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1. Introduction

More than 99 percent of themass of the visible matter in our universe emerges at the phase
transition from a plasma of quarks and gluons to a world mainly built from hadrons, pro-
tons and neutrons. In nature this phase transition potentially appears shortly, 10−5 sec-
onds, after the Big Bang at temperatures of around 1012 Kelvin. Besides the early universe
the core of superdense stars could be a place for this phase transition. It has two inter-
esting aspects: the spontaneous breaking of chiral symmetry and the transition between
partonic and hadronic degrees of freedom. Above the phase transition temperature, up-
and down-quarks have very small but finite current masses of 1.5 and 3 MeV. The origin
of this current mass is searched for at the Large Hadron Collider (LHC) in form of the
Higgs boson. Below the phase transition, protons and neutrons formwith a mass of about
940 MeV, which corresponds to a constituent quark mass of about 300 MeV. This mass is
generated at the chiral phase transition. The current quark mass breaks chiral symmetry
explicitly. Compared to hadronic masses, however, it is small enough to consider chiral
symmetry an approximate symmetry of the strong interaction. While the theory itself is
approximately chirally symmetric, the ground state of the strong interaction is not. Chiral
symmetry is, thus, spontaneously broken. From Goldstone’s theoremwe know that every
spontaneously broken symmetry is accompanied by a massless mode, the so-called Gold-
stone boson. The lightest meson, the pion, is considered the Goldstone boson of chiral
symmetry. Its finite mass is generated by the current quark mass.

The fundamental theory of the strong interaction between quarks and gluons and between
nucleons in the atomic nuclei is quantum chromodynamics (QCD). The charge of QCD
is called color and has three aspects, red, blue and green. In none of the experiments
conducted since the dawn of high-energy particle physics a single, isolated quark has ever
been observed. In the final state quarks are always bound in color-neutral hadrons. This
peculiar phenomenon is called confinement and has its origin in the non-Abelian structure
of QCD. Unlike the photon in quantum electrodynamics, whose success is the triumph
of the concept of quantum field theories, the gauge boson mediating the strong force,
the gluon, itself carries color charge. Gluons, thus, interact with each other. As a direct
consequence of this, the strong interaction becomes stronger at larger distances or lower
energies. At smallest distances or highest energies the interaction becomes small and the
quarks are asymptotically free. The key aspect here is the running coupling obtained from
quantizing the classical QCD. It poses a severe technical problem to working with the
theory. The predictive power of quantum field theories lies mainly in the perturbative
treatment of its interactions. At energies of the quark-hadron phase transition the coupling
constant of QCD is of the order of one and any perturbative analysis must break down.

As it is the case for the phase diagram of water, the transition between the two phases can

1
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crossover

T

µBµB = 0

nuclei

T

µBµB = 0

hadron gas

quark-gluon plasma

Figure 1.1.: What we know about the phase diagram of QCD from lattice calculations (left)
and from heavy-ion collisions (right).

proceed continuously or discontinuously. A discontinuous phase transition, also called a
first order phase transition, has a coexistence region, where both phases are stable equilib-
rium states. At a continuous phase transition, also called a second order phase transition,
this coexistence region vanishes. We find that microscopically different systems show the
same universal behavior at a second order phase transition. Here, the correlation length
and the fluctuations become large and the properties are thus dominated by a couple of
macroscopic parameters, like the system’s dimension. In the phase diagram of water the
first order phase transition line ends at higher temperatures and pressures. Beyond this
end point the definition of phases is unclear. We rather see a fast phase change than a real
phase transition. This is a so-called crossover transition. More interestingly, the end point
of the first order phase transition line is a single point of a second order phase transition.
This is called the critical point of water. Here, the growth of the correlations up to the
wavelength of light can be observed as opalescence: the originally transparent fluid turns
opaque at the critical point.

An analogous investigation of the QCD phase diagram is complicated by two issues: the
technically challenging QCD interaction and the fact that we cannot simply put strongly
interacting matter in a box and heat or compress it.
For the study of the phase diagram of QCD you have three possible ways to go.

• First, you are brave and solve the partition function of QCD. This necessarily in-
volves nonperturbative methods, the most promising of which is lattice QCD. With
large numerical powerQCD is solved on a discretized space-time lattice. Thismethod
is, however, only feasible at zero or very small baryonic densities, where it shows
that the phase transition is a crossover. The left plot of figure 1.1 shows what we
know about the phase diagram from lattice QCD.

• Second, you are strong and collide heavy ions at ultrarelativistic energies. Neutron
stars are too far in space and astrophysical observations are too indirect to draw def-
inite conclusions. The Big Bang is too long back in time. You, thus, have to create
systems close to the phase transition of QCD in your laboratory. The endeavour of
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nB

Figure 1.2.: A pictorial view of the phase diagram of QCD inspired by model calculations,
which strongly suggest a first order phase transition at higher baryonic densities. In or-
der to see the coexistence region of the first order phase transition the phase diagram
is shown in the T-nB plane. The first order phase transition line ends in a critical point.
At even higher baryonic densities there is space for more exotic phases of QCD, like the
quarkyonic matter, the color-superconducting phase and the color-flavor locked phase.

heavy-ion collisions started with relatively low energies to study nuclear structure
and the liquid-gas phase transition of nuclear matter. With the possibility of building
more powerful accelerators at CERN (Organisation européenne pour la Recherche
nucléaire) and BNL (Brookhaven National Laboratory) and faster and more accu-
rate detectors it became possible to collide heavy ions at ultrarelativistic energies. A
broad variety of observables has been proposed to study the properties of the quark-
gluon plasma and of the QCD phase transition in heavy-ion collisions. Yet, none of
them has unambiguously explained the available data. The search for a conjectured
critical point and the onset of deconfinement has led to the low energy beam scan
at RHIC (Relativistic Heavy Ion Collider), BNL, basically looking for an increase of
event-by-event fluctuation measures. The upcoming accelerator project FAIR (Facil-
ity for Anti-proton and Ion Research) at GSI Helmholtzzentrum für Schwerionen-
forschung will provide excellent conditions for the study of the phase transition at
higher densities at the CBM (Compressed Baryonic Matter) experiment. The right
plot of figure 1.1 shows the phase diagram as seen from heavy-ion collisions.

• Third, you are creative and phenomenologically construct an effective field theoret-
ical model of QCD. Creativity is not unlimited as these models should give a good
quantitative description of experimentally measured quantities like cross sections
and cover qualitative aspects of the phase diagram, like chiral symmetry and/or

3



1. Introduction

confinement. There are indeed a couple of models that meet these requirements
and they can describe certain parameter regions of the phase diagram. These model
studies strongly suggest a first order phase transition at high baryonic densities and
lower temperatures. This line ends in a critical point. A pictorial view of the phase
diagram inspired by model studies is shown in figure 1.2.

This thesis contributes to the ambitious goal of theoretically understanding the phase tran-
sition of QCD under realistic conditions of heavy-ion collisions. It is located between the
phenomenological approach of effective models and the realistic modeling of heavy-ion
experiments. While the prediction of most observables is based on thermodynamics it is
unclear if the matter, which is created in heavy-ion collisions, is in thermal equilibrium
at the phase transition. Here, relaxation times become large, whereas the dynamics of a
heavy-ion collision is very fast.
Even if the system is in equilibrium above the phase transition it is likely to be driven out
of equilibrium as it cools through the phase transition. At a second order phase transition
this is called critical slowing down and severely limits the growth of the correlation length.
As a consequence, one expects any signal of a critical point to be weakened in a dynamic
nonequilibrium situation. Signals of a first order phase transition, however, are based on
nonequilibrium effects, such as supercooling. Here, parts of the system remain in the high-
temperature phase for some time even below the transition temperature. In this work we
wish to approach both questions:

• How much of a signal of the critical point survives in the nonequilibrium of a dy-
namic environment?

• Howmuch of a signal of the first order phase transition is developed in the nonequi-
librium situation of a heavy-ion collision?

To answer these questions, we develop a coupled nonequilibrium approach based on fi-
nite temperature quantum field theoretical methods. Our starting point is the Lagrangian
of the linear sigma model with constituent quarks. It is an effective low energy model of
QCD with a pointlike interaction between quarks and mesons focussing on the aspect of
chiral symmetry. The dynamics of the quark fields lead to a dynamic symmetry breaking
in themesonic sector of themodel. Inspired by the success of fluid dynamic simulations of
heavy-ion collisions we treat the quarks in local thermal equilibrium and reduce their dy-
namics to the evolution of their energy and momentum density. Due to the pressure built
up the system expands and cools. This cooling drives the chiral phase transition for the
pion and sigma fields. With focus on the order parameter of chiral symmetry, the sigma
field, we obtain the nonequilibrium dynamics of the chiral fields within two functional
methods, the influence functional and the two-particle irreducible effective action. From
the interaction of the chiral fields with the quark fluid we obtain a Langevin equation of
motion including damping and noise terms. While the influence functional method relies
on an intuitive separation between the quark fluid as a heat bath and the chiral fields as
the explicitly propagated variables, the two-particle irreducible effective action is the ba-
sis for a selfconsistent scheme. On the one hand, it allows for a nonequilibrium evolution
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of the chiral fields, equivalent to that derived from the influence functional. On the other
hand, we obtain the equilibrium energy density and pressure of the quark fluid depend-
ing on the external parameters, the chiral fields, within the same framework. The relation
between the energy density and the pressure is called the equation of state and needed
for the fluid dynamic expansion. In our coupled approach we also take the back reaction
of the damping of the chiral fields into account. The energy that dissipates from the chiral
fields to the quark fluid is taken into account as a source term in the fluid dynamic ex-
pansion. By this procedure we achieve energy and momentum conservation of the entire
system to good precision.

A brief introduction to QCD and a summary of the achievements and challenges of the
different approaches to the phase diagram are outlined in chapter 2. Chapter 3 first intro-
duces the quantum field theoretical basics for the study of relativistic many-body systems
at finite temperature. After a discussion of the general aspects of nonequilibrium, such
as irreversibility and the origin of dissipation and fluctuation, the functional methods ap-
plied in this work are introduced. A first naïve propagation of the chiral fields coupled to
the fluid dynamic expansion of the quarks in standard mean-field approximation results
in a classical equation ofmotion for the chiral fields.We call this the off-equilibrium expan-
sion. These results are presented in chapter 4. Next, we consistently derive the nonequi-
librium propagation of the sigma field including dissipation and noise and the fluid dy-
namic equations for the propagation of the quarks and antiquarks in chapter 5. The issues
of energy-momentum conservation of the entire system are discussed. In the following
we present the numerical implementation and results. In chapter 6 we investigate the re-
laxational dynamics of the sigma field in a static heat bath and the energy dissipation
from the field during relaxation. In chapter 7 we finally present the evolution of the fully
coupled system of the sigma field and the quark fluid. With our consistent approach of
coupling the nonequilibrium dynamics to a realistic expansion of heavy-ion collisions we
are able to study thermalization and relaxation times, as well as nonequilibrium effects
of the phase transition such as supercooling, reheating, fluctuations and correlations. We
summarize the methods, achievements and open challenges of this work in chapter 8.
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2. The phase diagram of quantum
chromodynamics

In this chapter, we present the contemporary understanding of the phase diagram ofQCD.
Its predominant feature is the transition between partonic degrees of freedom in the de-
confined phase at high temperatures and high net-baryon densities and the hadronic de-
grees of freedom in the confined phase at low temperatures and low net-baryon densities.
This phase transition has two aspects: the spontaneous breaking of chiral symmetry and
the confinement-deconfinement transition. We introduce the basic properties of QCD in
section 2.1 and give a brief reminder of the thermodynamics of phase transitions in sec-
tion 2.2. Next, we present the three approaches to the QCD phase diagram: first principle
QCD calculations on the lattice, section 2.3, the experimental study of the phase diagram
by heavy-ion collisions, section 2.4 and effective low energy models of QCD in section 2.5.

2.1. Quantum chromodynamics

The quark model [Gel64] was successful in explaining the baryon and meson multiplets
known experimentally if one added one additional quantum number, color, to avoid vi-
olations of the Pauli principle. All experimentally detected excitations of the strong in-
teraction are color neutral. It was later discovered that non-Abelian gauge theories are
asymptotically free and thus are able to have confining properties in the infrared regime
[GroWil74, Wil74b]. The quantum theory of the strong interaction can be formulated com-
pletely in terms of the underlying degrees of freedom, quarks and gluons.

2.1.1. The classical Lagrangian

QCD is a non-Abelian gauge theorywith SUc(3) color gauge invariance coupled to fermions.
The classical Lagrangian of QCD ignoring the heavier quarks reads

L = ∑
q=u,d,s

qα(iγµDµ,αβ−mqδαβ)q
β + LYM (2.1)

with the Yang-Mills part [YanMil54]

LYM = −1
4
Fa

µνF
µν
a . (2.2)

The covariant derivative in the fundamental representation of the SUc(3) Lie Algebra
reads

Dµ = ∂µ + igtaA
a
µ (2.3)
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2. The phase diagram of quantum chromodynamics

and the gluon field strength is given by

Fa
µν = ∂µA

a
ν − ∂νA

a
µ − g f abcA

b
µA

c
ν . (2.4)

In the above equations, the quark field qα, α = {1, 2, 3} is the SUc(3) triplet, the gluon
field Aa

µ, a = 1, ..., 8 the SUc(3) octet, mq are the quark masses, g is the dimensionless
coupling and γµ the Dirac matrices. The matrices ta are the generators of SU(3) fulfilling
the commutation relations of a Lie algebra

[ta, tb] = i fabct
c . (2.5)

See appendix A for the explicit form of ta and the structure constants fabc.

2.1.2. The running coupling constant

Because quantum effects in QCD become more important at low energies the classical La-
grangian is of little use for the real dynamics of the theory. We have to quantize QCD in
order to learnmore. Due to highmomenta in intermediate quantum loops quantization in-
troduces ultraviolet divergences. QCD is a renormalizable theory and these divergences
can be absorbed in renormalizing the parameters of the Lagrangian. The renormalized
coupling constant is of special interest. After renormalization it depends on the renormal-
ization scale Λ. The renormalization group equation reads

Λ
∂g

∂Λ
= β . (2.6)

We define the strong coupling constant

αs(Λ) =
g2(Λ)

4π
(2.7)

with the initial condition to equation (2.6) αs(ΛQCD) = g.
The β-function on the right hand side of (2.6) is to lowest order

β(g) = − 1
4π

2

(11− 2
3
N f )g

3 , (2.8)

with the number of quark flavors N f . The explicit solution of equation (2.6) for the strong
coupling constant is then

αs(Λ) =
2π

(11− 2
3N f ) ln(Λ2/Λ2

QCD)
. (2.9)

For large Λ the coupling αs(Λ) becomes logarithmically small while it diverges at ΛQCD,
which is experimentally found to be ΛQCD ≈ 200 MeV. Pertubative calculations in QCD
are, therefore, only meaningful for energies large compared to ΛQCD. This behavior of the
strong coupling is reflected in the anti-screening property of the QCD vacuum. It has a
non-trivial structure with nonperturbative gluon and quark condensates. The gluon con-
densate lowers the energy density of the QCD vacuum below that of a perturbative vac-
uum, playing an essential role for the confinement property.
The quark condensate serves as an order parameter for the dynamic breaking of chiral
symmetry.
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2.1. Quantum chromodynamics

2.1.3. Chiral symmetry

Besides the unbroken SUc(3) gauge symmetry the QCD Lagrangian has a number of other
symmetries. Here, we concentrate on chiral symmetry. For free massless Dirac particles
helicity is a good quantum number. The generalized concept for an interacting theory is
chirality. According to the chirality operator the quark fields can be split into left- and
right-handed quarks

qL =
1
2
(1− γ5)q (2.10)

qR =
1
2
(1+ γ5)q , (2.11)

with the γ5 Dirac matrix. The Lagrangian (2.1) becomes

L = ∑
q=u,d,s

(qα
Riγ

µDµ,αβq
β
R + qα

Liγ
µDµ,αβq

β
L)−mqδαβ(q

α
Rq

β
L + qα

Lq
β
R) +LYM . (2.12)

One sees that the QCD interaction does not mix left- and right-handed states. The term
involving the mass of the quarks, however, does. The existence of finite quark masses
breaks chiral symmetry explicitly. The masses of the light up- and down-quarks (and to
some extent of the strange quark) are very small compared to hadronic masses. Energies at
the phase transition of QCD are not high enough for heavier quarks to play an important
role. In this sector we can, thus, speak of chiral symmetry as an approximate symmetry of
QCD. The chiral group structure is

UL(3)×UR(3) = UV(1)× SUV(3)× SUA(3)×UA(1) . (2.13)

The transformations under UV(1) change the phase of all quarks equally. This symmetry
is present in the Lagrangian even for finite quark masses. It reflects that baryon number is
an exactly conserved quantum number of the strong interaction. The symmetry UA(1) is
also exact on the classical level, but broken in the quantized QCD by axial anomaly.
Let us take a closer look at the remaining symmetry groups. For simplicity, here, we
consider the SUV(2) × SUA(2) subgroup with equal masses for the two lightest quarks
mu = md. The Lagrangian (2.1) is invariant under a transformation HV ∈ SUV(2), for
which

q→ HVq = exp(i~Θ
~τ

2
)q (2.14)

with parameters Θ. In the transformation (2.14), ~τ are the Pauli isospin matrices. This
invariance reflects the well realized isospin symmetry mu ≃ md. For a pionic state the
transformation HV is an isospin rotation

~π = iq~τγ5q → iq~τγ5q+ ~Θ× (iq~τγ5q) = ~π + ~Θ× ~π . (2.15)

According to Noether’s theorem there is an associated conserved current with this sym-
metry. It is the vector current

~Vµ = qγµ
~τ

2
q . (2.16)
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2. The phase diagram of quantum chromodynamics

Under a transformation HA ∈ SUA(2) with

q→ HAq = exp(iγ5~Θ
~τ

2
)q (2.17)

the mass term of the Lagrangian with two flavors and mu = md is not invariant. It rotates
a pionic state into a sigma-like state

~π = iq~τγ5q → iq~τγ5q+ ~Θ(iqq) = ~π + ~Θσ . (2.18)

The current associated with this approximate axial-vector symmetry is the axial-vector
current

~Aµ = qγµγ5
~τ

2
q . (2.19)

The crucial point is now that an approximate chiral symmetry, more precisely an approx-
imate invariance under SUA(2) transformations, implies the existence of approximately
degenerate hadronic states with the same mass. This is, however, not observed in the
hadronic spectra. The solution to this is that chiral symmetry is spontaneously broken at
low temperatures. A symmetry is called spontaneously broken if it is realized at the level
of the Lagrangian but is not present in the true ground state. The most famous example of
a spontaneously broken symmetry in physics is that of a ferromagnet. While the spin-spin
interaction is rotational invariant the ground state has a finite macroscopic magnetization
pointing in some direction. Rotational O(3) symmetry is broken to rotational symme-
try around this distinguished direction. The excitations in the other two directions have
massless modes, spin waves. According to the Goldstone theorem there is one massless
Goldstone boson for every remaining unbroken generator of a spontaneously broken con-
tinuous symmetry. In the case of QCD the sigma field with the quantum numbers of the
vacuum acquires a finite expectation value by the spontaneous breaking of chiral symme-
try. In terms of quarks this refers to the finite quark condensate. The massless Goldstone
modes are the pions. Their finite, but small, mass comes from explicit symmetry breaking
by the finite quark masses.
Before we come to the achievements and challenges of the different approaches to the
QCD phase transition, lattice QCD, heavy-ion collisions and effective models, we give a
brief overview about the physics of phase transitions.

