the first three raw moments.

A.3.3. Sum of N Nonidentically Distributed Uniform Random
Variables

Here, the derivation of the results from Bradley and Gupta [21] are briefly outlined. The
distribution of the sum of N nonidentically independent distributed uniform random
variables is calculated. The probability density of

∑N
j=1Xj, where the Xj are drawn

from the mutually independent probability density functions (PDFs) pj(x), is given
by fN(x) = (p1 ∗ p2 ∗ · · · ∗ pN) (x). The PDFs pj(x) are uniform distributions on the
interval [cj − aj, cj + aj].

The characteristic function of fN(x) is given by

f̃N(x) =
N∏
j=1

p̃j =
N∏
j=1

eitcj sinc(ajt) . (A.83)

Bradley and Gupta [21] start with a Fourier inversion that gives

fN(x) =
1

2π

∫ ∞
−∞

e−itxf̃N(x)dt =
1

2π

∫ ∞
−∞

e−ity
N∏
j=1

sinc(ajt) , (A.84)

with y = x−
∑N

j=1 cj. A change of the variable t→ −t yields

fN(x) =
1

2π

∫ ∞
−∞

eity
N∏
j=1

sinc(ajt) dt . (A.85)

The sinc function is replaced by sinc(ajt) =
sin(ajt)

t
= eiajt−e−iajt

2it
, so that we get

fN(x) =
1

2π

(
1

2i

)N ( N∏
j=1

a−1
j

)∫ ∞
−∞

t−Neity
N∏
j=1

(
eiajt − e−iajt

)
dt (A.86)
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and the product of exponentials is expanded so that the result is

fN(x) =
1

2π

(
1

2i

)N ( N∏
j=1

a−1
j

)[ ∑
ε∈{−1,1}N

(
N∏
j=1

εj

)∫ ∞
−∞

t−Neit(y+~ε·~a)dt

]
. (A.87)

The sum has to be carried out over each of the 2N vectors of signs ~ε = (ε1, ε2, . . . , εN),
with εj = ±1. Since Equation (A.86) is known to converge, we know that the singularities
in Equation (A.87) must cancel, therefore the required finite integral is given by its
principal value. Equation (A.87) can be integrated N − 1 times by parts, yielding

fN(x) =
1

2π

(
1

2i

)N ( N∏
j=1

a−1
j

)
iN−1

(N − 1)!

[ ∑
ε∈{−1,1}N

(
N∏
j=1

εj

)

(y + ~ε · ~a)N−1 · P.V.

∫ ∞
−∞

t−1eit(y+~ε·~a)dt

]
. (A.88)

The last integral evaluates to [21]

P.V.

∫ ∞
−∞

t−1eit(y+~ε·~a)dt = iπ sign(y + ~ε · ~a) , (A.89)

so that the final result is given by

fN(x) =
1

(N − 1)! 2N+1

(
N∏
j=1

aj

)−1
 ∑
~ε∈{−1,1}N

(
z~ε(x)

)N−1

sign(z~ε(x))
N∏
j=1

εj

 (A.90)

with

z~ε(x) = x+
N∑
j=1

(εjaj − cj) . (A.91)

A.4. Overproduction Factor

The 100% renewable generation scenario in Section 3.4, assumes that generation and
consumtion are equal over the eight years of data. Losses in the storage for ηin < 1 or
ηout < 1 therefore have to be compensated by overproduction. Here, the derivation of
the appropriate overproduction factor is derived.

The surplus generation factor γ is determined from the requirement that the storage
level reached after 8 years is equal to the initial storage level,

H(t = 8y) = H(t = 0) , (A.92)
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and thus H(t = 8y)−H(t = 0) = 0. Starting from the mismatch

∆(t) = τ

[
γ

(
a
Wτ (t)

〈W 〉
+ b

Sτ (t)

〈S〉

)
+ c

Fτ (t)

〈F 〉
− Lτ (t)

〈L〉

]
(A.93)

and the definition of the storage

H(t) = H(t− 1) +

{
ηin∆(t) if ∆(t) ≥ 0 ,
η−1

out∆(t) if ∆(t) < 0 ,
(A.94)

we find, using the Heaviside function Θ(x),

0 = ηin
∑
t

∆(t)Θ(∆(t)) + η−1
out

∑
t

∆(t)Θ(−∆(t))

= ηin
∑
t

∆(t) +
(
η−1
out − ηin

)∑
t

∆(t)Θ(−∆(t)) .