2.2. Thermodynamics of phase transitions

The key quantity of any thermodynamic study is the partition function. In the grand-
canonical ensemble it is the Gibbs sum over all states

Z(T, µi) = Tr exp
(

−H −∑i µiNi

T

)

= ∑
n

〈

n

∣

∣

∣

∣

exp
(

−H −∑i µiNi

T

) ∣

∣

∣

∣

n

〉

, (2.20)

with the Hamiltonian H of the system and the conserved charges Ni with their chemi-
cal potentials µi. The phases of strongly interacting matter are typically characterized by
temperature T and the baryochemical potential µB. Then,

Z(T, µ) = ∑
n

exp
(

−En − µBBn

T

)

= exp
(

−VΩ(T, µ)
T

)

, (2.21)
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with the energies En and the baryon number Bn. V is the volume of the system. This
defines the thermodynamic potential Ω(T, µB), which describes the state of the system.All
thermodynamic quantities can be obtained from the thermodynamic relations by partial
differentiation. The pressure is given by

p(T, µ) = −Ω(T, µB) . (2.22)

There is usually a quantity that changes in a characteristic way at the phase transition and
that can be used to distinguish the phases. This is the order parameter of the phase tran-
sition. In Ginzburg-Landau theory [GinLan50] it is used to expand the thermodynamic
potential in a power series. According to the second law of thermodynamics, the principle
of the increase of entropy, the equilibrium states are at the minima of the thermodynamic
potential.
Phase boundaries are defined where the thermodynamic potential is non-analytic in any
of the parameters, which in addition to T and µB can be an external field or the order
parameter.
The transition between two phases can either be continuous or discontinuous depending
on whether the first derivative of Ω with respect to any one of the parameters is con-
tinuous or discontinuous. In the old Ehrenfest classification [Ehr33] phase transitions are
called nth order if the first discontinuity appears in the nth derivative. We also speak of a
first order phase transition meaning a discontinuous phase transition and of a second or-
der phase transition meaning a continuous phase transition. A crossover, formally a phase
transition of infinite order, does not allow for a clear phase separation and is, therefore,
rather a rapid phase change than a real phase transition.
Phase transitions in a phase diagram can either be of one type of this classification, or
change the order as one goes along the line of the phase transition. When a first order
phase transition line terminates, there is a critical point, which is a second order phase
transition. Beyond the critical point the phase transition is a crossover. A typical example
for a such a behavior is the phase diagram of water.
We now explain the main features of second and first order phase transitions.

2.2.1. Second order phase transition

Let us consider a Ginzburg-Landau functional φ, which is an expansion in powers of an
appropriate order parameter σ of the phase transition

φ(T, σ) = φ0(T) + a(T − Tc)σ
2 + bσ4 , (2.23)

with a > 0, b > 0. From minimizing φ with respect to σ one finds the equilibrium values

σeq =

{

0 , for T > Tc
√

a
2b (T − Tc) , for T < Tc

. (2.24)

In the symmetric phase for T > Tc the order parameter vanishes. In the unsymmetric
phase for T < Tc it has a finite value. φ(T, σ) is sketched in figure 2.1. One sees that
the high-temperature minimum, σeq = 0, changes continuously to the low-temperature
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2. The phase diagram of quantum chromodynamics

mimimum at finite σ. At the critical temperature Tc the potential becomes very flat at
the minimum. The Landau-Ginzburg functional (2.23) for σ = σeq is the thermodynamic
potential

φ(T) =

{

φ0(T) , for T > Tc

φ0(T) +
a2

2b (Tc − T)2 , for T < Tc
. (2.25)

The entropy

S(T) = −∂φ(T)

∂T
=

{

S0(T) , for T > Tc

S0(T) +
a2

b (Tc − T) , for T < Tc
, (2.26)

is continuous over the phase transition. For the heat capacity, which is a second derivative
of φ, we find a discontinuity at T = Tc

C(T) = −T ∂S(T)

∂T
=

{

C0(T) , for T > Tc

C0(T)− a2

b T , for T < Tc
. (2.27)

The systems behavior under a small perturbation in form of an external field h in φ

φh(T, σ) = φ0(T) + a(T − Tc)σ
2 + bσ4 − hVσ , (2.28)

is quantified by the susceptibility

χ =

(

∂σ

∂h

) ∣

∣

∣

∣

T,h→0
. (2.29)

The derivative of the equilibrium condition ∂φh(T, σ)/∂σ = 0 with respect to h

(

∂

∂h

∂φh

∂σ

)

(T, σ)

∣

∣

∣

∣

T,h→0
=

(

∂σ

∂h

) ∣

∣

∣

∣

T,h→0

∂2φh(T, σ)
∂2σ

= 0 (2.30)

reads
χ(2a(T − Tc) + 12bσ2) = V . (2.31)

For the susceptibility in the limit h→ 0 with (2.24) we get

χ(T) =

{

V
2a(T−Tc) , for T > Tc

− V
4a(T−Tc) , for T < Tc

. (2.32)

The susceptibility diverges for T → Tc because the curvature of φ at the minimum is very
flat at T = Tc.
The probability for fluctuations of the order parameter around its equilibrium value δσ =
σ− σeq is

P[δσ] ∝ exp
(

−∆φh

T

)

, (2.33)
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with ∆φ = 1/2δσ2(∂2φ/∂2σ)|T in Gaussian approximation. Then, the size of the fluctua-
tions diverges with the susceptibility at T → Tc

〈(∆σ)2〉 = Tcχ

V
. (2.34)

If one takes spatial fluctuations of σ(~r) into account a term 1/2(∂σ/∂~r)2 is added to φ. In
Gaussian approximation one can calculate the correlation function of these spatial fluctu-
ations. It is for~r =~r1 −~r2

G(~r) = 〈σ(~r1)σ(~r2)〉 = σ2
eq +

1
r
exp

(

− r

ξ

)

. (2.35)

The typical length, over which these fluctuations are correlated, is the correlation length
ξ. In Ginzburg-Landau theory

ξ =

(
√

∂φ(T, σ)
∂σ

∣

∣

∣

∣

σ=σeq

)−1
∝ (
√
T − Tc)

−1 . (2.36)

It diverges as T approaches Tc.

(a)

(b)

(c)

φ

σ

Figure 2.1.: The thermodynamic po-
tential for a cooling scenario with
a critical point at different temper-
atures: in (a) for T > Tc, in (b) for
T = Tc and in (c) for T < Tc.

For spatial dimensions d < 4 the large fluctuations
at the second order phase transition lead to a break-
down of the Landau-Ginzburg perturbative expan-
sion of φ. A more elaborate concept to treat the in-
frared divergences caused by the soft fluctuations is
the renormalization group (RG) [Wil74a].
Since long-range correlations determine the physics
at the critical point the microscopic details of the
interaction become irrelevant. Starting from a mi-
croscopic Hamiltonian the short distance fluctua-
tions are gradually integrated out generating a class
of Hamiltonians with scale dependent parameters.
The existence of an infrared fixed point in the pa-
rameter space of Hamiltonians indicates univer-
sality. Critical phenomena depend only on macro-
scopic properties, such as the dimensionality, of the
system and very different physical systems can be
described by the same method. The QCD critical
point is in the universality class of the O(4) Ising-
model in three dimensions [Wil92].

These critical phenomena, large fluctuations and correlations, are the basis for locating a
conjectured critical point in the QCD phase diagram.

2.2.2. First order phase transition

In order to study a first order phase transition in the Ginzburg-Landau theory the coeffi-
cient b in the functional (2.23) must be negativ, b < 0, and a term of sixth order must be
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included to stabilize the potential. Let us assume the following Ginzburg-Landau func-
tional

φ(T, σ) = φ0(T) + a(T − T
(2)
sp )σ2 + bσ4 + cσ6 , (2.37)

where a and c. In figure 2.2 a sketch of the shape of φ(T, σ) is shown for several tempera-
tures. At high temperatures there is one minimum at small σ. There is a temperature, the

upper spinodal temperature T
(2)
sp > Tc, below which a second local minimum forms at

larger σ. At the transition temperature Tc the two minima are degenerate. For tempera-

tures Tc > T > T
(1)
sp the minimum at large σ is the global minimum, but the minimum at

small σ still exists. It vanishes for temperatures below T < T
(1)
sp .

(a)

(b)

(c)

(d)

(e)

φ

σ

Figure 2.2.: The thermodynamic po-
tential for a cooling scenario with
a first order phase transition at dif-
ferent temperatures: in (a) for T =

T
(1)
sp , in (b) for T(1)

sp > T > Tc, in (c)

for T = Tc, in (d) for Tc > T > T
(2)
sp

and in (e) for T = T
(2)
sp .

The interesting region of the first order phase tran-

sition is between T
(1)
sp and T

(2)
sp , where there are two

minima, which are separated by a barrier. At Tc
these two minima are degenerate and the pressure
of the two phases is the same. Therefore, the two
corresponding phases coexist. Above and below Tc
the respective global minimum is the stable equilib-
rium state. A real system that is cooled through the
phase transition might stay in the high-temperature
minimum even below the phase transition. This is a
thermodynamically unstable state and the system is
supercooled. In this nonequilibrium situation there
are two interesting phenomena to be observed, nu-
cleation and spinodal decomposition.
Nucleation is the thermal decay of the system in an
unstable phase. In order to relax to the global min-
imum, i.e. the thermodynamically stable phase, the
thermal fluctuations of the system must be of the
same order as the latent heat given by height of the
barrier [Bin73, Bin87].
Spinodal decomposition is the reaction of the
system to a highly nonequilibrium configuration.
When the supercooled system does not decay via
nucleation, as thermal excitations might be too
small, the unstable minimum disappears during
further cooling. The curvature of the thermody-
namic potential changes from being positive to neg-

ative at the lower spinodal temperature T = T
(1)
sp .

Here, like in equilibrium at a second order phase
transition the curvature of the potential and the associated mass vanishes. This leads to
an instability of the soft field modes. The phenomena of spinodal decomposition has ex-
tensively been investigated in condensed matter physics (e.g. [Bro99]) but also gained
attention in heavy-ion physics as giving rise to potential signatures for the first order
phase transition [Ran96, Ran97, Mis99b, Gav99, Cho04, Ran04, Sas08]. One of them is the
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formation of disoriented chiral condensates, which is discussed in section 2.4.3.

2.3. Lattice QCD

As we have seen in the previous section it is a theoretically well-defined task to locate
the phase boundaries of QCD. We need to evaluate the partition function (2.21) of QCD,
which can be written as a path integral in Euclidean space

Z(T, µ) =
∫

D(A, q, q†) exp(−SE) =
∫

DAdet F[A] exp(−SYM) . (2.38)

The singular points mark the phase boundaries. In (2.38) the fermionic determinant of

F[A] = iγµDµ,αβ− iµB −mqδαβ (2.39)

is taken over Dirac, flavor, isospin and space-time indices.
As well defined as the task is, there is no analytical method yet to evaluate the par-
tition function (2.38) for the region in T and µB that is of interest for the phase tran-
sition. Straightforward perturbation theory converges poorly for the relevant tempera-
ture regimes and advanced resummation techniques, like the Hard Thermal Loop (HTL)
[Bra92, Fre92, Bla94] approach, give reliable results only for temperatures clearly above
the critical temperature.
Lattice QCD is a powerful method for first principle calculations of the thermodynamic
properties of QCD. It can shed light on the intrinsically nonperturbative region of the
phase transition. The basis of lattice QCD is to define the gauge fields and the fermionic
action on a discretized and finite space-time lattice. There are, however, a lot of techni-
cal problems when working with lattices instead of continuous space-time. Thermody-
namic quantities are obtained only in the continuum limit and by extrapolating to infi-
nite volumes. Moreover, defining fermions on the lattice leads to the problem of fermion-
doubling, which is related to the fact that chiral symmetry is broken on the lattice. All of
these difficulties can reliably be overcome at vanishing baryochemical potential µB = 0 by
highly sophisticated methods. Here, the special power of lattice QCD lies in the Monte-
Carlo evaluation of the path integral in (2.38). Monte-Carlo methods and importance sam-
pling are possible because F[A] is positive-definite. One does not need to evaluate the inte-
gral for all possible configurations because most of them are exponentially suppressed by
exp(−SE). One randomly chooses field configurations corresponding to a probability pro-
portional to exp(−SE). Different approaches nowadays agree that the phase transition at
zero baryochemical potential is a crossover [Aok06] with transition temperatures between
Tc = [145, 165] MeV [WUPBUD10, HotQCD10]. The remaining discrepancies stem from
the different fermion actions and from the determination of TC from different observables,
the chiral susceptibility, the quark number susceptibility and observables related to the
confinement-deconfinement phase transition. It is remarkable that at zero baryochemical
potential the chiral phase transition and the confinement-deconfinement phase transition
occur around the same critical temperature.
For finite µB things are more difficult. The fermionic determinant in (2.38) is complex and
the probability interpretation is not possible anymore. This is the so called sign problem.
There are some methods to overcome this problem.
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2. The phase diagram of quantum chromodynamics

The earliest method that allowed for a prediction of the location of a critical point at
TE = 162± 2 MeV and µE = 360± 40 MeV [Fod02, Fod04] is reweighting. In importance
sampling of Monte-Carlo calculations reweighting techniques are used for simulations of
phase transitions [Fer88]. In the context of finite density lattice calculations one can ex-
trapolate from zero to finite baryochemical potential by multiplying with a reweighting
factor. Several problems of this method have been pointed out since then [Eji06, Spl05].
They basically revealed that the found point lies on the critical line of phase-quenched
QCD, which means working with |det F| instead of det F in (2.38).
A direct way to extend calculations from zero baryochemical potential to small values of
µB is the Taylor expansion of the pressure in µB [All02]

p =
∞

∑
n=0

χ2n(T)µ
2n
B (2.40)

where the coefficients χ2n are calculated at µB = 0

χ0 = p(T, µB = 0) , χ2n(T) =
1
2n!

∂2np

∂µ2n
B

∣

∣

∣

∣

µB=0
. (2.41)

The breakdown of the series expansion indicates a singular behavior in the thermody-
namic potential. The position of the critical point is given by the radius of convergence of
the Taylor expansion and the corresponding temperature. In two-flavor QCD the critical
point found with this method is located at Tc = 0.95Tc

µB=0 and µc
B/T

c = 1.1± 0.2 where
Tc

µB=0 is the crossover temperature at vanishing baryochemical potential [Gav05].
The sign problem is circumvented easily when exploring the phase diagram at imaginary
µB [deF02]. However, one also has to rely on a truncated Taylor expansion of the observ-
ables to perform an analytic continuation to real baryochemical potentials. Within this
method the surface of the first order chiral phase transition for small quark masses and
the first order deconfinement phase transition for heavy quarks extending to finite µB has
been established [deF03, deF06]. For the current order of truncation of the Taylor expan-
sion the regions of first order phase transition seems to shrink in the plane of the quark
masses. To this order no critical point is found for physical quark masses. For a review of
lattice QCD at finite temperature and density see [Phi10].

Since calculations at finite µB do not agree, neither on the location nor on the existence
of a critical point, first principle calculations on the lattice give definite results only for
zero baryochemical potential. Next, we explain how heavy-ion collisions can elucidate
the phase diagram of QCD.

2.4. Heavy-ion collisions

The QCD phase diagram can partly be scanned in heavy-ion collisions. By colliding heavy
nuclei at ultrarelativistic energies one creates strongly interacting matter at high temper-
atures or high baryonic densities. There are good indications that at the highest energies
available, first for gold (Au) nuclei at RHIC with

√
sNN = 200 GeV [STAR05, PHENIX05,
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2.4. Heavy-ion collisions

PHOBOS05, BRAHMS05], and now for lead (Pb) nuclei at the LHC with runs performed
at
√
sNN = 2.76 TeV [ALICE08] and design energies up to

√
sNN = 5.5 TeV the quark-

gluon plasma can be created in the laboratory. By changing the collision energy one probes
different regions of the QCD phase diagram. At high energies one reaches high temper-
atures and high energy densities but low baryochemical potentials, because the colliding
nuclei essentially punch through each other. While the incident baryons of the two ac-
celerated nuclei follow their original trajectories at beam rapidities they deposit energy
into the overlap region of the collision and thereby highly excite the QCD vacuum. The
system at midrapidity is dominated by quark-antiquark pairs to be measured as mesons
in the detectors. With decreasing collision energies the nucleons of the incident nuclei are
stopped and the rapidity distribution of net baryons is shifted tomidrapidity. The systems
created have a lower energy density and a lower temperature, but higher baryonic densi-
ties. Mid-energy regions of the QCD phase diagram have been investigated in an energy
scan at the CERN Super Proton Synchrotron SPS with Elab = 20− 158A GeV. From the
statistical model fit to particle multiplicity ratios the chemical freeze-out points Tfr and
µB,fr of the systems are obtained [BrM95, BrM96, Cle99, Bec02]. They indicate that indeed
the system created reaches temperatures and baryochemical potentials that come close to
the theoretically predicted region of the phase transition. One should, however, be careful
with assigning thermodynamic parameters such as temperatures and baryochemical po-
tentials to the entire system. During the whole course of a heavy-ion collision the system
is highly dynamic, the relevant degrees of freedom might change from hadronic to par-
tonic and back and different parts of the collision region can behave differently. We must
expect that the system equilibrates at least locally to speak meaningfully of temperatures
and baryochemical potentials. Systems at low collision energies, Elab = 2− 11A GeV, were
investigated at the Alternating Gradient Synchrotron (AGS), which nowadays serves as a
pre-accelerator for RHIC.
This already shows that the full description of heavy-ion collisions poses a huge chal-
lenge to theory. We will briefly explain approaches to simulate the dynamics of heavy-ion
collisions, followed by the description of critical fluctuations and disoriented chiral con-
densates. Finally the experimental status is reviewed.

2.4.1. Simulations of heavy-ion collisions

We briefly introduce the Boltzmann transport and the fluid dynamic approach to describe
the dynamics of a heavy-ion collision.

Transport approach to heavy-ion collisions

The Boltzmann transport approach solves the Boltzmann equation of relativistic kinetic
theory for the one-particle distribution function fi(x, p) for each particle species i

pµ∂µ fi(x, p) = Ci , (2.42)

where Ci is the collision term describing the possible scattering processes in the under-
lying theory. Here, all cross sections have to be known, either from calculations within a
particular model or from experimental data. In hadronic transport models the dynamics
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2. The phase diagram of quantum chromodynamics

is predominated by the excitation of hadron strings and resonances [Bas98, Ble99, Cas99].
Some models treat the hadronic and a partonic stage separately [Cas08] based on a quasi-
particle approach. While most models violate detailed balance by including 2 → n pro-
cesses only and thus cannot describe equilibration of a system in a certain volume, the
partonic BAMPS model [Xu05] successfully included 3 → 2 processes to study the equi-
libration of partonic systems. Transport approaches have been very successful in repro-
ducing multiplicity spectra at various collision energies [Bas99, Ble00, Bra04]. In these mi-
croscopic approaches neither hadronization nor the actual phase transition are explained.
Transport simulations thus cannot make any predictions on how the phase transition is
dynamically realized in heavy-ion collisions.
For the validity of kinetic transport approaches the mean free path of the system must be
large so that subsequent collisions can be treated incoherently and quantum interference
effects can be neglected. It is doubtful that the hot and dense phase of a heavy-ion collision
meets this requirement. We now present a complementary approach.

Fluid dynamic simulations

Systems with a small mean free path can reach local thermal equilibrium on a much
shorter time scale than the global dynamics. These systems can be described fluid dy-
namically by energy-momentum and charge conservation. Nonrelativistic fluid dynamics
are well studied even in the nonideal case by solving the Navier-Stokes equations. They
include effects of viscosities up to first order and are parabolic differential equations. It
was soon realized that the relativistic analog to the Navier-Stokes equations is not causal.
To derive hyperbolic and thus causal dissipative fluid dynamic equations for relativistic
matter onemust include terms up to at least second order in the dissipative quantities. The
solution of these equations are nontrivial and require large computational and conceptual
effort. Surprisingly enough the high values of elliptic flow measured in a heavy ion col-
lision at RHIC are compatible with relativistic ideal fluid dynamics [Kol01b, Kol01a] or
imply very small viscosities [Hei06, Rom07, Luz08] near the conjectured lower bound of
AdS/CFT calculations η/s = 1/4π [Bai08, Son07]. In ideal fluid dynamics local equilibra-
tion is taken to be instantaneous because the mean free path of the particles is infinitely
small. It is a longstanding issue to explain this early equilibration on a microscopic basis
[Xu05, Xu07] and determine the initial time τ0 after which the fluid dynamic treatment can
be applied. Viscous fluid dynamic calculationsin 2+ 1 dimensions take a finite relaxation
time into account [Son09a, Son09b]. These values, however, are estimates from different
theories (see references in [Son09b]). No full (3+1)d viscous fluid dynamic code has been
developed and tested reliably yet, although there is ongoing work [Mol10].
The conservation of energy and momentum leads to the following hyperbolic differential
equation

∂µT
µν = 0 , (2.43)

with the energy-momemtum tensor of an ideal fluid

Tµν = (e+ p)uµuν − pgµν , (2.44)

where e is the energy density, p is the pressure, uµ = γ(1,~v) is the local four-velocity of
the fluid, γ = (1−~v2)−1/2 the relativistic gamma factor and gµν = diag(1,−1,−1,−1)
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2.4. Heavy-ion collisions

the metric tensor. For any conserved charge, such as net-baryon number or strangeness,
there is an additional equation for the respective charge current

∂µN
µ = 0 , (2.45)

where Nµ = nuµ and n the charge density. Note, that the energy density, the pressure and
the charge density are quantities in the local rest frame of the fluid.

Equation of state The most important input to the fluid dynamic expansion of the sys-
tem is the equation of state, which connects the local rest frame quantities p = p(e, n)
and closes the fluid dynamic equations. It strongly influences the dynamics of the sys-
tem and can naturally describe the phase transition in local equilibrium. It is at this point
where the basic interactions between the particles of the fluid play a role. Model equa-
tions of state are the hadron resonance gas [Zsc02], the bag model [Cho74a, Cho74b]
and the chiral equation of state [Pap99, Zsc07]. The hadron resonance gas does not de-
scribe a phase transition and can be used for comparing fluid dynamic calculations with
hadronic transport models. The equation of state of the bag model has a strong first or-
der phase transition for all baryochemical potentials with a large latent heat. The chiral
equation of state is obtained from a chiral hadronic Lagrangian that includes all baryons
from the lowest flavor-SU(3) octet and the multiplets of scalar, pseudo-scalar, vector and
axial-vector mesons. Recently a deconfinement equation of state has been derived by in-
cluding partonic degrees of freedom in the chiral Lagrangian [Dex10], very much in the
same manner as the Polyakov-loop extention of quark mesonmodels. It has been success-
fully implemented to include investigations on the confinement-deconfinement transition
to the framework of a hybrid model [Ste10], which combines hadronic transport and fluid
dynamics [Tea01, And06, Hir07, Pet08].
For a QCD equation of state from first principles we have to rely on lattice QCD calcula-
tions. The quantity accessible in lattice calculations is the finite temperature contribution
to the trace of the energy-momentum tensor, the so-called trace anomaly

e− 3p
T4 = T

∂

∂T

( p

T4

)

. (2.46)

The pressure is then obtained from integration by choosing an appropriate integration
constant p0, which can be adjusted for zero temperature or to the pressure of a hadron gas
at T0 = 100 MeV. The trace anomaly, pressure and the energy density are shown in figure
2.3. Due to the liberation of color degrees of freedom one sees an increase of the energy
density and the pressure around the transition temperature. As mentioned before these
calculations are performed only at µB = 0.

Initial conditions Unlike hadronic transport models one-fluid fluid dynamics cannot
describe a heavy-ion collision for all times, but only after an initial time τ0 when local ther-
mal equilibrium is established. Besides the equation of state the fluid dynamic evolution
depends crucially on the initial conditions. These are an external input to the fluid dy-
namic evolution and can be obtained from models. There are essentially three approaches
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Figure 2.3.: The left figure shows the trace anomaly calculated on the lattice for two dif-
ferent actions and temporal extents. The right figure shows the energy density and the
pressure obtained from the trace anomaly. The black band in the upper right corner indi-
cates the systematic error from the integration for the pressure with T0 = 100 MeV. Both
figures are taken from [Baz09].

to the initial conditions. The Glauber model [Gla70] gives initial energy and baryon den-
sities from binary collisions in the geometric overlap region of the collision. It consid-
ers the mean free path of baryons passing through each other and takes the elementary
baryon-baryon cross sections for the computation of the multiple collision process. The
color glass condensate (CGC) [Gel10] is an effective theory of slow dynamic color fields
that couple to fast color sources, which are frozen on the timescale of the field dynam-
ics. With random initial distributions of color sources the CGC can be applied to heavy-
ion collisions describing the gluon saturation of the wave function of the colliding nuclei
[McL94a,McL94b, McL94c]. The energy-momentum tensor after the collision is then given
from the solution of the classical Yang-Mills equations. The resulting state is called the
Glasma [Lap06] and consists of chromo-electromagnetic fields extended longitudinally
and screened transversally, the color flux tubes. Initial conditions for fluid dynamics can
be obtained from the KNL parametrization of the gluon saturation [Hir04, Kuh06].
In hybridmodels [Tea01, And06, Hir07, Pet08] the initial state can be calculated in hadronic
transport models, from which the thermodynamic quantities are obtained by assuming
sudden thermalization.

Freeze-out The fluid dynamic prescription propagates only densities. At later stages of
the heavy-ion collision the systemhas expanded and diluted to a degreewhere the further
applicability of fluid dynamics is questionable. Fluid dynamic densities are transfered to
particles by the Cooper-Frye freeze-out equation [CooFry74]

E
dN
d3p

=
∫

σ
dσµp

µ f (pµuµ, T, x) . (2.47)

It connects the boosted phase-space distribution f (x, p) and the momentum-space distri-
bution dN/d3p along the hypersurface σ. In hybrid models the obtained particles are put
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2.4. Heavy-ion collisions

back into hadronic transport models to include the final hadronic interactions after the
freeze-out.

Fluid dynamics with a critical point In [Non04] an equation of state was constructed
from the assumption that the QCD critical point is in the same universality class as the
three-dimensional Ising model. A mapping from the Ising model variables to the QCD
relevant parameters µB and T gives a singular part of the equation of state near the critical
point. It is matched smoothly to a nonsingular equation of state known from the hadron
gas. The major finding is that isentropic trajectories are attracted by a critical point, which
raised hopes that an existing critical point in heavy-ion collisions also attracts the system
and that critical phenomena are seen over a wider range of beam energies. It is, however,
possible that this behavior is an artificial effect of the matching between the two equations
of state [Nak09].
Since fluid dynamics only propagates thermal averages one cannot study the propagation
of critical fluctuations at the phase transition. In the remainder of this section we present
the suggested observables for a critical point and give an overview of the experimental
results.

2.4.2. Critical fluctuations

Having in mind the striking thermodynamic features of diverging correlations and fluctu-
ations in a system at the critical point the main observables suggested are event-by-event
fluctuations. In this section we describe the main ideas of how critical fluctuations of the
order parameter can presumably be seen in data from heavy-ion collisions.

Event-by-event fluctuations

At a critical point the correlation length ξ diverges. Susceptibilities and fluctuations of
the order parameter are proportional to positive powers of the correlation length ξ and
thus diverge with it. In [Ste99] it was proposed to use the induced critical phenomena
to discover the critical point of QCD in heavy-ion experiments. Let us assume that the
system created in a heavy-ion collision is in thermal equilibrium. Then the order parame-
ter of chiral symmetry, the sigma field, shows critical behavior. The effect of these critical
fluctuations on the pions can be obtained from a coupling Gσππ with an unknown cou-
pling constant G. The microscopic correlator of the event-by-event fluctuations of pion
multiplicities

〈∆np∆nk〉 = 〈npnk〉 − 〈np〉〈nk〉 (2.48)

is calculated for an effective potential

Ω(σ) =
1
2
m2

σσ2 + Gσππ . (2.49)

It can be evaluated diagrammatically from the forward scattering of two pions with mo-
menta p and k by the exchange of a sigma. The most divergent contribution comes from
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the sigma in the zero mode. Ignoring less divergent terms (2.48) is

〈∆np∆nk〉 = v2pδpk +
1
m2

σ

G2

T

v2pv
2
k

ωpωk
, (2.50)

where v2p = 〈(∆np)2〉 = 〈np〉(1+ 〈np〉) is themean square average for the thermodynamic
fluctuations of the occupation number in an ideal Bose gas, with the Bose-Einstein distri-
bution np = (exp(ǫp/T) − 1)−1. As the sigma mass mσ vanishes at the critical point the
second term in equation (2.50) gives a diverging contribution.
With (2.50) also the variance of the distribution of mean transverse momentum pT

σ2
pT

=
1
〈N〉2 ∑

pk

∆pT∆kT〈∆np∆nk〉 , (2.51)

where 〈N〉 is the average particle multiplicity in the acceptance, diverges at the critical
point. As seen in (2.50) and (2.51), σ2 ∝ ξ2 for the variance of the fluctuations, as it should
be in theO(4) universality class. In order to give a realistic prediction for the size of these
fluctuation measures one has to estimate the coupling G, correct for the detector accep-
tance, use the statistical model fit for the freeze-out temperature and chemical potential
and take finite size effects into account. For a finite system the correlation length can-
not exceed the size of the system. In the study of [Ste99] it does, therefore, not diverge
but grow to the size of the system itself. Their estimates are made for correlation lengths
ξ . 6 fm.
It is also known that the baryon number susceptibility χB and the charge number sus-
ceptibility χC diverge at the critical point as seen in model studies. In [Hat03] it was ar-
gued that the net-baryon density can mix with the chiral condensate 〈ψ̄ψ〉, because it has
the same quantum numbers. A mixing of the isospin density with the chiral condensate,
however, is strictly forbidden by exact SUV(2) symmetry. A small explicit breaking of the
isospin symmetry by a finite mass difference of up- and down quarks mu −md > 0 only
gives a negligible mixing. Therefore, the diverging fluctuations in net-baryon number can
completely be seen in fluctuations of the net-proton number, an experimentally accessible
quantity. In [Hat03] the size of the fluctuations in the net-proton number were estimated
along the same lines as for pions assuming another coupling gσ p̄p of the protons p to the
sigma field.

Critical slowing down

Finite time effects due to the phenomena of critical slowing down turn out to be more
limiting on the growth of ξ than finite size effects. The relaxation times at a critical point
become infinitely long. Even if the system is in thermal equilibrium above Tc it is necessar-
ily driven out of equilibrium when crossing the critical point. Investigating a phenomeno-
logical equation for the time development of the sigma mass mσ

d
dt

mσ(t) = −Γ[mσ(t)]

(

mσ(t)−
1

ξeq(t)

)

, (2.52)
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with parameters in Γ[mσ(t)] from the dynamic universality class [HohHal77] of QCD and
the temperature mapping of the O(3) Ising model to determine ξeq(t) it is found that
the correlation length grows only to about 1.5− 2.5 fm [Ber00, Son04, Asa06]. This will
severely diminish the potential signal of the critical point obtained from (2.51).

Higher moments and the kurtosis

A solutionmight be to look for fluctuation observables that growwith larger powers of the
correlation length ξ. It was found in [Ste09] that these include higher order susceptibilities.
The suggested observables are the quadratic and quartic susceptibilities of baryons (B),
protons (P) and charged particles (Q):

χ2 =
1

VT3 〈δN
2〉 (2.53)

χ3 =
1

VT3 〈δN3〉 (2.54)

χ4 =
1

VT3 (〈δN
4〉 − 3〈δN2〉2) (2.55)

where 〈δNn〉 = 〈(N − N)n〉 are the nth central moments of the respective distribution
for N = B, P,Q. The ratio of the quartic to the quadratic susceptibilities represents the
kurtosis K(δN) times the variance of the distribution, a well known statistical quantity:

χ4

χ2
=
〈δN4〉
〈δN2〉 − 3〈δN2〉 = K(δN)〈δN2〉 ≡ Keff . (2.56)

Analyzing the effective kurtosis instead of the kurtosis itself has the advantage that it
eliminates the 1/N behavior as expected from the central limit theorem and removes the
explicit dependence on system size. The kurtosis of a Gauss distribution is zero, KGauss =
0, and the effective kurtosis of a Poisson distribution is one, Keff

Poisson = 0. The skewness,
which describes the asymmetry of the distribution, is defined as

κeff3 =
χ3

χ3/2
2

, (2.57)

and is obviously zero for a Gaussian distribution. The net-proton skewness diverges as
κeff3 ∝ ξ9/2 and the effective kurtosis diverges as Keff ∝ ξ7 [Ste09]. Even for a relatively
small increase of the correlation length at the critical point the kurtosis is expected to grow
significantly. The experimental measurements of the higher moments of distributions are,
however, not a trivial task and high statistics are needed. Fluctuations in susceptibilities
have been studied in a variety of models [Roe07, Sto09, Sas08, Asa09] and on the lattice for
µB = 0 [Che09]. The energy dependence of the effective kurtosis of net-baryon, net-proton
and net-charge number within the UrQMD transportmodel of heavy-ion collisions, which
conserves charge and baryon number explicitly in each event, is given in figure 2.4. The
net-baryon number effective kurtosis is especially affected by the conservation constraints
[Sch09]. The experimentally accessible net-proton number effective kurtosis is affected
only for very low energies.
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Figure 2.4.: Effective kurtosis for the net-charge, net-proton and net-baryon number dis-
tributions at midrapidity (|y| < 0.5) as calculated from UrQMD at various beam energies
for central Pb+Pb/Au+Au reactions. The figure is taken from [Sch09].

2.4.3. Formation of disoriented chiral condensates

The formation of disoriented chiral condensates (DCC) was proposed as one of the pre-
dominant signatures of chiral restoration in heavy-ion collisions [Bjo92, Raj93, Ran96,
Mis99b, Cho04]. The pseudoscalar condensate 〈q̄~τγ5q〉 might acquire finite values as a
result of spinodal decomposition of the system. These states are misaligned to the true
vacuum expectation value. It is a strong nonequilibrium effect. The domains of these dis-
oriented condensates subsequently decay and, thus, lead to an excess of low-momentum
pions. This is expected to be seen as large collective fluctuations of different isospin di-
rections of the pions, i.e. in the number of produced neutral pions in comparison to pro-
duced charged pions in heavy-ion experiments. As it is difficult to measure extreme low
momentum pions in heavy-ion collisions none of these signatures have been observed
yet. The best candidate for DCC formation is a class of unexplained cosmic ray events,
the CENTAUROS [Lat80]. The forming of DCCs was studied in effective chiral models
for a quench scenario assuming that the effective potential of the long wavelength modes
suddenly changes from its shape in the chirally restored phase for T > Tc to the classical
potential at T = 0 [Bjo92, Raj93]. This certainly is a strong assumption in comparison to
the real evolution of a heavy-ion collision. It can, however, naturally occur at the upper
spinodal temperature of a first order phase transition [Sca99]. Nonequilibrium quantum
field theoretical methods applied to φ4 theory allow for a systematic study of the forma-
tion of DCCs. In the 1/N expansion of the closed time path effective action [Coo95] and
for two-loop calculations within the influence functional method [Gle93, Gre97] equations
of motion were derived. In the latter the soft modes are assumed to be in contact with the
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thermal bath of hard modes. The interaction between these two sectors leads to damping
and noise terms in the propagation of the soft modes. In [Ris98] similar calculations were
performed for the chirally broken phase in the O(N) chiral model.
In [Bir97] the probability of an instability that could lead to a DCC event is investigated
by describing the evolution of the chiral fields that are in contact with a thermal heat
bath. The chiral fields are propagated according to effective Langevin equations and the
expansion and cooling of the system is modeled by scaling. The strength of instabilities
is measured as the time integral over tachyonic masses [Ran96, Ran97] and turns out to
be comparably large for the most extreme events. In [Xu00] a detailed study of DCC for-
mation in Markovian and non-Markovian Langevin scenarios showed that the resulting
distributions of the total pion number are non-Poissonian. The rare DCC events are ex-
pected to be seen in higher order cumulants.

2.4.4. Experimental status

This section will briefly summarize the available experimental data on event-by-event
fluctuations that are relevant for the phase transition, from the CERN SPS data, to the
present RHIC low beam energy scan and concluding with a outlook to the CBM experi-
ment at FAIR.

NA49 at the Super Proton Synchrotron (SPS), CERN

At the CERN SPS the NA49 detector collected Pb+Pb data in an energy scan program
over an energy range Elab = 20 − 158A GeV and the event-by-event fluctations were
analyzed. At low energies the K/π fluctuations [NA49-02] show an increase, which was
attributed to the onset of deconfinement [Gor04]. Figure 2.5 shows the energy dependence
of fluctuations in the multiplicity of negatively charged hadrons quantified by the scaled
variance ω, which is the variance divided by the mean of the multiplicity distribution, in
the left plot and in transverse momentum of negatively charged hadrons given by φpT ,
where mixed-event fluctuations are subtracted [NA49-08a]. The data is compared to the
predictions from [Ste99] for a location of the critical point taken from lattice calculations
[Fod04]. One sees no evidence for a critical point in the data, which rather agree with
UrQMD [Ble99] calculations without a phase transition.

Beam energy scan at the Relativistic Heavy Ion Collider (RHI C), BNL

Recently, the beam energy scan program [Cai09] was run at RHIC pursuing the major
goal of the discovery and location of the critical point, the onset of signals of the quark-
gluon plasma and new physics like the chiral magnetic effect [Kha08]. In 2010 Au+Au
data was taken at energies

√
sNN = 7.7, 11.5 and 39 GeV. For 2011 it is planned to addi-

tionally run the collider at
√
sNN = 27 and 18 GeV, which would then cover the phase

diagram up to a baryochemical potential of µB ≃ 420 MeV. Due to the collider type ex-
periments at RHIC the detector acceptance is independent of the beam energy. This is
one advantage of the RHIC experiments compared to NA49. It has also been possible to
collect more statistics than was available at the SPS. Existing measurements at higher en-

25



2. The phase diagram of quantum chromodynamics

 [MeV]
B

µ
200 300 400 500

 [M
eV

/c
]  

 (
ne

g.
)

T
p

Φ

0

5

10

15
NA49, 7.2% Pb+Pb

UrQMD

 (MeV)
B

µ
200 300 400 500

)-
(h

ω

0.8

0.9

1

1.1

1.2

NA49

UrQMD

 CP predictionπ4

beam
1 < y < y
Pb+Pb

Figure 2.5.: The energy dependence of the scaled variance ω of negatively charged
hadrons (left plot) and the φpT measure of transverse-momentum fluctuations of nega-
tively charged hadrons (right plot) as measured with NA49 (red dots). The data is com-
pared to a prediction of enhanced fluctuations at a critical point [Ste99, Fod04] (blue line)
and calculations from UrQMD [Ble99] (black dots). The data shows no evidence for a crit-
ical point behavior. Both figures are taken from [NA49-08a].

ergies
√
sNN = 200 and 62.4 GeV and with less statistics from a previous test run at the

injection energy from AGS
√
sNN = 19.6 GeV show that the STAR collaboration is able

to measure higher moments of charged particle distributions and the net-proton kurto-
sis [STAR10]. In figure 2.6, they are plotted as the effective kurtosis, κσ2, and compared
to model calculations. On the upper axis the corresponding values of µB are shown. As
expected, these measurements do not show a nonmonotonic behavior of the effective kur-
tosis up to µB ≃ 200 MeV. For the beam energy scan a nonmonotonic behavior of the
kurtosis is the key observable.

The Compressed Baryonic Matter (CBM) experiment at FAIR

The region of highest baryon densities is especially interesting to study in the QCD phase
diagram. First, the discovery of a first order phase transition between confined and decon-
fined and chirally broken and restored symmetry would prove the existence of a critical
point, which could then be located by looking at the weakening of the signal of the first or-
der phase transition. Second, the mechanisms of chiral symmetry restoration are assumed
to work differently at high densities and low temperatures than at high temperatures but
low densities. Different exotic phases of QCD come into play, such as quarkyonic matter
[McL07] and color-superconducting phases [Alf07]. Third, the high-density region of the
QCD phase diagram could exist in dense neutron and quark stars. Its equation of state is
a key ingredient to the understanding of supernova explosions [Gen93].
According to the freeze-out parameter obtained by statistical model fits highest baryonic
densities will not be reached with the lowest energies in the RHIC beam energy scan, but
at energies between Elab = 15 − 40 GeV [Ran06], which lie in the energy range of the
future FAIR accelerator. Here, the CBM detector is designed to analyze heavy-ion colli-
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Figure 2.6.: Energy dependence of the effective net-proton kurtosis. STAR measurements
are compared to model calculations. The energy range of the energy scan is indicated by
the lower arrow. Figure taken from [STAR10].

sions at large baryochemical potentials and densities. The FAIR accelerator will provide
high-luminosity beams of excellent quality, which guarantees high statistics for reliable
analysis. The physics goals of CBM as well as the detector design are explained in detail
in [CBM].

None of the conducted experiments so far have given any decisive answers about the
nature of the QCD phase transition. Experimentally, even at µB = 0 a phase transition is
not ruled out. In order to improve theoretically one turns to the study of effective models
of QCD that capture essential aspects of the phase transition.