(A.95)

Using the balancing

B(t) =

{
−∆(t) if ∆(t) < 0

0 if ∆(t) ≥ 0
. (A.96)

and inserting Equation (A.93), we find

0 = ηin (γa+ γb+ γc− 1)− η−1
out − ηin
Nt

∑
t

B(t; a, b, c, γ) ,

where Nt is the number of timesteps. Since a+ b+ c = 1 by definition, γ is given by

γ =

(
η−1
out − ηin

)
Ntηin

[∑
t

B(t; a, b, c, γ)

]
+ 1 . (A.97)

We use an iterative approach, to approximate γ

γj+1 =

(
η−1
out − ηin

)
Ntηin

[∑
t

B(t; a, b, c, γj)

]
+ 1 . (A.98)

For a simple function describing the load and generation, we can show that this expression
converges. We consider the continuous functions L(t) = 2

tmax
t and G(t) = 1 for the load

and generation, that have both a mean value of one. The solution of for the continuous
version of Equation (A.98) then has the solution

γ∗ =
2
(

1−
√

ηin
ηout

)
1− ηin

ηout

(A.99)
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Figure A.3.: Plot of γj against ∆γj , the dashed line is γ∗.

Plugging in the continuous load and generation into Equation (A.98), we find

γj+1 =
4 + γ2

j

(
1− ηin

ηout

)
4 + 2γj

(
1− ηin

ηout

) , (A.100)

and the difference between γj and γj+1 is given by

∆γj = γj+1 − γj =
4 + γ2

j

(
1− ηin

ηout

)
4 + 2γj

(
1− ηin

ηout

) − γj . (A.101)

In Figure A.3, we plot ∆γj against γj in . As the plot shows ∆γj has a negative slope
for all possible values for γj so that it always converges to the solution γ∗, where ∆γj is
zero. We numerically verified that Equation (A.98) converges for the time series of the
data in Chapter 3.
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[77] U. Krengel. Einführung in die Wahrscheinlichkeitstheorie und Statistik. 5. edition,
2000.

[78] D. Krioukov, F. Chung, kc claffy, M. Fomenkov, A. Vespignani, and W. Willinger.
The workshop on internet topology (wit) report. ACM SIGCOMM Computer
Communication Review, 37(1), January 2007.

[79] L. D. Landau and E. M. Lifshitz. Statistical Physics Part 1, volume 5 of Course
of theoretical phyaics. PERGAMON PRESS, 3rd edition, 1980.

[80] F. C. Leone, L. S. Nelson, and R. B. Nottingham. The folded normal distribution.
Technometrics, 3(4):pp. 543–550, 1961. ISSN 00401706.

[81] X. Lu, M. McElroy, and J. Kiviluoma. Global potential for wind-generated
electricity. Proc. Natl. Acad. Sci., 106:10933–10938, 2009.

[82] G. Marsaglia. Ratios of normal variables and ratios of sums of uniform variables.
Journal of the American Statistical Association, 60(309):193–204, 1965. ISSN
01621459.

[83] T. McNichol. AC/DC: The savage tale of the first standards war. Jossey-Bass,
San Francisco, CA, 2006.

[84] G. A. Meehl, W. M. Washington, C. M. Ammann, J. M. Arblaster, T. M. L.
Wigley, and C. Tebaldi. Combinations of natural and anthropogenic forcings in
twentieth-century climate. Journal of Climate, 17:3721–3727, 2004.

[85] A. E. Motter and Y.-C. Lai. Cascade-based attacks on complex networks. Phys.
Rev. E, 66(6):065102, Dec 2002. doi: 10.1103/PhysRevE.66.065102.

168

http://www.desertec.org/downloads/deserts_en.pdf
http://www.desertec.org/downloads/deserts_en.pdf


Bibliography

[86] NCEP. http://www.ncep.noaa.gov. National Center for Environmental Prediction.

[87] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths, weighted
networks, and centrality. Phys. Rev. E, 64(1):016132, Jun 2001.

[88] M. E. J. Newman. The structure and function of complex networks. SIAM Review,
45(2):167–256, 2003. doi: 10.1137/S003614450342480.

[89] M. E. J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Phys. Rev. E, 69(2):026113, Feb 2004. doi: 10.1103/PhysRevE.69.
026113.

[90] D. Oeding and B. Oswald. Elektrische Kraftwerke und Netze. Springer, 6. edition,
2004.

[91] B. Oswald. Berechnung von Drehstromnetzen. Vieweg+Teubner, 2009.

[92] M. Patra and M. Karttunen. Stencils with isotropic discretisation error for different
operators. Numerical Methods for Partial Differential Equations, 22, 2005. doi:
10.1002/num.20129.

[93] R. Penrose. A generalized inverse for matrices. Mathematical Proceedings of the
Cambridge Philosophical Society, pages 406–413, 1955.

[94] R. Penrose and J. A. Todd. On best approximate solutions of linear matrix
equations. Mathematical Proceedings of the Cambridge Philosophical Society, 52:
17–19, 1956.

[95] R. L. Prentice. A log gamma model and its maximum likelihood estimation.
Biometrika, 61(3):539–544, 1974.

[96] V. Quaschning. Systemtechnik einer klimaverträglichen Elektrizitätsversorgung in
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