2.5. Model studies

The investigation of effective low energy models of QCD is a theoretical approach, which
is complementary to the first principle lattice calculations. These models capture essential
symmetries and therefore give insight into mechanisms of low energy processes. The two
most prominent models describing spontaneous chiral symmetry breaking are the linear
sigma model [Gel60, Gel64] with constituent quarks [Jun96, Ber03, Tet03, Sch08] and the
Nambu-Jona-Lasinio (NJL) model [NaJoLa61a, NaJoLa61b]. In these models the gluonic
degrees of freedom act only as a pointlike coupling G between the quarks. For N f = 2 the
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Figure 2.7.: The chiral and confinement crossover transition at µB = 0 in the PNJL model.
The left plot shows the temperature dependence of the scaled chiral condensate and the
traced Polyakov loop. From the inflection point one sees in the right plot that the transition
temperatures for both cases coincide perfectly. Both figures are taken from [Rat06].

interaction is given in the scalar and the pseudoscalar channel by

Lint =
G

2

(

(q̄q)2 + (q̄iγ5~τq)
2) , (2.58)

where ~τ are the SU(2) Pauli matrices in isospin space. The linear sigma model with con-
stituent quarks treats themeson fields, sigma and pions, as dynamic degrees of freedom. It
can be thought of as a partly bosonized version of the NJL model. In the present work we
use the linear sigmamodel with constituent quarks to describe the chiral phase transition.
It is explained in more detail in section 4.1.
Both models have been applied extensively to study the chiral aspect of the QCD phase
diagram in mean-field approximation and beyond [Sca01a, Bub03, Bar05]. However, they
have the shortcoming that quark confinement at low temperatures cannot be described,
since the color SU(3) symmetry in these models is global, instead of local as in QCD.
In the limit of infinitely heavy quarks the Z(3) center symmetry of QCD becomes ex-
act with the traced Polyakov loop as the corresponding order parameter. For dynamic
quarks it is broken due to string breaking and the formation of quark-antiquark pairs.
The Polyakov loop is a thermal Wilson line in imaginary time with periodic boundary
conditions

L = P exp
[

i
∫ β

0
dτA4

]

(2.59)

where β = 1/T and the temporal component of the gauge field A4 = iA0. Taking the trace
of the Polyakov loop (2.59) gives

φ =
1
Nc

TrL , (2.60)

with the number of colors Nc. Polyakov-loop extendedNJL (PNJL) models [Rat06, Roe06]
and Polyakov-loop extended linear sigma (PQM) models include the traced Polyakov
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2.5. Model studies

Figure 2.8.: The chiral and confinement crossover transition at µB = 0 for the PQMmodel.
Both figures are taken from [Sch07].

loop φ as a classical field coupled to the quarks in addition to the order parameter of
chiral symmetry. The Lagrangian of the PNJL model reads

L = q̄[iγµ∂µ −m]q+
G

2

(

(q̄q)2 + (q̄iγ5~τq)
2)+U(φ, φ∗; T) (2.61)

with the covariant derivative Dµ = ∂µ − iAµ and Aµ = δ
µ
0 A

0. Here, the coupling g is
absorbed in the definition Aµ = gtaA

µ
a with the SU(3) gauge field A

µ
a .

The effective potentialU(φ, φ∗; T)must be Z(3) symmetric. There are different parametriza-
tions with a simple φ3 term [Rat06] or a logarithmic term motivated by the SU(3) Haar
measure [Rat07, Roe07]. The parameters of the effective potential are fitted to pure-gauge
lattice data. Thus, the effective potential itself describes a first order phase transition. In
combination with dynamic quarks it correctly turns into a crossover transition at zero
baryochemical potential as shown in figure 2.7. As in lattice QCD calculations the chiral
and the deconfinement phase transition coincide.
In order to investigate the phase diagram of the PNJL model one needs to include the
baryochemical potential µB = 3µq in the Lagrangian (2.61). It adds a term Lµ = γ0µqq̄q.
The traced Polyakov loop φ and its conjugate φ∗ are identical for µB = 0, while they
differ in the presence of quarks [Dum05]. A detailed study of the phase diagram of the
PNJL model including diquark degrees of freedom ∆ and corrections beyond mean-field
is given in [Roe07].
The aspects of confinement are incorporated into the linear sigma model with constituent
quarks in very much the same way as for the NJL model. The phase transition for µB = 0
in the PQM model [Sch07, Sto09] is shown in figure 2.8. and the phase diagram in figure
2.9.
In the Polyakov-loop extended models confinement is implemented on a statistical level.
The weight of free quarks and antiquarks in the thermodynamic potential is exponentially
suppressed as the critical temperature is approached from above. Below Tc only three-
quark states contribute.
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Figure 2.9.: The phase diagram in the PQM model. The figure is taken from [Sch07].

In summary, we have made a lot of progess in the understanding of the QCD phase di-
agram since the development of efficient numeric lattice QCD calculations, the running
of powerful heavy-ion experiments and the detailed study of improved effective mod-
els. However, none of these approaches alone has decisively presented the phase diagram
of QCD. Most promising will be a combined approach. In this thesis we will embed an
effective model with a chiral phase transition in a realistic simulation of a heavy-ion colli-
sion. The fast dynamics of a heavy-ion collision necessarily lead to nonequilibrium effects.
These play an important role at the phase transition, either due to critical slowing down at
a critical point or nucleation and spinodal decomposition at a first order phase transition.
In the next chapter we introduce the quantum field theoretical basis for a derivation of a
consistent nonequilibrium setup at finite temperature.

30



3. Nonequilibrium methods in finite
temperature quantum field theory

Due to the fast dynamics in a heavy-ion collision and long relaxation times at a critical
point and the coexistence region at a first order phase transition, nonequilibrium effects
are important at the phase transition, which occurs at finite temperature. In this chap-
ter we first introduce the methods of finite temperature quantum field theory and then
discuss its application to nonequilibrium concepts.
The development of quantum field theory at finite temperature was motivated by the
intensified studies of matter under extreme temperature conditions. Especially the possi-
bility of spontaneous symmetry breaking and restoration has led to the necessity of meth-
ods to describe relativistic many-body systems at finite temperatures [DolJac73]. There
are two different formalisms. For equilibrium properties the broadly applied imaginary-
or Euclidean-time formalism [Mat55] is most suitable. We introduce the basic concepts of
the imaginary-time formalism in section 3.1. A real-time approach is needed to study dy-
namic properties. This so-called closed time path formalism [Sch61, Kel64] is introduced
in section 3.2. A detailed description and comparison of both formalisms can be found in
[Lan86, Kap94, Das97].
Nonequilibrium statistical mechanics deals with a couple of interesting issues and con-
cepts. Probably the most important point concerns the origin of the obvious time irre-
versibility of the macroscopic evolution of a system. Irreversibility is one essential ingre-
dient that leads to the nonequilibrium effect of dissipation. The other one is some kind of
coarse graining of parts of the system. Starting from off-equilibrium initial conditions dis-
sipation will cause the relaxation of the system to its equilibrium state. In section 3.3 we
introduce the basic ideas on dissipation and fluctuations in the Boltzmann kinetic theory
and the Langevin theory. The relation of nonequilibrium statistical mechanics and quan-
tum fields is intricate. On one hand, one can ask for quantum field theoretical explana-
tions for the thermalization of relativistic many-body systems. On the other hand, some
quantum field processes can be linked to nonequilibrium thermodynamics induced by
quantum fluctuations. We introduce two different approaches to derive dissipation and
fluctuation within quantum field theoretical methods. The first one, the influence func-
tional method, relies on a clear separation of sectors in the physical system that allows a
splitting into relevant and irrelevant variables. This is explained in section 3.4. The sec-
ond method is based on truncating the Schwinger-Dyson hierarchy. The closed time path
effective action, which is one-particle irreducible (1PI), outlined in section 3.5, gives the
evolution of the mean field, while the two-particle irreducible (2PI) effective action, ex-
plained in section 3.6, selfconsistently gives both the evolution of the mean field and the
fluctuations on the level of the two-point function. These methods will be applied in the
next chapter to formulate the coupled evolution of the chiral fields and the quark fluid.
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3. Nonequilibrium methods in finite temperature quantum field theory

A detailed and self-contained description of the interplay of nonequilibrium statistical
mechanics and quantum field theory can be found in [Cal08].

3.1. Imaginary-time formalism

Imaginary-time formalism is based on the formal analogy between inverse temperature
β = 1/T and imaginary time τ = it. This analogy is seen best by comparing the path
integral representation of the transition amplitude for a field theory with the Hamilto-
nian H to the definition of the partition function for a statistical quantum system with
temperature T. The transition amplitude between two states is

〈φ(x1)|φ(x2)〉 = 〈φ1| exp(−iH(t1 − t2))|φ2〉
= N

∫

Dφ exp(iS) ,
(3.1)

with an irrelevant normalization constantN , and the action

S[φ] =
∫ t1

t2
dt
∫

d3xL . (3.2)

The path integral in (3.1) is taken over paths φ respecting the boundary conditions

φ(x1) = φ1 (3.3a)

φ(x2) = φ2 . (3.3b)

We compare (3.1) to the definition of the partition function (2.20) with particle number N

Z(β) =
∫

dφ1

〈

φ1

∣

∣

∣

∣

exp
(

−H − µN

T

) ∣

∣

∣

∣

φ1

〉

= N
∫

Dφ exp(−SE) .
(3.4)

Here, the Euclidean action reads

SE =
∫ β

0
dτ
∫

d3x(LE + βµN) . (3.5)

We see that one can transform the path integral representation of the transition amplitude
(3.1) into that of the partition function (3.4) by substituting τ = it in (3.1) and formally
identifying τ with β = 1/T.
As it is a crucial issue in finite temperature quantum field theory let us take a closer look
at the boundary conditions in (3.4). With (3.3) and the definition of the trace operation we
see that the path integral is taken over all paths in the complex time plane with periodic
boundaries of the field variables

φ(~x, β) = φ(~x, 0) . (3.6)
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3.1. Imaginary-time formalism

Before we show the consequences of these boundary conditions we go one step back and
look at the operator formalism. The thermal average of any hermitian operator A is

〈A〉β =
1

Z(β)
Trρ(β)A . (3.7)

The thermal average of the correlation function of any two hermitian operators A and B
is

〈AB〉β =
1

Z(β)
Trρ(β)AB . (3.8)

In the Heisenberg picture the time evolution of the operator A is given by

A(t) = exp(iHt)A exp(−iHt) (3.9)

and the thermal correlation function reads

〈A(t)B(t′)〉β =
1

Z(β)
Tr ρ(β)A(t)B(t′)

=
1

Z(β)
Tr exp(−βH)A(t) exp(βH) exp(−βH)B(t′)

=
1

Z(β)
TrA(t+ iβ) exp(−βH)B(t′)

=
1

Z(β)
Tr exp(−βH)B(t′)A(t+ iβ)

= 〈B(t′)A(t+ iβ)〉β ,

(3.10)

where the explicit form of the density matrix ρ(β) at µ = 0 and the cyclic property of the
trace have been used. Especially for B = A it is

〈A(t)A(t′)〉β = 〈A(t′)A(t+ iβ)〉β . (3.11)

Note that this holds independently of the statistics of the operators A and B, for both
bosons and fermions. The consequences, however, are different for bosonic and fermionic
Green’s functions, where A = B† = φ. From (3.11) with the appropriate rotation to Eu-
clidean space

G(~x, τ;~y, 0) =
1

Z(β)
Tr
(

ρ(β)Tτ [φ(~x, τ)φ†(~y, 0)]
)

= ±G(~x, τ;~y, β) ,
(3.12)

where the upper sign refers to bosonic fields and the lower sign to fermionic fields and
Tτ is the imaginary-time ordering operator and 0 ≤ τ ≤ β. These are the so called KMS-
boundary conditions [Kub57, MarSch59]. Imaginary-time ordering gives, analogously to
the zero temperature Green’s functions,

G(~x, τ;~x′, τ′) = 〈Tτφ(~x, τ)φ†(~x, τ′)〉
= Θ(τ − τ′)φ(~x, τ)φ†(~x, τ′)±Θ(τ′ − τ)φ†(~x, τ′)φ(~x, τ) .

(3.13)
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3. Nonequilibrium methods in finite temperature quantum field theory

Due to its role in finding solutions to the dynamic equations of the field variables, the
periodic and antiperiodic boundary conditions should be inherited by the field variables.
However, from the path integral formulation in (3.4) we find the periodic boundary con-
ditions (3.6) only. Within the coherent state formalism the correct antiperiodic boundary
conditions for fermions

φ(~x, β) = −φ(~x, 0) (3.14)

arise from the trace definition in the path integral formalism [Bro92].
Since the Green’s functions are defined on a finite time interval with periodic (bosons) and
antiperiodic (fermions), boundary conditions, their Fourier transforms are only defined
on discrete frequencies

G(τ) =
1

√

2β
∑
n

exp(−iωnτ)G(ωn) (3.15a)

G(ωn) =
1

√

2β

∫ β

−β
dτ exp(iωnτ)G(τ) . (3.15b)

Then, we find

G(τ + β) =
1

√

2β
∑
n

exp(−iωn(τ + β))G(ωn) = ±G(τ) , (3.16)

which leads to the Matsubara frequencies for bosons

exp(−iωnβ) = 1 ⇔ ωn =
2nπ

β
(3.17a)

and for fermions

exp(−iωnβ) = −1 ⇔ ωn =
(2n+ 1)π

β
. (3.17b)

The imaginary-time formalism is best suited to calculate equilibrium quantities. As an ex-
ample the explicit one-loop calculation of the bosonic and fermionic partition function is
given in appendix C. But since time is traded in for temperature the imaginary-time for-
malism cannot be used in a straightforwardmanner to calculate dynamic and nonequilib-
rium processes. For this purpose we introduce the real-time formalism in the next section.

3.2. Real-time formalism

The imaginary-time formalism presented in the previous section is very successful in cal-
culating thermodynamic properties of quantum field theories. It allows for a consistent
diagrammatic perturbation expansion very much like at zero temperature [Kap94]. The
discrete Matsubara frequencies appear in internal and external lines of the Feynman dia-
grams. While in the internal lines they are integrated over by a couple of well-established
Matsubara sums, the external lines define Green’s functions on discrete points in the com-
plex time plane. At the basis of imaginary-time formalism we completely gave up the

34



3.2. Real-time formalism

Figure 3.1.: Examples of a loop diagram for the self energy in φ4 theory (left) and in φ4

theory with finite vacuum expectation value (right).

time variable in favor of the inverse temperature. As a consequence, we obtained Green’s
functions with an unphysical representation of time and energy. Interesting finite tem-
perature phenomena like dynamic symmetry breaking and nonequilibrium phenomena
necessarily require a real-time description. In order to treat these dynamic problems the
finite temperature Green’s functions need to be continued analytically to the real axis. One
direct approach is motivated by the calculation of loop diagrams as the self energy in the
left plot of figure 3.1 in φ4 theory, where sums over Matsubara frequencies are evaluated
by expressing them as a sum of two contour integrals, one at T = 0 and one at T > 0. This
suggests a continuation of the propagators like

1

ω2
n +~k2 +m2

→ i

k2 −m2 + iǫ
+

2π

exp(β|k0|)− 1
δ(k2 −m2) . (3.18)

There are, however, examples where this continuation leads to mathematical singularities
[DolJac73]. Finite expectation values in the φ4 theory, which are typical for spontaneously
broken symmetries, lead to cubic interactions and therefore to diagrams like in the right
plot of figure 3.1. In its evaluation one encounters squares of the delta function in (3.18)
which are mathematically not defined.
There is a way out: the closed time path or real-time formalism, which was explicitly
motivated by studies on nonequilibrium systems [Sch61, Kel64]. It involves a contour
running parallel to the real-time axis from some initial time ti to some fixed time t and
back to ti. It evokes an effective doubling of the degrees of freedom, one on the upper, one
on the lower branch, and, thus, a 2× 2matrix structure of the Green’s functions. This more
involved setup is the price to pay for a consistent real-time formalism of finite temperature
quantum field theory.
In this section we establish the real-time formalism by following the time evolution of the
densitymatrix and give the real-time propagators for noninteracting bosons and fermions.

3.2.1. Generating functional on the real-time contour

Consider a quantum system that is either in or out of equilibrium and described by the
density matrix

ρ(t) =
exp(−βH(t))

Tr exp(−βH(t))
(3.19)

with a Hamilton operator H(t) that is allowed to explicitly depend on time to reflect the
possibility of nonequilibrium. For notational simplicity we work with µ = 0. The time
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3. Nonequilibrium methods in finite temperature quantum field theory

evolution of the density matrix is then

ρ(t) = U(t, t′)ρ(t′)U(t′, t) (3.20)

with the time evolution operator

U(t, t′) = T exp(−i
∫ t

t′
dt′′H(t′′)) , (3.21)

which satisfies

i
∂U(t, t′)

∂t
= H(t)U(t, t′) . (3.22)

Let us initially neglect all correlations leading to the explicit time dependence of the
Hamilton operator. In many systems the details of the initial conditions have little influ-
ence on the long-time behavior of the system.We can think of the interaction being turned
on adiabatically. This is the Bogoliubov initial condition [Bog62]. Then H(t ≤ ti) = H0.
The initial density matrix is

ρ(ti) =
exp(−βH0)

Tr exp(−βH0)
=

U(t−∞ − iβ, t−∞)

TrU(t−∞ − iβ, t−∞)
(3.23)

for a large negative time t−∞ < ti. Then, for times t > ti

ρ(t) = U(t, ti)ρ(ti)U(ti, t) =
U(t, ti)U(t−∞ − iβ, t−∞)U(ti, t)

TrU(t−∞ − iβ, t−∞)
. (3.24)

The time evolution of the thermal average of any operator A is

〈A(t)〉 = Trρ(t)A(t)

= Tr
U(t, ti)U(t−∞ − iβ, t−∞)U(ti, t)A(t)

TrU(t−∞ − iβ, t−∞)

= Tr
U(t−∞ − iβ, t−∞)U(ti, t)A(t)U(t, ti)U(ti, t−∞)U(t−∞, ti)

TrU(t−∞ − iβ, t−∞)

= Tr
U(t−∞ − iβ, t−∞)U(t−∞, ti)U(ti, t)A(t)U(t, ti)U(ti, t−∞)

TrU(t−∞ − iβ, t−∞)

= Tr
U(t−∞ − iβ, t−∞)U(t−∞, t)A(t)U(t, t−∞)

TrU(t−∞ − iβ, t−∞)

= Tr
U(t−∞ − iβ, t−∞)U(t−∞, t+∞)U(t+∞, t)A(t)U(t, t−∞)

TrU(t−∞ − iβ, t−∞)U(t−∞, t+∞)U(t+∞, t−∞)
,

(3.25)

where the cyclic property of the trace, U(t1, t2)U(t2, t3) = U(t1, t3) for t1 < t2 < t3 and
that U(t−∞ − iβ, t−∞) and the fact that U(t−∞, ti) commute were used.
The time evolution of the system in the complex time plane is clear. It runs from a large
negative time t−∞ to the time t where the operator A is introduced and further to a large
positive time t+∞. From there it runs back to t−∞ and then down to t−∞− iβ. This contour
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Figure 3.2.: The complete time path contour with the real-time paths C+ and C− and the
imaginary-time path C3

is shown in figure 3.2. From the denominator in (3.25) we see that the partition function
of the system along the contour C is given by

Z(β) = TrU(t−∞ − iβ, t−∞)U(t−∞, t+∞)U(t+∞, t−∞) . (3.26)

This leads to the definition of a generating functional with a source JC defined along the
contour C

Z[JC ] = TrUJC (t−∞ − iβ, t−∞)UJC (t−∞, t+∞)UJC (t+∞, t−∞) . (3.27)

For a time-independent Hamilton operator and a constant source along the contour JC =
J we have UJC (t−∞, t+∞)UJC (t+∞, t) = 1 and obtain again the generating functional in
imaginary time.
It can be shown that for the assumption made above about the uncorrelated initial state,
with ti → ∞, the generating functional factorizes into the real part of the contour C, C+
and C− and in the imaginary part, C3 in figure 3.2, [Lan86]

Z[JC ] = ZC [JC+,− ]Z3[J3] . (3.28)

The propagator cannot connect a point that is on C3 with another that is on either C+ or
C−. In the calculation of Green’s functions, and therefore for the dynamics of the system,
the imaginary part Z3 can be ignored, and we will use the index C for the real branches of
the contour only.
The path integral formulation of the generating functional on the contour is

Z[JC ] =
∫

Dφ exp
[

i
∫

C
dt
∫

d3x(L+ {JCφ})
]

. (3.29)

Aswewill see in later chapters Z3, cannot be ignored for the calculation of thermodynamic
quantities like the energy or the pressure.
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3. Nonequilibrium methods in finite temperature quantum field theory

Notations and conventions along the closed contour

Here, we first introduce the notations for performing calculations along the contour. The
contour integration consists of the integration along the upper branch C+ and the lower
branch C−

∫

C
dt =

∫ ∞

−∞
dt+ −

∫ ∞

−∞
dt− . (3.30)

The step function on the contour is defined as

ΘC(t− t′) =























Θ(t− t′), for t, t′ on C+
Θ(t′ − t), for t, t′ on C−
0, for t on C+, t′ on C−
1, for t′ on C+, t on C− .

(3.31)

The delta function

δC(t− t′) =











δ(t− t′), for t, t′ on C+
−δ(t′ − t), for t, t′ on C−
0, otherwise

(3.32)

satisfies
∫

C
dt′δC(t− t′) f (t′) = f (t) , (3.33)

for any function f defined on the contour. The doubling of the contour suggests to write
the field variables and the sources as doublets

φ =

(

φ+

φ−

)

, (3.34a)

J =

(

J+
J−

)

. (3.34b)

Before we will be concerned with the matrix structure of Green’s functions on the real-
time contour, let us first summarize a couple of general properties of finite-temperature
Green’s functions.

3.2.2. Real-time propagators

We define the time-ordered Green’s function as the average of a time-ordered product of
annihilation and creation operators φ and φ†

iG(x, x′) = 〈T φ(x)φ†(x′)〉 , (3.35)

with the time-ordering operator T that arranges a product of operators according to their
time arguments. It puts the operator with the earliest time to the right and the one with
the latest time to the left. For fermions, this operation includes a minus sign when the
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3.2. Real-time formalism

reordering consists of an odd number of permutations. We can separately define the fol-
lowing correlation functions

iG>(x, x′) = 〈φ(x)φ†(x′)〉 , (3.36a)

iG<(x, x′) = ±〈φ†(x′)φ(x)〉 , (3.36b)

where the upper sign belongs to bosonic and the lower sign to fermionic operators.
With the density matrix for finite µ we write explicitly

iG<(x, x′)|t=0 = ±Tr ρ φ†(x′)φ(~x, 0)

= ±Tr exp [−β(H − µN)] exp [β(H − µN)] φ(~x, 0) ρ φ†(x′)

= ±Tr ρ exp [β(H − µN)] φ(~x, 0) exp [−β(H − µN)] φ†(x′) .

(3.37)

Due to the commutation relation for both fermions and bosons

[φ,N]− = φ (3.38)

the effect of φ on any function of N can be determined to be

exp [β(H − µN)] φ(~x, 0) exp [−β(H − µN)] = exp(βH)φ(~x, 0) exp(−βH) exp(βµ)

= φ(~x,−iβ) exp(βµ) .
(3.39)

We find a reformulation of the KMS boundary conditions (3.12)

iG<(x, x′)|t=0 = ± exp(βµ)iG>(x, x′)|t=−iβ , (3.40)

which is an important relation between G< and G>.
In a general situation the Green’s functions can have an additional dependence on the
center variable. Then, the Fourier transform becomes the Wigner function. Here, we wish
to restrict the discussion to translationally invariant systems in equilibrium. We can in-
troduce the Fourier transform of G< and G> with respect to the relative coordinate. The
KMS condition in momentum space becomes

G<(~p,ω) = ± exp(−β(ω − µ))G>(~p,ω) . (3.41)

By defining the spectral function

A(~p,ω) = iG>(~p,ω)− iG<(~p,ω) , (3.42)

(3.41) can be reexpressed as

iG>(~p,ω) = (1± nB/F(ω))A(~p,ω) (3.43a)

iG<(~p,ω) = ±nB/F(ω)A(~p,ω) (3.43b)

with the Fermi-Dirac nF(ω) and the Bose-Einstein nB(ω) distribution functions.
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3. Nonequilibrium methods in finite temperature quantum field theory

Diagrammatic schemes for perturbation theory are based on this set of Green’s functions
(3.35) and (3.36) [FetWal71]. There is another set of physical Green’s functions, which fa-
cilitates the expressions of statistical and dynamical information of the system. These are
the retarded, advanced and correlated Green’s functions

Gret(x, x′) = Θ(x0 − x′0)[G
>(x, x′)− G<(x, x′)] (3.44a)

Gadv(x, x
′) = Θ(x′0 − x0)[G

<(x, x′)− G>(x, x′)] (3.44b)

Gcor(x, x′) = G>(x, x′)± G<(x, x′) . (3.44c)

In momentum space there is an especially useful and simple relation between the spectral
function and the retarded Green’s function

Gret(~p,ω) =
∫ dp′0

2π

A(~p, p′0)
ω− p′0 + iǫ

. (3.45)

The spectral function is given by the imaginary part of the retarded Green’s function

A(~p, p′0) = −2ℑGret(~p,ω) . (3.46)

From (3.43) and (3.46) we see that it is enough to evaluate the retarded Green’s function
in order to determine the full dynamical and statistical information about the system.
Green’s functions on the contour are time ordered along the contour. This is the contour
ordering. It consists of an ordinary time ordering on the upper branch and a reverse time
ordering on the lower branch. The anti-time ordering operator is denoted by Ta. Together
they form

iGC(t− t′) = 〈TC(φ(t)φ†(t′))〉 , (3.47)

with the contour-ordering operator TC . The Green’s functions adopt a 2× 2 matrix struc-
ture depending on the branches where the time arguments lie

GC =
(

G++ G+−
G−+ G−−

)

. (3.48)

The individual components are, according to (3.47),

iG++(x, x′) =〈T φ(x)φ†(x′)〉 for t, t′ on C+ , (3.49a)

iG+−(x, x′) =± 〈φ†(x′)φ(x)〉 for t on C+, t′ on C− , (3.49b)

iG−+(x, x′) =〈φ(x)φ†(x′)〉 for t′ on C+, t on C− , (3.49c)

iG−−(x, x′) =〈Taφ(x)φ†(x′)〉 for t, t′ on C− . (3.49d)

Only three out of these four Green’s functions are independent. We find the following
relations between the four matrix components

iG++(x, x′) = Θ(x0 − x′0)〈φ(x)φ(x′)†〉 ±Θ(x′0 − x0)φ(x
′)†φ(x)〉

= Θ(x0 − x′0)iG−+(x, x
′) + Θ(x′0 − x0)iG+−(x, x′) (3.50a)
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and

iG−−(x, x′) = Θ(x′0 − x0)〈φ(x)φ(x′)†〉 ±Θ(x0 − x′0)〈φ(x′)†φ(x)〉
= Θ(x′0 − x0)iG−+(x, x′) + Θ(x0 − x′0)iG+−(x, x′) . (3.50b)

Alternatively, we can choose the physical Green’s functions to describe the system. Their
relations to the contour Green’s functions are easily found

Gret(x, x′) = G++(x, x′)− G+−(x, x′) = G−+(x, x′)− G−−(x, x′) (3.51a)

Gadv(x, x
′) = G++(x, x′)− G−+(x, x′) = G+−(x, x′)− G−−(x, x′) (3.51b)

Gcor(x, x′) = G++(x, x′) + G−−(x, x′)= G+−(x, x′) + G−+(x, x′) . (3.51c)

Bosonic real-time propagators for a free theory

For a noninteracting Klein-Gordon field we obtain the retarded Green’s function as the
only solution of

(−�−m2)Dret(x, x′) = −δ(x− x′) (3.52)

with causal boundary conditions. It is

Dret(p) =
1

p2 −m2 + iǫ sign(p0)
. (3.53)

The spectral function becomes

A(p) = 2πsign(p0)δ(p2 −m2) . (3.54)

From the general relations (3.36), (3.44) and (3.51) we then find the contour Green’s func-
tions

iD++(p) =
1

p2 −m2 + iǫ
− 2iπnB(|p0|)δ(p2 −m2) (3.55a)

iD+−(p) = −2iπ(nB(|p0|) + θ(−p0))δ(p2 −m2) (3.55b)

iD−+(p) = −2iπ(nB(|p0|) + θ(p0))δ(p2 −m2) (3.55c)

iD−−(p) = −
1

p2 −m2 − iǫ
− 2iπnB(|p0|)δ(p2 −m2) . (3.55d)

Correlation functions can be calculated by functional derivatives of the generating func-
tional. For the two-point function

〈TC(φ(t)φ(t′))〉 = (−i)2 1
Z[JC ]

δ2Z[JC ]
δJC(x)δJC(x′)

∣

∣

∣

∣

JC=0
. (3.56)

The generating functional can be evaluated by completing the square

Z[JC ] =
[

∫

Dφ exp(i
∫

d4xL0)

]

exp
(

−1
2

∫

C
d4x

∫

C
d4x′ JC(x)DC(x− x′)JC(x′)

)

(3.57)

with the free Klein-Gordon Lagrange density L0.
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3. Nonequilibrium methods in finite temperature quantum field theory

Fermionic real-time propagators for a free theory

In exactly the same manner one derives the contour Green’s functions for noninteracting
fermions starting from the retarded Green’s function, which solves

(i/∂ −m)Sret(x, x′) = δ(x− x′) . (3.58)

It is

Sret(p) =
1

/p −m+ iǫ sign(p0)
, (3.59)

and the spectral function

A(p) = 2π(/p +m)sign(p0)δ(p2 −m2) . (3.60)

Again by applying the general relations (3.36), (3.44) and (3.51) we find

iS++(p) = (/p +m)

(

1
p2 −m2 + iǫ

+ 2iπnF(|p0|
)

δ(p2 −m2)) (3.61a)

iS+−(p) = 2iπ(/p +m)(nF(|p0|)−Θ(−p0))δ(p2 −m2) (3.61b)

iS−+(p) = 2iπ(/p +m)(nF(|p0|)−Θ(p0))δ(p2 −m2) (3.61c)

iS−−(p) = (/p +m)

(

− 1
p2 −m2 − iǫ

+ 2iπnF(|p0|
)

δ(p2 −m2)) . (3.61d)

The propagators can be obtained from the generating functional

Z[η̄, η] = Z0 exp
[

−
∫

C
d4xd4yη̄C(x)SC(x, y)ηC(y)

]

(3.62)

by differentiating with respect to the external sources η̄C and ηC . Here, we have to take
care about the Grassmann nature of the fermionic fields, see appendix B. Any two-point
function is given by

〈Tψ(x1)ψ̄(x2)〉 =
1
Z0

(

−i δ

δη̄(x1)

)(

i
δ

δη(x2)

)

Z[η̄, η]

∣

∣

∣

∣

η̄=η=0
. (3.63)

3.3. Dissipation and fluctuation

The real-time formalism is the theoretical background to address dynamic problems in
nonequilibrium systems including dissipation and fluctuations. There are two basic con-
cepts of dissipation: the Boltzmann kinetic theory of dilute gases and the Langevin theory
of Brownian motion. The latter naturally leads to the important relation between dissipa-
tion and fluctuation formulated in the dissipation-fluctuation theorem.
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3.3.1. Boltzmann kinetic theory

In kinetic theory it was Boltzmann’s achievement to explain the origin of macroscopic ir-
reversibility by the molecular chaos assumption, which was later reformulated in terms
of the truncation of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. The
BBGKY hierarchy is the coupled set of equations of motion of the n-particle distribution
function fn(x1, p1; ...; xn, pn). To lowest order the evolution of the one-particle distribution
function f1(x1, p1) is governed by a collisional integral over a two-particle distribution
function f2(x1, p1; x2, p2). It is assumed that the initial state of any two particles is un-
correlated. This is called molecular chaos. Then, the two-particle distribution function
can be written as a product of the one-particle distribution functions f2(x1, p1; x2, p2) =
f1(x1, p1) f1(x2, p2). The result is the famous Boltzmann equation (2.42), mentioned in the
discussion on microscopic transport theories. After the collision the two particles are cor-
related. It is this point, at which the irreversibility enters.

3.3.2. Langevin theory

In the Langevin description dissipation is introduced by a separation of the entire sys-
tem into relevant degrees of freedom, called the system, which is propagated explicitly,
and irrelevant degrees of freedom, called the environment, which by a subsequent coarse
graining acts as a heat bath. This separation is obvious for systems that show a clear sep-
aration in scales, e.g. time scales. While the hard modes have short relaxation times, they
equilibrate fast. The soft modes have longer time scales and consequently equilibrate more
slowly. If there is no clear separation the splitting of the entire system into relevant and
irrelevant variables is guided by what is accessible in measurements or what is of spe-
cial interest for the investigation. One separation procedure is the splitting into a mean
field and fluctuations, which connects the Langevin theory with the truncation idea of
Boltzmann’s kinetic theory. Giving a physical interpretation to the mean field and the
fluctuations one obtains a system-environment splitting without an ad hoc separation of
scales. We will see the advantages of this method in a later chapter. Dissipation enters the
dynamics of the system variables by ignoring details of the environment and only consid-
ering its average effect on the system. This loss of information about the environment is
called coarse graining. It can be obtained by tracing of a density matrix, integrating out
fast modes or truncating the hierarchy of correlations.
In classical Brownian motion the system is a heavy particle of mass M that interacts with
particles of mass m with m≪ M. The lighter particles move faster and are assumed to be
in thermal equilibrium at a temperature T. The heavy particle undergoes collisions with
the lighter particles. The average effect of these collisions is a frictional force, which is
phenomenologically characterized by a damping coefficient η, and a stochastic force ξ(t).
The equation of motion is then given by a Langevin equation

Mẍ+ Mηẋ = ξ(t) . (3.64)

Due to the assumed clear separation between the relaxation times of the heavy particle
and the lighter particles the correlation time of ξ(t) is assumed to be infinitely short so
that these fluctuations are Markovian. Then, ξ(t) is fully determined by its mean and
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3. Nonequilibrium methods in finite temperature quantum field theory

variance

〈ξ(t)〉 = 0 , (3.65a)

〈ξ(t)ξ(t′)〉 = λδ(t− t′) . (3.65b)

The coefficient λ is a measure of the strength of the fluctuations. Because of the stochastic
force on the right hand side of equation (3.64) the trajectories x(t) are also a stochastic
quantity. The physical description of the system is given by an ensemble of trajectories
rather than one deterministic trajectory.
The solution for the velocity v(t) = ẋ(t) of equation (3.64) is readily obtained by the
retarded Green’s function and reads

v(t) = v0 exp(−ηt) +
∫ t

0
dt′ exp(−η(t− t′))ξ(t′) . (3.66)

For long times t ≫ η−1 we require that the heavy particle reaches thermal equilibrium
with the heat bath. Then, by virtue of the energy equipartition theorem the average kinetic
energy of the heavy particle becomes

1
2
M〈v(t)2〉 = 1

2
kBT . (3.67)

With (3.65a) and (3.65b)

〈v(t)2〉 = v20 exp(−2ηt) +
λ

2ηM2 (1− exp(−2ηt)) → λ

2ηM2 for t≫ η−1 . (3.68)

From this we find the Einstein relation [Ein05]

λ = 2ηMkBT . (3.69)

By (3.69) we see that the dissipation, given by the damping η, and the fluctuations, char-
acterized by the strength of the stochastic force λ, are related. They have indeed the same
microscopic origin, which manifests in the dissipation-fluctuation theorem. We now elu-
cidate this relation on more general grounds.

3.3.3. Dissipation-fluctuation theorem

The discussion in this section closely follows the presentation in [LaLiPi80]. Let us con-
sider a homogeneous system described by the variable x. The equilibrium value for x is
at the maximum of the entropy

S = − Ω

kBT
(3.70)

where Ω is the free energy of the system. We may choose the coordinates such that in
equilibrium x = 0. Then the probability of fluctuations around the equilibrium value is
given by

P(x) = const. exp(S(x)) = const. exp
(

−Ω(x)

kBT

)

. (3.71)
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For a small fluctuation x the entropy can be expanded around x = 0 to second order

S(x) = S(0)− 1
2

κx2 . (3.72)

Thus, the probability distribution for thermal fluctuations around equilibrium are Gaus-
sian

P(x) =

√

κ

2π
exp

(

−κ

2
x2
)

, (3.73)

with the proper normalization and the variance

〈x2〉 = 1
κ
. (3.74)

We now wish to introduce dynamics for the variable x with the requirement that for any
deviation significantly larger than

√

〈x2〉, x relaxes to its equilibrium value. For the ther-
modynamic force

F = −∂S

∂x
= κx (3.75)

we find a linearized equation of motion

ẋ = −ζF = −ζκx = −ηx (3.76)

with a proportionality factor ζ for the dynamics and the damping coefficient η. This dy-
namical law relaxes x to its equilibrium value x = 0. We know, however, that in the real
equilibrium situation x fluctuates around its mean. We, therefore, add a stochastic force ξ,
the noise, to equation (3.76):

ẋ = −ηx+ ξ(t) . (3.77)

The solution to equation (3.77) is

x(t) = xh(t) +
∫ t

dt′ξ(t′) exp
(

−η(t− t′)
)

. (3.78)

To establish the correct equilibrium state with fluctuations of the variable x given by (3.74)
the variance of the noise ξ must be

〈ξ(t)ξ(t′)〉 = 〈2ηx2〉δ(t− t′) =
2η

κ
δ(t− t′) . (3.79)

We see again that based on general arguments the damping coefficient, the variance of the
Langevin fluctuations and the equilibrium fluctuations are related. In the next sections we
will obtain more insight about the microscopic origin of dissipation and fluctuation when
we derive the Langevin equations from quantum field theoretical methods.
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3.4. The influence functional method

The influence functional method [Fey63, Gre98] gives a reduced description of the entire
system with focus on the evolution of the relevant variables. The details of the environ-
ment are eliminated by integrating out the environmental fields in a path integral over the
closed time path contour of the real time description of finite temperature quantum field
theory, see section 3.2. The influence of the environment on the dynamics of the system
is encoded in the influence functional. In terms of the Langevin theory, the basis of this
method is a clear separation of the relevant variables from the irrelevant variables.

3.4.1. Path integral formulation of the density matrix

Let us assume a system that has a clear physical discrepancy between two sectors: the
system described by the field φ and the environment with the field Φ. The environmental
field is assumed to be in thermal equilibrium. We will, therefore, refer to the environment
as the heat bath. The equilibrium density matrix, for notational simplicity at µ = 0, of the
entire system described by the Hamiltonian H,

ρβ =
1
Zβ

exp(−βH) , (3.80)

can be written as a Euclidean functional integral

ρβ(φ̄, Φ̄, φ̄′, Φ̄′) =
1
Zβ

∫

Dφ̄
∫

DΦ̄ exp(−SE[φ̄, Φ̄]) , (3.81)

where the path integrals are taken over all paths φ̄(τ) and Φ̄(τ) for 0 ≤ τ ≤ β with

φ̄(0) = φ̄′ φ̄(β) = φ̄ (3.82a)

Φ̄(0) = Φ̄′ Φ̄(β) = Φ̄ . (3.82b)

The initial density matrix describes the state of the entire system at initial time ti,

ρi(φi,Φi, φ′i,Φ
′
i) =

∫

dφ̄
∫

dφ̄′λ(φi, φ̄, φ′i , φ̄
′)ρβ(φ̄,Φi, φ̄′,Φ′i) (3.83)

The function λ gives the initial deviation of the system variable φ from its equilibrium
value φ̄. Since the heat bath degrees of freedom Φ and Φ′ are equilibrated initially and for
all times it is

Φ̄′ = Φ′i (3.84a)

Φ̄ = Φi . (3.84b)

The time evolution of the density matrix of the entire system is given by

ρ(t) = exp(−iHt)ρi exp(iHt) (3.85)
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with the time evolution operator U(tf, ti) = exp(−iH(tf − ti)). It can be expressed via a
path integral

U(φf,Φf, tf; φi,Φi, ti) =
∫

Dφ
∫

DΦ exp(iS[φ,Φ]) . (3.86)

The path integral runs over all paths φ(s) and Φ(s) for ti ≤ s ≤ tf with

φ(ti) = φi φ(tf) = φf (3.87a)

Φ(ti) = Φi Φ(tf) = Φf . (3.87b)

With this we can write equation (3.85) in path integral representation

ρ(φf,Φf, φ
′
f,Φ
′
f; tf) =

∫

dφi

∫

dφ′i

∫

dΦi

∫

dΦ′iU(φf,Φf, tf; φi,Φi, ti)×
× ρi(φi,Φi, φ′i,Φ

′
i)U

∗(φ′f,Φ
′
f, tf; φ

′
i,Φ
′
i, ti)

=
∫

dφi

∫

dφ′i

∫

dΦi

∫

dΦ′i

∫

dφ̄
∫

dφ̄′
1
Zβ

λ(φi, φ̄, φ′i , φ̄
′)×

×
∫

Dφ
∫

DΦ

∫

Dφ′
∫

DΦ′
∫

Dφ̄
∫

DΦ̄×

× exp(iS[φ,Φ]− iS[φ′,Φ]− SE[φ̄, Φ̄]) .

(3.88)

The path integral is over all φ(s), φ(s)′, Φ(s) and Φ(s)′ in real time ti ≤ s ≤ tf with

φ(ti) = φi φ(tf) = φf (3.89a)

Φ(ti) = Φi Φ(tf) = Φf (3.89b)

φ′(ti) = φ′i φ′(tf) = φ′f (3.89c)

Φ′(ti) = Φ′i Φ′(tf) = Φ′f . (3.89d)

and for the imaginary time part with φ̄(τ) and Φ̄(τ) for 0 ≤ τ ≤ β with

φ̄(0) = φ̄′ φ̄(β) = φ̄ (3.89e)

Φ̄(0) = Φ′i Φ̄(β) = Φi . (3.89f)

The path integral for the environmental variable describes a continuous contour due to
the equilibrium condition (3.84) from Φf to Φ′f.

3.4.2. The influence functional

The action S[φ,Φ] =
∫ tf
ti
L(φ,Φ) can be divided into three parts

S[φ,Φ] = S0[φ] + S0[Φ] + Sint[φ,Φ] (3.90)

Integrating out the environmental degrees of freedom Φ gives the state of the system that
is described by the reduced density matrix ρr = TrΦρ. When we want to write this in the
path integral formalism we have to be careful how the trace is incorporated in the current
formalism. Depending on whether we are dealing with bosonic or fermionic degrees of
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freedom it gives periodic or antiperiodic boundary conditions, as was discussed in section
3.1.
For bosons the path integral in

ρr(φf, φ
′
f; tf) =

∫

dΦfρ(φf,Φf, φ
′
f,Φf; tf)

=
∫

dφi

∫

dφ′i

∫

dφ̄
∫

dφ̄′
1
Zβ

λ(φi, φ̄, φ′i , φ̄
′)×

×

∫

Dφ
∫

Dφ′
∫

Dφ̄ exp(iS0[φ]− iS0[φ
′]− SE0 [φ̄])×

×

∫

dΦi

∫

dΦ′i

∫

DΦ

∫

DΦ′
∫

DΦ̄ ×

× exp(iS0[Φ] + iSint[φ,Φ]− iS0[Φ
′]− iSint[φ

′,Φ′]− SE0 [Φ̄]− SEint[φ̄, Φ̄]) ,
(3.91)

is taken over all paths with the boundary conditions specified in (3.89) and the additional
periodic boundary condition Φ′f = Φf, while for fermions the trace operation gives the
antiperiodic boundary condition Φ′f = −Φf.
Again we want to apply the Bogoliubov initial conditions [Bog62] and neglect the initial
correlations between the system and the environment. The interaction is then adiabat-
ically turned on. As a consequence, the initial density matrix factorizes in system and
environment variables

ρi(φi,Φi, φ′i ,Φ
′
i) =

∫

dφ̄
∫

dφ̄′
1
Zβ

λ(φi, φ̄, φ′i , φ̄
′)
∫

Dφ̄ exp(−SE0 [φ̄])
∫

DΦ̄ exp(−SE0 [Φ̄])

= ρSi (φi, φ′i)⊗ ρEi (Φi,Φ′i) .
(3.92)

In equation (3.91) this means that SEint[φ̄, Φ̄] = 0.
Then, the reduced density matrix is

ρr(φf, φ
′
f; tf) =

∫

dφi

∫

dφ′iρ
S
i (φi, φ′i)

∫

Dφ
∫

Dφ′ ×

× exp(iS0[φ]− iS0[φ
′] + iSIF[φ, φ

′])
(3.93)

with the influence functional defined as

exp(iSIF[φ, φ′]) =
∫

dΦi

∫

dΦ′iρ
E
i (Φi,Φ′i)

∫

DΦ

∫

DΦ′ ×

× exp(iS0[Φ] + iSint[φ,Φ]− iS0[Φ
′]− iSint[φ

′,Φ′]) .
(3.94)

Important properties of the influence functional are

SIF[φ, φ
′] = −S∗IF[φ′, φ] , (3.95a)

SIF[φ, φ] = 0 . (3.95b)

The latter expresses that in the physical equilibrium case the influence functional vanishes.
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3.5. The closed time path effective action

In order to evaluate the explicit form of the influence functional we are often forced to
make a perturbative expansion in the coupling between the two sectors. We expand the
exponential function of Sint in equation (3.94)

exp(iSIF[φ, φ
′]) =

∫

dΦi

∫

dΦ′iρ
E
i (Φi,Φ′i)

∫

DΦ

∫

DΦ′ exp(iS0[Φ]− iS0[Φ
′ ])×

×

(

1+ i(Sint[φ,Φ]− Sint[φ
′,Φ′])− 1

2
(Sint[φ,Φ]− Sint[φ

′,Φ′])2 + ...
)

(3.96)

For a treatment in ordinary perturbation theory one has to assume that the coupling be-
tween the relevant and the irrelevant variables is a small number. In many cases this is not
actually the case.
There is a large number of applications of the influence functional method in nonequilib-
rium field theory, especially for the φ4 theory [Gle93, Gre97, Ris98].

3.5. The closed time path effective action

The effective action is a useful quantity to study spontaneous symmetry breaking. The
expectation value in equilibrium is given by the global minimum of the effective action.
In equilibrium the effective action can be calculated in imaginary time formalism from the
partition function, see appendix C. In nonequilibrium we have to apply the closed time
path formalism presented in section 3.2 in order to obtain real and causal equations of
motion for the true expectation value.
In a first step we want to construct the close time path effective action, from which by the
variational principle we obtain the equation of motion for the mean field. Simultaneously,
we want to ensure that the expectation value of the deviation from the mean field van-
ishes. This is achieved by a Legendre transformation of theW[J] functional with a specific
value for the source J. The generating functional is

Z[J] = exp [iW[J]] =
∫

DΦ exp
[

i
(

S[Φ] + JAΦA
)]

(3.97)

where the following notation is used for the closed time path: S[Φ] =
∫

C d
4xL[Φ] and

JAΦA =
∫

C d
4xJa(x)Φa(x), with a = {+,−}. Recall that the imaginary time path of the

complete contour does not contribute to dynamical properties and is neglected, as dis-
cussed in section 3.2.1. The effective action is the Legendre transformation of W[J] =
−i lnZ[J]

Γ[φ] = W[J]− JAφA (3.98)

with the mean field

φA =
δW[J]

δJA
= 〈ΦA〉J . (3.99)

Then, the specific value of the source can be determined to be

JA = − δΓ

δφA
. (3.100)
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3. Nonequilibrium methods in finite temperature quantum field theory

For a vanishing external source JA = 0 equation (3.100) gives the dynamics of the physical
mean field. Inserting (3.100) into (3.98) gives an implicit equation for the effective action

Γ[φ] = −i ln
∫

DΦA exp
[

i

(

S[ΦA]− δΓ

δφA
(ΦA − φA)

)]

. (3.101)

In (3.101) we make the substitution ϕA = ΦA − φA and construct a new action Ŝ that
contains only quadratic and higher terms in the new fields ϕ

Ŝ[ϕ] = S[φ + ϕ]− S[φ]− δS[φ]

δφA
ϕA . (3.102)

This method is called the background field method [Jac74, IlItMa75]. If, for example, the
original action is a φ4 theory the new action additionally contains cubic interactions in the
new fields ϕ. The couplings now depend on the mean field φ. Inserting (3.102) into (3.101)
gives

Γ[φ] = S[φ]− i ln
∫

DϕA exp
[

i

(

Ŝ[ϕ]−
(

δΓ

δφA
− δS

δφA

))

ϕA

]

. (3.103)

The closed time path effective action consists of two parts, the classical action S[φ] and a
quantum correction

Γ1[φ] = −i ln
∫

DϕA exp
[

i

(

Ŝ[ϕ]− δΓ1[φ]

δφA
ϕA

)]

. (3.104)

It is of the form of a generating functional for a new theory given by the action Ŝ. The
generating functional in (3.104), however, is evaluated at a specific value of the source. It
is exactly this source (3.100) that gives the required constraint that the fluctuations around
the mean field vanish on average. We now prove that indeed

〈ϕA〉 =
∫

DϕAϕA exp
[

i

(

Ŝ[ϕ]− δΓ1[φ]

δφA
ϕA

)]

= 0 . (3.105)

Taking the functional derivative with respect to φ of (3.104) yields

i
δΓ1[φ]

δφA
=

i
∫

DϕA
(

δŜ[φ]
δφA − δ2Γ1[φ]

δφAδφB ϕB
)

exp
[

i
(

Ŝ[ϕ]− δΓ1[φ]
δφA ϕA

)]

∫

DϕA exp
[

i
(

Ŝ[ϕ]− δΓ1[φ]
δφA ϕA

)] (3.106)

and thus

∫

DϕA

(

δŜ[φ]

δφA
− δΓ1[φ]

δφA
− δ2Γ1[φ]

δφAδφB
ϕB

)

exp
[

i

(

Ŝ[ϕ]− δΓ1[φ]

δφA
ϕA

)]

= 0 . (3.107)

Comparing
δŜ[ϕ]

δφA
=

δS[φ + ϕ]

δφA
− δS[φ]

δφA
− δ2S[φ]

δφAδφB
ϕB (3.108)
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with
δŜ[ϕ]

δϕA
=

δS[φ + ϕ]

δϕA
− δS[φ]

δφA
(3.109)

it is
δŜ[ϕ]

δφA
=

δŜ[ϕ]

δϕA
− δ2S[φ]

δφAδφB
ϕB . (3.110)

For (3.107) we obtain

∫

DϕA

(

δŜ[φ]

δϕA
− δ2S[φ]

δφAδφB
ϕB − δΓ1[φ]

δφA
− δ2Γ1[φ]

δφAδφB
ϕB

)

exp
[

i

(

Ŝ[ϕ]− δΓ1[φ]

δφA
ϕA

)]

=
∫

DϕA

(

δŜ[φ]

δϕA
− δΓ1[φ]

δφA

)

exp
[

i

(

Ŝ[ϕ]− δΓ1[φ]

δφA
ϕA

)]

+
∫

DϕA δ2Γ[φ]

δφAδφB
ϕB exp

[

i

(

Ŝ[ϕ]− δΓ1[φ]

δφA
ϕA

)]

. (3.111)

The first term on the right hand side of (3.111) vanishes because it can be written as

∫

DϕA

(

−i δ

δϕA

)

exp
[

i

(

Ŝ[ϕ]− δΓ1[φ]

δφA
ϕA

)]

= 0 (3.112)

and the second term gives
δ2Γ[φ]

δφAδφB
〈ϕB〉 = 0 , (3.113)

where the matrix (δ2Γ[φ])/(δφAδφB) is nonsingular because of the property of the Legen-
dre transformation, with (3.100)

δ

δJA
δΓ[φ]

δφB
= −δAB . (3.114)

From this with the chain rule one finds

−δAB =
δφC

δJA
δ2Γ[φ]

δφCδφB
=

δ2W[J]

δJAδJC
δ2Γ[φ]

δφCδφB
. (3.115)

These two matrices are inverses of each other. It then follows from (3.113) that 〈ϕ〉=0.
In summary, we have shown that the closed time path effective action is a sum of the
classical action S plus a quantum correction Γ1. With equation (3.100) we have obtained
a dynamic law for the mean field under the constraint that the fluctuations around the
mean field vanish on average.
We now turn to the evaluation of the effective action. An efficient method is the loop
expansion [Jac74] that is equivalent to an expansion in powers of h̄. One can obtain a
loop expansion forW[J] from its functional integral definition (3.97). Working with lnZ[J]
instead of Z[J] itself has the advantage that disconnected diagrams cancel in the graphical
evaluation. Performing the Legendre transformation it can be proven to all orders in the
loop expansion that the one-particle reducible diagrams cancel [Jac74]. These classes are
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3. Nonequilibrium methods in finite temperature quantum field theory

effectively resumed in the mean field. The closed time path effective action for bosons to
one-loop order is

Γ[φ] = S[φA] +
i

2
ln det(D−1AB) +O(h̄2) (3.116)

with the propagator

iD−1AB =
δ2S

δφAδφB
. (3.117)

The higher order corrections can be computed from the systematic loop-expansion of the
interaction part of the action Ŝint.
One possible way to address nonperturbative aspects is the large N expansion, where N is
the number of identical fields. It allows for a systemic investigation by ordering in powers
of 1/N [CoJaTo74, Roo74]. It has been applied to obtain the dynamics of spontaneous
symmetry breaking by many authors [Coo94, Coo97, Boy98, Boy99].

3.6. The two-particle irreducible effective action

Within the functional method approach it became possible to sum large classes of ordinary
perturbative diagrams contributing to the effective action Γ[φ]. In this section we pursue
this strategy further and show how the pertubation series can be even more simplified.
In ordinary perturbation theory the quantity of interest is expanded into a power series
according to orders of a small parameter, mostly a small coupling between the interacting
fields. In many theories this assumption is not true and the coupling is actually not a small
parameter. The formalism of the n-particle irreducible effective action is selfconsistent
because one does not expand the dynamic degree of freedom itself but derives an equation
of motion for each level of approximation separately. Thus, one can derive one closed
set of equations of motion for the mean field, the propagators and all correlations up
to the n-point function at the level of the n-particle irreducible effective action. A full
description of the quantum theory requires the knowledge of all n-point functions. In
the previous section we restricted ourselves to the equation of motion for the one-point
function, the mean field, with the constraint that all higher correlations vanish. This was
a large simplification since the mean field is fully inherent in the formalism. One does not
have to calculate an infinite number of Feynman diagrams to obtain the mean field. These
classes of diagrams are summed.
We now go one step further and extend the approach of the closed time path effective
action to the two-point function. This means we restrict our analysis to diagrams where
internal lines are given by the full propagator instead of some perturbative object. The
remaining graphs do not contain subgraphs that can be disconnected by cutting two lines,
they are two-particle irreducible.
This original functional formalism [LutWar60] was extended to yield transport equations
in a quantum theory that preserve the macroscopic conservation laws and are thermo-
dynamically consistent in the equilibrium limit [LeeYan60, BayKad61, Bay62]. These can
be found from a certain class of approximations to the Schwinger-Dyson equation for the
two-point function G. Here, the self energy Σ as a functional of G must be approximated

52



3.6. The two-particle irreducible effective action

in a way that there exists a functional Φ of G, for which

δΦ

δG
= Σ . (3.118)

These approximations are called Φ-derivable. In the path integral formulation of this ap-
proach [CoJaTo74] it turns out that the Φ-functional is identical to the nontrivial part of
the two-particle irreducible (2PI) effective action. In [Iva99] this selfconsistent approach
is generalized to arbitrary nonequilibrium many-body systems. Renormalization of Φ-
derivable approximations is studied in [Hee02a, Hee02b, Hee02c].
To formulate the 2PI formalism we relax the constraint on the deviation ϕA from the mean
field φA such that also the fluctuations around it are known. We then have one additional
two-point source, KAB = Kab(x, x′) to enforce the second constraint on the two-point func-
tion. The procedure is now analogous to the derivation of the 1PI effective action. We have
to perform a double Legendre transformation, one associated with each source. From this
we obtain the equations of motion for the mean field and the propagator as the stationary
conditions.
The 2PI generating functional is then

exp[iW[J,K]] =
∫

DΦ exp
[

i

(

S[Φ] + JAΦA +
1
2

ΦAKABΦB

)]

(3.119)

In order to benefit most from our derivation of the 1PI effective action we can formally
consider equation (3.119) as a generating functional with one source JA for a theory with
the action

SK[Φ] = S[Φ] +
1
2

ΦAKABΦB , (3.120)

where the two-point source KAB contributes as a mass term. Starting from one Legendre
transformation with respect to the source JA

ΓK[φ] = W[J,K]− JAφA (3.121)

with

φA =
δW[J,K]

δJA
= 〈ΦA〉J,K , (3.122a)

JA = −δΓK[φ]

δφA
, (3.122b)

we can perform the same steps as in the previous section to arrive at

ΓK[φ] = SK[φ] + ΓK
1 [φ] (3.123)

with the quantum correction

ΓK
1 [φ] = −i ln

∫

DϕA exp
[

i

(

ŜK[ϕ]− δΓK
1 [φ]

δφA
ϕA

)]

. (3.124)
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Here, the new action ŜK is obtained by a shift of the field in SK in the same way as Ŝ was
obtained from S by taking into account the additional shift by the KAB-inducedmass term.
To arrive at a loop expansion we can again split SK into a free and an interacting part

ŜK =
1
2

φA δ2SK

δφAδφB
φB + Ŝint

=
1
2

φA δ2S

δφAδφB
φB +

1
2

φAKABφB + Ŝint .

(3.125)

The free inverse propagator (GK
0 )
−1 of the theory with action SK relates to the inverse free

propagator G−10 of the theory with action S by

(GK
0 )
−1 = G−10 − iKAB . (3.126)

We now perform a second Legendre transformation of ΓK
1 [φ] with respect to the source

KAB

Γ[φ,G] = ΓK[φ]− δΓK[φ]

δKAB
KAB . (3.127)

With

δΓK[φ]

δKAB
=

δW[J,K]
δKAB

+
δW[J,K]

δJC
δJC

δKAB
− δJC

δKAB
ΦC

=
δW[J,K]

δKAB

=
1
2
(φAφB + GAB) ,

(3.128)

equation (3.127) becomes

Γ[φ,G] = ΓK[φ]− 1
2
KABφAφB − 1

2
TrKG . (3.129)

With the first Legendre transformation (3.121) this is equivalent to simultaneously per-
forming a double Legendre transformation ofW[J,K] with respect to both sources

Γ[φ,G] = W[J,K]− JAφA − 1
2
KAB(φAφB + GAB) . (3.130)

The stationary conditions can directly be written down

δΓ[φ,G]
δφA

= −JA − 1
2
KABφB (3.131)

δΓ[φ,G]
δGAB

= −1
2
KAB . (3.132)

In the absence of the sources this gives the equations of motion for the physical mean field
φA and the physical propagator GAB.
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3.6. The two-particle irreducible effective action

To one-loop level we can use the bosonic one-loop result (3.116) for ΓK[φ] to insert into
(3.129)

Γ[φ,G] = S[φ] +
i

2
ln det(G−10 − iKAB)− 1

2
TrKG+O(h̄2) . (3.133)

To this order the full propagator is G−1 = G−10 − iKAB. We can eliminate the source and
ignore the constant terms. To go beyond one loop we add an additional term

Γ[φ,G] = S[φ] +
i

2
ln detG−1 +

i

2
TrG−10 G+ Γ2[φ,G] . (3.134)

For the proper self-energy

ΣAB = (GAB
0 )

−1− (GAB)
−1

(3.135)

the effective potential (3.134) becomes with ln det A = Tr ln A

Γ[φ,G] = S[φ] +
i

2
Tr lnG−1 +

i

2
TrΣG+ Γ2[φ,G] . (3.136)

where we ignored a constant term. Then, the equation of motion for the propagator (3.132)
with KAB = 0 can be calculated. With δΣ/δG = 1/G2 it is

δΓ[φ,G]
δGAB

=
i

2
Σ +

δΓ2[φ,G]
δGAB

= 0 (3.137)

we find for the self energy

ΣAB = 2i
δΓ2[φ,G]

δGAB
. (3.138)

Since the proper self-energy contains only one-particle irreducible diagrams and variation
with respect to the propagators corresponds to cutting the respective line in the diagram,
the Γ2 functional can only contain two-particle irreducible diagrams.
For fermions the 2PI effective action can be derived in very much the same way taking
into account the Grassmann nature of the fermionic fields. The main difference appears
already on the one-loop level, where the fermionic functional determinant comes to the
power one instead of −1/2 for bosons. We assume a vanishing fermionic expectation
value 〈q〉 = 〈q〉 = 0. Then, the 2PI effective action for fermions is

Γ[S] = −iTr ln S−1 − iTrS−10 S+ Γ2[S] , (3.139)

where S is the full and S0 is the free fermionic propagator.

In this chapter we have discussed the quantum field theoretical basis, which we use in
the remaining chapters to gradually develop a consistent nonequilibrium model of chiral
fluid dynamics. We start in the next chapter with a one-loop derivation of the coupled
dynamics of the quarks and the chiral fields from the linear sigma model with constituent
quarks.

55



3. Nonequilibrium methods in finite temperature quantum field theory

56



4. Chiral fluid dynamics I

Chiral fluid dynamics combines the dynamics of heavy-ion collisions with the explicit
propagation of the chiral fields at the chiral phase transition. The common idea of chiral
fluid dynamics [Mis99a, Sca99, Pae03] is to embed a low energy effective model of QCD
into a fluid dynamic simulation of a heavy-ion collision. In [Mis99a] an additional dilaton
field was included in the explicit dynamics to model scale invariance breaking in QCD.
Strong nonlinear oscillations were found for all the classical fields at the phase transition.
From these oscillations the particle production of sigmas, pions and glueballs was calcu-
lated. In [Pae03] initial fluctuations were propagated deterministically through the phase
transition.
A model that is particularly well suited for this combined approach is the linear sigma
model with constituent quarks. The linear sigma model with nucleons [Gel60] has been
studied for years as the prototype effective model of dynamic chiral symmetry break-
ing. The coupling to dynamic quark degrees of freedom instead of nucleons yields the
additional feature that the quarks with light current masses obtain a heavy mass at the
phase transition and thus turn into constituent quarks [Jun96, Ber03, Tet03, Sch08]. We
will present this model, its thermodynamics and phase structure in section 4.1.
To lowest order the time evolution of the chiral fields is given by the classical equations
of motion. Thus, the chiral fields are explicitly propagated out of equilibrium with the
quarks, the dynamics of which is reduced to a fluid dynamic evolution of densities. This
gives rise to the name chiral fluid dynamics.We present these coupled dynamics in section
4.2. We numerically implement the chiral fluid dynamics for the linear sigma model with
constituent quarks in section 4.3 and present results on the time evolution of the fields and
the fluid in section 4.4. We call this the off-equilibrium expansion to distinguish between
the full nonequilibrium approach including dissipation and fluctuations that is developed
in the main chapters of this thesis.
Still, many of the ideas, concepts and notations introduced and used in this chapter will
be relevant in later chapters.
Some calculations in this chapter have been presented in [Nah09, Nah10a].

4.1. The linear sigma model with constituent quarks

In section 2.5 we gave an overview of the studies of effective models of QCD. One of them,
which describes the chiral phase transition, is the linear sigma model with constituent
quarks. Here, the σ and π mesons couple to quarks. The Lagrangian reads

L = q̄(iγµ∂µ − g(σ + iγ5~τ~π))q+
1
2

∂µσ∂µσ +
1
2

∂µ~π∂µ~π −U(σ, ~π) , (4.1)
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where q = (u, d) is the constituent quark field, σ the sigma field and ~π the pion fields.
Together they form the chiral field φ = (σ, ~π). The strength of the coupling between the
quarks and the chiral fields is g. In the vertex for the pion-quark coupling the γ5 matrix
enters to account for the pseudoscalar nature of the π mesons and the isospin Pauli ma-
trices ~τ for the isospin degeneracy of the pions. The interaction between the chiral fields
is given by the potential

U (σ, ~π) =
λ2

4

(

σ2 + ~π2 − ν2
)2 − hqσ−U0 . (4.2)

The Lagrangian (4.1) is invariant under SUL(2) × SUR(2) symmetry transformations if
the explicit symmetry breaking term hq vanishes in the potential (4.2). The parameters
in (4.2) are chosen such that chiral symmetry is spontaneously broken in the vacuum,
where 〈σ〉 = fπ = 93 MeV and 〈~π〉 = 0. The explicit symmetry breaking term taking into
account the finite quark masses is hq = fπm

2
π with the pion mass mπ = 138 MeV. With

these requirements, ν2 = f 2π −m2
π/λ2. Choosing λ2 = 20 yields a realistic vacuum sigma

mass m2
σ = 2λ2 f 2π +m2

π ≈ 604 MeV. In order to have zero potential energy in the ground
state the termU0 = m4

π/(4λ2)− f 2πm
2
π is subtracted. At a coupling g = 3.3 the constituent

quark mass in vacuum is mq = 306.9 MeV.
The Lagrangian (4.1) treats the quarks and antiquarks and the mesons on equal footing. In
the real world confining forces recombine quarks and antiquarks in mesons and baryons
below the confinement critical temperature. The aspect of confinement is not included in
the linear sigma model with constituent quarks. We can, thus, investigate the pure effect
of the chiral phase transition. In extensions of the model gluons are included on the level
of the dilaton field [Mis99a] or the Polyakov loop [Sch07, Sto09], mentioned already in
section 2.5.

4.1.1. Mean-field thermodynamics

For a system in the volume V, which is in thermodynamic equilibrium at a temperature T
and quark chemical potential µq = µB/3 the grand-canonical partition functions reads

Z =
∫

Dq̄DqDσD~π exp
[

∫

d4x(L+ µqq̄γ0q)

]

. (4.3)

It can be explicitly calculated in the mean-field approximation for the chiral fields. This
means that the chiral fields are replaced by their expectation values and quantum fluctu-
ations around the mean field are neglected. This approach is justified at high T and µB

where the mesonic resonances are heavy but it is not capable of capturing all phenomena
at the phase transition. At this point it is our intention to study the dynamics of the phase
transition qualitatively and we do not aim at the extraction of critical exponents for exam-
ple. We should, however, keep in mind that the mean-field approach is of limited use for
the quantitative study of fluctuations [Sto09].
In the mean-field approximation the partition function of the linear sigma model with
constituent quarks can be evaluated along the same lines as the partition function for free
fermions, see appendix C.3.
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The thermodynamic potential in mean-field approximation is

Ω(T, µq) = −
T

V
lnZ = U (σ, ~π) + Ωqq̄ , (4.4)

with the chiral potential U(σ, ~π) and the quark contribution

Ωqq̄(T, µq) = −dq
∫

d3p

(2π)3

(

E+ T ln
(

1+ exp
(

µq − E

T

))

+ T ln
(

1+ exp
(−µq − E

T

)))

,
(4.5)

where dq = 12 is the degeneracy factor of the quarks for N f = 2 flavors, Nc = 3 colors and
the two spin states. There is, however, a crucial difference from the calculation in appendix
C.3. In the Lagrangian (4.1) there is no fermionic mass. The quark mass is generated by
nonvanishing expectation values of the chiral fields due to spontaneous symmetry break-
ing. During the evaluation of the functional determinant in Dirac and isospin space one
generates a term defined as the effective mass of the quarks

m2
eff = g2(σ2 + ~π2) . (4.6)

Then, the energy of the quarks and antiquarks is

E =
√

~p2 +m2
eff =

√

~p2 + g2(σ2 + ~π2) . (4.7)

This is obviously not a medium-independent quantity as the chiral expectation values de-
pend on both medium parameters T and µB. Thus, the divergent term in (4.5) cannot be
subtracted as a simple zero-temperature contribution. It needs to be renormalized more
carefully. By using standard renormalization techniques one part of the divergence can be
absorbed in the parameters λ and ν of the classical potential U(σ, ~π), while a logarithmic
term depending on meff and the renormalization scale remains. In [Sko10] it was shown
that by neglecting this contribution fails to reproduce the second order phase transition
for µB = 0 in the chiral limit. In [Mos04] the renormalization scale dependence was in-
vestigated phenomenologically. A thorough study of medium dependent corrections to
mean-field calculations, perturbative and renormalization group approaches to Yukawa
theory, also showed a crucial effect on the phase structure [Pal08, Fra09, Pal10a].
To achieve the goal of this work, namely the coupling of chiral nonequilibrium dynamics
at the phase transition to a fluid dynamic expansion, we need a field-theoretical model
exhibiting a phase transition. This is given by the mean-field approximation and we can
neglect the effects of the vacuum correction.
The expectation values for the chiral fields are obtained from minimizing the thermody-
namic potential (4.4) with respect to σ and ~π

∂Ω

∂σ
= λ2(σ2 + ~π2 − ν2)σ− hq + gρs = 0 and

∂2Ω

∂σ2 > 0 , (4.8a)

∂Ω

∂~π
= λ2(σ2 + ~π2 − ν2)~π + g~ρps = 0 and

∂2Ω

∂~π2 > 0 . (4.8b)
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Here, the one-loop scalar and the pseudo-scalar densities are

ρs = 〈q̄q〉 = gdqσ
∫ d3p

(2π)3
1
E
(nq(T, µq) + nq̄(T, µq)) , (4.9a)

~ρps = i〈q̄γ5~τq〉 = gdq~π
∫ d3p

(2π)3
1
E
(nq(T, µq) + nq̄(T, µq)) , (4.9b)

with the Fermi-Dirac distribution of quarks and antiquarks

nq(T, µq) =
1

1+ exp((E− µq)/T)
, (4.10a)

nq̄(T, µq) =
1

1+ exp((E+ µq)/T)
. (4.10b)

The net-baryon density is then

nB = −1
3

∂Ω

∂µq
=

dq

3π2

∫ ∞

0
dp p2(nq(T, µq)− nq̄(T, µq)) . (4.11)

The minima of the thermodynamic potential Ω obtained from (4.8a) and (4.8b) define the
thermodynamically stable states of the matter. In this case the pressure of the system is

p(T, µq) = −Ω(T, µq)|φ=φeq , (4.12)

from which all thermodynamic quantities can be calculated. We are especially interested
in the energy density. It is given by the thermodynamic relation

e(T, µq) = Ts(T, µq)− p(T, µq) + µqnB(T, µq) , (4.13)

with the entropy density s = (∂p/∂T)µq and the baryon density n = −(∂p/∂µq)T. Then

e(T, µq) = T

(

∂p(T, µq)

∂T

) ∣

∣

∣

∣

µq

− p(T, µq)− µq

(

∂p(T, µq)

∂µq

) ∣

∣

∣

∣

T

. (4.14)

The masses of the sigma and the pions are given by the curvature of the thermodynamic
potential at the equilibrium values of the chiral fields

m2
σ =

∂2Ω

∂σ2

∣

∣

∣

∣

φ=φeq

, (4.15a)

m2
π =

∂2Ω

∂~π2

∣

∣

∣

∣

φ=φeq

. (4.15b)

4.1.2. Phase diagram of the linear sigma model with constitu ent quarks

The complete phase structure of the linear sigma model with constituent quarks can be
obtained from the knowledge of the thermodynamic potential (4.4) [Sca01a]. Since the
sigma field is the order parameter of chiral symmetry breaking, it is sufficient to solve
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4.1. The linear sigma model with constituent quarks

the gap equation (4.8a) to find the first order phase transition line in the T-µq plane. It
is characterized by two minima separated by a barrier. These are the coexisting phases
along the first order phase transition line. It terminates in a critical point where the barrier
vanishes and there is only one global but very flat minimum, for which

∂2Ω

∂σ2

∣

∣

∣

∣

φ=φeq

= 0 . (4.16)

The linear sigma model of constituent quarks exhibits the full spectrum of the suggested
chiral phase structure of QCD. It has a crossover transition at vanishing µB and a first
order transition line at high µB and lower temperatures, which terminates in a critical
point at Tc. Naturally, the quantitative values for the phase transition are lower than the
values for full QCD. Working with the linear sigma model with constituent quarks will,
therefore, only give qualitative results for the true QCD phase transition.
As we are mainly interested in the qualitative analysis of the phase transition we can
alternatively fix the baryochemical potential and tune the strength of the phase transition
by changing the coupling constant g. At µB = 0 the thermodynamic potential is

Ω(T, φ) = U (σ, ~π) + Ωqq̄ = U (σ, ~π)− 2dqT
∫ d3p

(2π)3
ln
(

1+ exp
(

−E

T

))

, (4.17)

which is an effective potential Veff(T, φ) = Ω(T, φ) for the chiral fields in presence of the
quarks.
For the realistic coupling, g = 3.3, and µB = 0 the effective potential changes smoothly
from the high-temperature phase to the low-temperature phase, see figure (4.1). For higher
couplings g the effective potential starts to exhibit a first order phase transition. In figure
(4.2) we show the effective potential for various temperatures and g = 5.5.
At high temperatures there is only one minimum at σ ≃ 0. Between the upper and the
lower spinodal temperature there are twominima. The global minimum changes from the
high-energy minimum at σ ≃ 0 to the low-temperature minimum at σ ≃ fπ at a critical
temperature of Tc = 123.27 MeV. Here, the two minima are degenerate and form the two
coexisting phases. Below Tc the high-temperature minimum becomes unstable but exists
down to the spinodal temperature Tsp = 108 MeV [Sca01b, Agu06].
If one carefully looks for the vanishing of the barrier by decreasing the coupling g, the
effective potential shows the shape of a second order phase transition for g = 3.63 with
a critical temperature of Tc = 139.88 MeV. Here, the curvature at the minimum becomes
very flat, see figure 4.3, and the sigma mass decreases to mσ = 26.6 MeV. This value of
mσ is significantly smaller than the vacuum mass, but still finite. It would be necessary
to tune the parameters g and Tc more precisely to achieve an even lower sigma mass. We
work with the values presented here keeping in mind that mσ at the critical point is very
small, but finite.
For all three phase transition scenarios we show the temperature dependence of the equi-
librium value of the sigma field σeq and the mass of the sigma field in equilibrium mσ in
figures 4.4 and 4.5.
Throughout this work we will explore these three scenarios depicted above: the crossover
for g = 3.3, the first order phase transition for g = 5.5 and the critical point for g = 3.63.
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Figure 4.1.: The effective potential for a coupling g = 3.3 and three different tempera-
tures. The potential changes smoothly between the high and the low temperature phase.
It describes a generic crossover transition.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

V
e
ff
/
T

4

σ/T

T=160 MeV
T = 130 MeV

T = TC = 123.7 MeV
T = 115 MeV
T = 108 MeV
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and the critical temperature. At the critical temperature the two minima are degenerate
and represent the two coexisting phases for a first order phase transition.
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Figure 4.5.: The equilibrium value of the sigmamassmσ for the three scenarios: with a first
order phase transition g = 5.5, a critical point g = 3.63 and a crossover g = 3.3. We also
observe a discontinuity in mσ at the first order phase transition.

4.1.3. Thermal equilibrium

In thermal equilibrium the thermodynamic quantities are determined at their expectation
value. There is, however, a certain probability to find fluctuations δx around these expec-
tation values that lead to a decrease of the entropy

S = −V

T
Veff ≃ S0 −

1
2

κδx2 . (4.18)

Then,

κ−1 =
T

V

∂2Veff

∂x2
=

T

V

1
m2

x

=
T

V
ξ2x (4.19)

is the variance of the fluctuations of the thermodynamic quantity x with mass mx and
correlation length ξx. The probability distribution is Gaussian

P(δx) =

√

κ

2π
exp

(

−κ

2
δx2
)

. (4.20)

The variance of the sigma fluctuations from (4.19) with δx = δσ = σ − σeq is shown in
figure 4.6 for a unit volume V = 1 fm. We see the steep increase of the fluctuations at the
critical point.

4.2. Dynamics of the chiral fields and the quarks

We have just learned about the thermal equilibrium state of the chiral fields. Now, we
want to include the explicit dynamics of the chiral fields. In this chapter we propagate the
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chiral fields by the ordinary classical equations of motion, which result from applying the
variational principle to an effective Lagrangian

Leff =
1
2

∂µσ∂µσ +
1
2

∂µ~π∂µ~π −U (σ, ~π)−Ωqq̄ . (4.21)

For the sigma field it reads

∂µ∂µσ +
δU(φ)

δσ
= −gρS , (4.22)

and for the pion fields

∂µ∂µ~π +
δU(φ)

δ~π
= −g~ρPS . (4.23)

The time evolution of the quarks and antiquarks is given by the Dirac equation for quarks
and antiquarks. Due to the effective mass acquired by the quarks and antiquarks from the
interaction with the chiral fields, which are time and space dependent, the exact solution
of the Dirac equation is extremely difficult to find. We need to make further approxi-
mations. In [Cse95, Mis97a, Aba97] a Vlasov-equation for the quark-antiquark Wigner-
function was solved in the collisionless approximation. We adapt the concepts of [Mis99a,
Pae03] and propagate the quarks and antiquarks fluid dynamically.
In section 2.4.1 we explained the basic ideas of a relativistic fluid dynamic approach to
heavy-ion collisions. Comparisons of ideal fluid dynamic calculations to measurements
at RHIC propose that the initial system created in a heavy-ion collision at high energies
locally equilibrates fast. We do not include viscous effects in our fluid dynamic calculation
and assume local equilibration of the fluid on times scales much smaller than the equili-
bration of the sigma field with the fluid heat bath. This allows us to ignore themicroscopic
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4. Chiral fluid dynamics I

details of the quark dynamics. Since we explicitly want to study fluctuations we have to
note that this puts further doubts on the applicability of ideal fluid dynamics as gradi-
ents become larger making viscous corrections more important. Its evolution is governed
by local energy and momentum conservation. For the fluid dynamic expansion the chi-
ral fields are treated on the level of an external, parametric field. According to their local
value the local pressure of the quarks is

p(φ, T) = −Ωqq̄(T, φ) . (4.24)

As in (4.14) the local energy density of the quark fluid is

e(φ, T) =T
∂p(φ, T)

∂T
− p(φ, T)

=2dq
∫

d3p

(2π)3
EnF(p) .

(4.25)

Locally, the chiral fields interact with the quark fluid and exchange energy and momen-
tum. In order to conserve energy and momentum of the coupled system we include a
source term

Sν = −∂µT
µν
φ = gρσ∂νσ + g~ρπ∂ν~π , (4.26)

where Tµν
φ is the energy-momentum tensor of the purely mesonic part of the Lagrangian

Lφ =
1
2

∂µσ∂µσ +
1
2

∂µ~π∂µ~π −U(φ) . (4.27)

Within the fluid dynamic description of the quarks we have to solve

∂µT
µν
fluid = Sν , (4.28)

with the energy-momentum tensor of an ideal fluid as given in equation (2.44). The equa-
tion (4.28) with the source term (4.26) can alternatively be derived from the Vlasov-equation
of quarks coupling to a background chiral field [Mis97b]. The coupled equations (4.22),
(4.23) and (4.28) can together be obtained from a variational formulation [Agu06].

4.3. Numerical implementation

We have to solve the coupled equations of motion for the chiral fields (4.22) and (4.23) and
the energy-momentum conserving equations of relativistic fluid dynamics (4.28) for the
quark fluid numerically. We briefly explain the staggered leap-frog algorithm to solve the
equations of motion for the chiral fields (4.22) and (4.23) and in more detail the full (3+1)d
SHASTA fluid dynamic code.

4.3.1. Staggered leap-frog algorithm

The equations of motion for the chiral fields (4.22) and (4.23) are solved by a staggered
leap-frog algorithm. The second order equation is separated into two coupled equations,
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4.3. Numerical implementation

one for φ and one for the time derivative of the fields v = ∂tφ:

v = ∂tφ , (4.29a)

∂tv− ~∇2v+
∂U

∂φ
= −gρs/ps . (4.29b)

v is updated at half-time steps. This ensures the second order accuracy of the algorithm
that is needed to work reliably for longer times. We apply boundary conditions of the
Neumann type rather than periodic boundary conditions. The normal derivative is set
to zero on the boundary of the grid. The implemented algorithm was tested and gave
accurate results for analytically known results of the wave equation with various source
terms, like for a soliton solution of the sine-Gordon equation.

4.3.2. SHASTA fluid dynamic code

For the solution of (4.28) we use the full (3+1)d SHarp And Smooth Transport Algorithm
(SHASTA) fluid dynamic code [Ris95a, Ris95b, Pur93]. For this purpose the computational
frame quantities are defined as

E = T00 = γ2(e+ p)− p , (4.30a)

~M = Ti0 = γ2(e+ p)~v . (4.30b)

The fluid dynamic equations (2.43) and (2.45) in these computational frame quantities are

∂tE+ ~∇ · (E~v) = −~∇ · (p~v) , (4.31a)

∂t ~M+ ~∇( ~M ·~v) = −~∇p , (4.31b)

∂tR+ ~∇ · (R~v) = 0 . (4.31c)

These equations are solved in the finite difference form on a Euclidean grid for the dis-
cretized quantities. The three-divergence operators are treated with the operator splitting
method and each of the equations is solved sequentially in all three space directions alter-
nating the sequence in each new time step. The remaining effectively one-dimensional
equations are solved by a flux-corrected transport algorithm. The computation of the
transported and diffused densities at the next time step is of second order accuracy due to
the half-step in the terms on the right hand side of the equations (4.31). Numerical diffu-
sion must be estimated and the resulting flux-corrected antidiffusion fluxes are subtracted
to yield the propagated densities. This algorithm propagates quantities in the computa-
tional frame but requires values of the pressure and the velocity of the fluid cell. The pres-
sure p is obtained from the equation of state, which expresses p as a function of the energy
density and baryon number density in the local rest frame of the fluid cell. Therefore, one
must calculate e, ~v and n from E, ~M and R.
The causal transport of matter is assured on a numerical level by fulfilling the Courant-
Friedrichs-Levy criterion ∆t/∆x ≡ λ < 1, where ∆x is the cell size in one direction and
∆t the time step. The averaging of the transported densities in a cell leads to prediffusion
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that is larger for smaller λ, which thus cannot be chosen arbitrarily small. The SHASTA
code requires values λ < 1/2 for numerical stability. We choose λ = 0.4, ∆x = ∆y = ∆z =
0.2 fm and thus ∆t = 0.08. The grid size is (128∆x)3.

4.3.3. Initial conditions

For a qualitative investigation the initial conditions are kept simple. We choose an initial
temperature profile, which is uniform in z-direction over a length lz = 6 fm and ellipsoidal
in the x/y-plane. The ellipsoidal shape should mimic the overlap region in a heavy-ion

collision. Its major and minor radii are b =
√

r2A − b̃2/4 and a = rA − b̃/2, where b̃ =

6 fm is the supposed impact parameter and rA = 6.5 fm the radius of the nuclei. The
temperature is smoothly distributed over this ellipsoidal region by a Wood-Saxon like
distribution with the maximum at the initial temperature Tini = 160 MeV, which is well
above either of the phase transitions,

T(~x, t = 0) =
Tini

(1+ exp((r̃− R̃)/ã))(1+ exp ((|z| − lz)/ã))
(4.32)

with a surface thickness of ã = 0.3 fm, r̃ =
√

x2 + y2 and

R̃ =

{

abr̃√
b2x2+a2y2

for r̃ 6= 0

a for r̃ = 0
. (4.33)

By minimizing the effective potential the equilibrium value of the sigma field σeq is found.
The thermal equilibrium state has Gaussian fluctuations around the expectation value, the
variance of which is

〈δσ2〉 = T

V

1
m2

σ

. (4.34)

Thus, the sigma field is initially Gaussian distributed around its equilibrium value,

σ(~x, t = 0) = σeq + δσ(~x) . (4.35)

According to (4.25) the energy density of the quark fluid can be calculated with (4.32) and
(4.35).
The velocity profile is vz(~x, t = 0) = |z|/lz · vmax, where vmax = 0.2, whilethere are no
transverse velocities initially vx(~x, t = 0) = vy(~x, t = 0) = 0. The time derivative of the
sigma field ∂tσ is initially set to zero.
The pion field is initially set to zero and neglected during the simulation, since we expect
that mainly the sigma field as the order parameter of chiral symmetry is affected by the
phase transition.

4.3.4. Equation of state

At the heart of the fluid dynamic expansion is the equation of state. It is elucidating to
look at the equilibrium case of the present model first. We eliminate the temperature in
the pressure (4.24) and the energy density (4.25) numerically for φ = φeq. In figure 4.7 the
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Figure 4.7.: The equation of state for the quark fluid with equilibrium values of the chiral
fields φ = φeq for the different phase transition scenarios. For comparison of the slope we
plot the equation of state of a relativistic ideal gas in a short interval.

obtained relation p = p(e) is plotted for the different couplings corresponding to a first
order phase transition, a critical point and a crossover.
One sees that both in the high temperature and in the low temperature limit the three
scenarios give the same equation of state. In the high temperature limit the system is in the
chirally restored phase, where the quarks are almost massless. Therefore the slope of the
pressure becomes that of the ideal gas equation of state p(e) = e/3. For the crossover the
slope of the pressure varies continuously and smoothly. Already at the critical point the
slope of the pressure becomes very small in the transition region at around e ≃ 2e0. At the
first order phase transition the energy density varies discontinuously with the pressure,
which gives rise to the latent heat. It is the difference in the energy density at the two
degenerate minima. As typical for a first order phase transition the speed of sound at the
phase transition vanishes

c2s =
∂p

∂e

∣

∣

∣

∣

phase transition
= 0 . (4.36)

This is called the softest point of the equation of state [Hun95].
In the case of the off-equilibrium propagation we do not obtain a simple relation p(e)
because the sigma field is not fixed at its equilibrium value. Therefore, the pressure and
the energy density depend explicitly on the local value of the field, which can be viewed
as an external parameter in the thermodynamic sense. What needs to be done technically
is the following. With the energy density from the fluid dynamic calculation at a given
point x, efluid(x) the equation for the thermodynamic energy density (4.25) needs to be
inverted taking into account the local value of the sigma field σ(x). The local temperature
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T(x) is given by the solution of

efluid(x)− e(σ, T) = 0 . (4.37)

The temperature T(x) and the local value of the sigma field σ(x) are then inserted into
the thermodynamic pressure (4.24). For the transformations between the local rest frame
of a fluid cell and the computational frame the equation of state is accessed very often
in each time step. It is very time consuming to invert (4.25) numerically. We, therefore,
parametrize the pressure as a polynomial in the energy density where the coefficients
themselves are polynomials in the sigma field. The explicit values are obtained from fits
to (4.24) and (4.25) for different temperatures and values of the sigma field and given in
the appendix D.

4.3.5. The inclusion of the source term

The source term (4.26) in explicit terms gives

S0 = −∂µT
µ0
σ = −∂tT

00
σ + ∑

i

∂jT
j0
σ

= −∂tEσ + ~∇ · ~Mσ

= −∂tEσ − ~∇ · (~∇σ)∂tσ ,

(4.38)

and

Si = −∂µT
µi
σ = −∂tT

0i
σ +∑

i

∂jT
ji
σ

= −∂t ~Mσ + ~∇(~∇σ)2
(4.39)

It appears on the right hand side of the fluid dynamic equations in computational frame
quantities (4.31a) and (4.31b).
The numerical inclusion of the source term (4.26) is an intricate issue. We tested two pos-
sible methods. First, we treated the source term on the same footing as the right hand
sides of equations (4.31a) and (4.31b). This is straight forward but violates the energy-
momentum conservation severely. Second, we solve equation (4.28) in two steps. After
performing the fluid dynamic step in the standard fashion for Sν = 0 we subtract the
source term Sν from the energy andmomentumdensity in the computational frame. Then,
we can again calculate the local rest frame quantities. This gives a very good conservation
of energy andmomentum of the entire system as wewill show for the various calculations
in this work. The latter method also proved to work well in multi-fluid dynamics [Bra97].

4.4. Results

In this section we first present a test scenario of an equilibrium expansion. Here, the sigma
field is assumed to be thermally equilibrated with the quark fluid, which expands fluid
dynamically. These results will serve as a reference for the off-equilibrium expansion pre-
sented thereafter and the nonequilibrium expansion, which is the subject of the following
chapters. In the off-equilibrium case the chiral fields are propagated according to their
classical equations of motion (4.22).
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Figure 4.8.: The time evolution of the energy density in units of the ground state energy
density e0 for a scenario with a critical point in an equilibrium expansion.

4.4.1. Equilibrium expansion

By treating the sigma field as an external parameter that is always in thermal equilibrium
with the quark fluid we can investigate the effects of a spatially inhomogeneous expan-
sion. The quark fluid is propagated fluid dynamically with the initialization described
above. The sigma field at each time step is

σ(x) = σeq(T(x)) + δσ(T(x)) , (4.40)

where the variance of the Gaussian fluctuations is given by (4.19). We define the volume
of the systemV over the number of fluid cells with nonzero energy density. Depending on
the local temperature T(x) the variance of the sigma field varies spatially. Since the sigma
field has no dynamics the source term (4.26) is zero.
The time evolution of the energy density in the laboratory frame in x-direction with y =
z = 0 is shown in figure 4.8 for a scenario with a critical point and in figure 4.9 for a
scenario with a first order phase transition. They do not show a difference. In figures 4.10
and 4.11 the time evolution of the sigma field in x-direction with y = z = 0 is plotted
for a scenario with a critical point and with a first order phase transition, respectively.
Here, we see very different evolutions around the phase transition. The sigma field in the
critical point scenario evolves continuously from the chirally restored phase to the chirally
broken phase. For a first order phase transition there is a region where both phases coexist
and where there are larger spatial fluctuations.
The quantities shown in figures 4.12 and 4.13 are averaged over a sphere with radius
r = 3 fm in the center of the initially hot region. We see that already an inhomogeneous
expansion of the quark fluid leads to a large deviation from the static equilibrium quan-
tities. In figure 4.12 we compare the time evolution of the average values of the sigma

71



4. Chiral fluid dynamics I

e/e0
t/
fm

e/
e 0

x/fm
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 4.9.: The time evolution of the energy density in units of the ground state en-
ergy density e0 for a scenario with a first order phase transition and the sigma field in
equilibrium.
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Figure 4.10.: The time evolution of the equilibrium sigma field for a scenario with a critical
point.
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Figure 4.11.: The time evolution of the equilibrium sigma field for a scenario with a sce-
nario with a first order phase transition.
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Figure 4.12.: The average values and the variances of the fluctuations
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〈δσ2〉 of the sigma
field in an equilibrium expansion for a scenario with a critical point and with a first order
phase transition
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Figure 4.13.: The average temperature and temperature fluctuations in an equilibrium ex-
pansion for scenario with a critical point and with a first order phase transition.

field for a first order phase transition and a critical point. Due to the higher transition
temperature the critical point scenario crosses the phase transition earlier than the first
order phase transition scenario. Still, the final vacuum value σvac = fπ is reached at about
the same time for both scenarios. At the phase transition the variance of the sigma fluc-
tuations grows. Comparing to the global expectation values in figure 4.6, scaled with the
respective volume, one sees that the fluctuations at the critical point are smaller while the
fluctuations at the first order phase transition are larger. In global static equilibrium the
variance of the fluctuations diverge for a critical point but are rather small for a first order
phase transition. In figure 4.12 the fluctuations at the critical point stay finite and are even
exceeded by the fluctuations at the first order phase transition. Whenwe take a closer look
at the evolution of the average of the sigma field in a first order phase transition, we see
that at times between 6 and 7 fm it stays constant. At this time one part of the system is
still in the high temperature and the other part is already in the low temperature phase.
Both parts are approximately equally large as the average sigma field is almost exactly
between the high temperature and the low temperature equilibrium value of the sigma
field. This coexistence region was already observed in figure 4.11. A similar behavior can
also be seen in the evolution of the average temperature in figure 4.13. Fluctuations in the
temperature in a scenario with a first order phase transition have a maximum between
6 and 8 fm and then show a constant average value for slightly later times around 8 fm.
Again, the fluctuations in the temperature are smaller for a critical point than for a first
order phase transition.
To conclude a spatially inhomogeneous and time-dependent system seems to enhance
fluctuations for a scenario with a first order phase transition because at different tem-
peratures around the phase transition the true equilibrium values can be separated over
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4.4. Results

almost 80 MeV, which corresponds to the distances between the two minima, whereas at
a critical point the sigma mass is small only in the vicinity of Tc. Averaging over space
spoils the large fluctuations for global equilibrium.

4.4.2. Off-equilibrium expansion

We now turn to the off-equilibrium expansion of the sigma field according to the classical
equations of motion (4.22). First, we check the energy conservation of the entire system to
show that the inclusion of the source term (4.26) described in section 4.2 indeed accounts
for the energy exchange between the fluid and the sigma field. Violations of momentum
conservation were found to be of the order of 1‰. After having numerically convinced
ourselves that the additional terms appearing in the source terms for the energy density
(4.38) and themomentumdensity (4.39) are small compared to ∂tEσ and ∂t ~Mσ, we approx-
imate

S0 ≃ −∂tEσ , (4.41a)

Si ≃ −∂t ~Mσ . (4.41b)

In figure 4.14 for a critical point and in figure 4.15 for a scenario with a first order phase
transition the various contributions to the total energy of the entire system are shown. The
total energy is the sum of the energy of the fluid, the classical potential and the kinetic and
spatial fluctuation energy of the sigma field

Etot = Efluid + Eσ

= Efluid +
1
2

∂tσ
2 +

1
2
~∇σ2 +U(σ) .

(4.42)

In both scenarios the total energy is well conserved until the quark fluid reaches the edges
of the grid between 8 and 9 fm and disappears. At T = 0 the minimum of the classical
potential is at 〈σ〉|T=0 = fπ with U(σ = fπ) = 0. Therefore, it initially contributes a finite
energy.When the system cools this energy is transfered to the quarks. It is remarkable that
in a systemwith a first order phase transition both the temporal and the spatial fluctuation
energy of the sigma field are larger than in a systemwith a critical point.
Having shown that the total energy of the entire system is conserved in our approach we
can take a look at the actual time evolution of the energy density and the sigma field. As
in the equilibrium case we plot the energy density of the quark fluid and the sigma field
in x-direction with y = z = 0 for a critical point in figure 4.16 and 4.18 and for a first or-
der phase transition in figure 4.17 and 4.19. Now, we can clearly see a different evolution
of the energy density. In the critical point scenario the energy density develops broader
structures around a time of 7 fm than in the first order phase transition scenario. In the
latter at x = 3 and x = −3 fm and t = 7 fm bubbles of higher energies densities are
formed instead. Also for the sigma field the structures in the t/x diagram are broader for
an expansion through the critical point and more localized at the first order phase transi-
tion. In both cases we see that the sigma field oscillates around the vacuum expectation
value for large times. This finding can be backed by looking at the average sigma field and
its variance in figure 4.20. While initially the average sigma field approaches the vacuum

75



4. Chiral fluid dynamics I

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

E
/
G
eV

t/fm

total
fluid

kinetic
potential

spatial flucs

Figure 4.14.: The different contributions to the total energy of the entire system plotted
versus the time for the critical point scenario. The total energy is well conserved until the
quark fluid reaches the edges of the grid.
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Figure 4.15.: The different contributions to the total energy of the entire system plotted
versus the time for the first order scenario. The total energy is well conserved until the
quark fluid reaches the edges of the grid. Even at late times there is a substantial amount
of energy in the kinetic and spatial fluctuations of the sigma field.
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Figure 4.16.: The time evolution of the energy density in units of the ground state energy
density e0 for a scenario with a critical point in the off-equilibrium expansion.
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Figure 4.17.: The time evolution of the energy density in units of the ground state en-
ergy density e0 for a scenario with a first order phase transition in the off-equilibrium
expansion.
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Figure 4.18.: The off-equilibrium evolution of the sigma field |σ| for a scenario with a crit-
ical point.
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Figure 4.19.: The off-equilibrium evolution of the sigma field |σ| for a scenario with a first
order phase transition.
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Figure 4.20.: The average values and the variances of the fluctuations
√

〈δσ2〉 of the sigma
field in an off-equilibrium expansion for a scenario with a critical point and with a first
order phase transition.
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Figure 4.21.: The average temperature and temperature fluctuations in an off-equilibrium
expansion for a scenario with a critical point and with a first order phase transition.
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expectation value faster for a critical point the first order phase transition sets in later and
drives the sigma field to the vacuum expectation value for around the same times t > 10
fm. Then one clearly sees the large oscillations around fπ . The variances for both scenar-
ios are small compared to the equilibrium expansion seen in figure 4.12. In figure 4.21 we
can observe the reheating effect at a first order phase transition at t = 8 fm and see that
the oscillations of the average sigma field are imposed on the average temperature, which
also oscillates.

In this chapter we investigated two expansionmethods. First, we treated the sigma field in
equilibrium with the quarks and included thermal fluctuations around the sigma expec-
tation value. Second, we included the dynamics of the sigma field according to a classical
equation of motion. We called this latter approach the off-equilibrium expansion in order
to distinguish it from a nonequilibrium expansion. When the full nonequilibrium dynam-
ics of the sigma field is taken into account it relaxes to its thermal equilibrium value. In the
approach presented here we cannot see this relaxational dynamics. Instead the sigma field
continues to oscillate around its equilibrium value. Obviously, we captured only part of
the full nonequilibrium dynamics. It is the main goal of this thesis to improve the dynam-
ics of the chiral fields by including relaxational dynamics. In the next chapter we develop
the consistent analytic model for the coupled nonequilibrium dynamics of the sigma field
and the quark fluid.
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5. Selfconsistent system-heat bath
coupling

The main focus of this work is on the extension of chiral fluid dynamic models to include
nonequilibrium effects. We have seen in chapter 4 that the naïve formulation of the off-
equilibrium dynamics of the chiral fields neglects relaxational and stochastic processes.
In this chapter we derive a Langevin equation for the sigma field including dissipative
and stochastic terms. In section 5.1 we apply the influence functional method to the linear
sigma model with constituent quarks. The separation of the systems seems obvious in
our approach to chiral fluid dynamics. We consider the quarks as the heat bath and treat
the sigma field as the relevant sector. But we should not forget that it was the original
decision to treat the chiral fields in the mean-field approximation and the quarks in local
thermal equilibrium that led us to this separation. From the influence functional we can
obtain the proper Langevin equation for the sigma field. However, it is not possible to
control the local equilibrium properties of the quarks without further assumptions. We
need to go beyond existing studies of Langevin equations by putting special emphasis on
the properties and the evolution of the heat bath itself. We expect that the back reaction to
the heat bath induced by the dynamics of the chiral fields can be important for the overall
evolution of the system.
In order to derive the nonequilibrium propagation of the chiral fields and the equilibrium
thermodynamic properties of the quarks selfconsistently within one approach we apply
the formalism of the 2PI effective action in section 5.2. In section 5.3 we explicitly evaluate
the expressions for the damping and the noise term. We discuss the additional heat bath
of the hard chiral modes in section 5.4. In the exact formalism of the 2PI effective action
a conserved energy-momentum tensor of the entire system can be constructed. We will
derive this form and comment on the energy-momentum conservation of approximations
to the full equations in section 5.5.
Large parts of this chapter are published in [Nah11b].

5.1. The influence functional for the linear sigma model with
constituent quarks

The general idea of the influence functional method has been described in section 3.4.
Here, we evaluate the influence functional (3.94) for the linear sigma model with con-
stituent quarks starting from the perturbative expansion (3.96). A perturbative treatment
for the coupling g might seem doubtful because g is of order O(1). The individual pro-
cesses connected with the orders of the expansion must, however, be looked at more care-
fully. Higher orders in g involve more sigma modes and quark-antiquark pairs. The lower
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5. Selfconsistent system-heat bath coupling

the density of the system the less likely these processes become and, thus, they contribute
less to the damping of the sigma field. Still, this is a crucial point in the application of the
influence functional method.

5.1.1. Explicit calculation of the influence functional

For the linear sigmamodel with constituent quarks we assume the following splitting: the
irrelevant degrees of freedom are the quarks and antiquarks and the relevant sector is that
of the chiral fields. In (3.94) and (3.96) it is Φ+,− = q̄+,−, q+,− and φ+,− = σ+,− on the Keldysh
contour. Again, we keep the pion fields fixed at their vacuum expectation value 〈π〉 = 0.
The free action of the quarks and antiquarks reads

S0[q, q̄] = i
∫

d4xq̄(x)γµ∂µq(x) , (5.1)

and the interaction between the quarks and the sigma field is of Yukawa type

Sint[q, q̄, σ] = −g
∫

d4xq̄(x)q(x)σ(x) . (5.2)

Then, the expansion of SIF[σ+, σ−] becomes

exp(iSIF[σ+, σ−]) =
∫

dq̄+
i

∫

dq+
i

∫

dq̄−i

∫

dq−i ρEi (q̄
+
i , q

+
i ; q̄

−
i , q

−
i )×

×
∫

Dq̄+

∫

Dq+

∫

Dq̄−
∫

Dq− exp(iS0[q̄+, q+]− iS0[q̄
−, q−])×

×
(

1− ig
∫

d4x(q̄+(x)q+(x)σ+(x)− q̄−(x)q−(x)σ−(x))

− 1
2
g2
∫

d4x
∫

d4y(q̄+(x)q+(x)q̄+(y)q+(y)σ+(x)σ+(y)

− q̄+(x)q+(x)q̄−(y)q−(y)σ+(x)σ−(y)

− q̄−(x)q−(x)q̄+(y)q+(y)σ−(x)σ+(y)

+ q̄−(x)q−(x)q̄−(y)q−(y)σ−(x)σ−(y)

)

.

(5.3)

Due to the normalization of ρEi (q̄
+

i , q
+

i ; q̄
−
i , q

−
i ) the zeroth order in (5.3) gives 1. The first

order vanishes with the definition of the free quark propagator for a, b = +, −,

iSab
0 (x, y) = 〈TCqa(x)q̄b(y)〉0

=
∫

dq̄+
i

∫

dq+
i

∫

dq̄−i

∫

dq−i ρEi (q̄
+
i , q

+
i ; q̄

−
i , q

−
i )
∫

Dq̄+

∫

Dq+

∫

Dq̄−
∫

Dq−×

× exp(iS0[q̄+, q+]− iS0[q̄
−, q−])qa(x)q̄b(y) ,

(5.4)
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and S++(0) = S−−(0). Only the second order gives a contribution, S(2)IF and is equal to
i-times the influence functional itself, as can be seen by taking the logarithm of the expan-
sion in (5.3)

iSIF[σ
+, σ−] = ln(1+ S

(2)
IF [σ+, σ−]) ≃ S

(2)
IF [σ+, σ−] . (5.5)

For the explicit evaluation, we need the four-point functions that appear in the influence
functional (5.3). They are defined in the sameway as the quark propagator (5.4) and can be
obtained from the generating functional Z[η̄, η] (3.62) by subsequent differentiation with
respect to the external sources. In explicit terms

〈TC q̄+(x)q+(x)q̄+(y)q+(y)〉 = 1
Z0

(

iδ

δη+(x)

)( −iδ
δη̄+(x)

)(

iδ

δη+(y)

)( −iδ
δη̄+(y)

)

Z[η̄, η]

∣

∣

∣

∣

η̄=η=0

= S++(0)2 − S++(x− y)S++(y− x) ,
(5.6a)

〈TC q̄+(x)q+(x)q̄−(y)q−(y)〉 = 1
Z0

(

iδ

δη+(x)

)( −iδ
δη̄+(x)

)(

iδ

δη−(y)

)( −iδ
δη̄−(y)

)

Z[η̄, η]

∣

∣

∣

∣

η̄=η=0

= S−−(0)S++(0)− S+−(x− y)S−+(y− x) ,
(5.6b)

〈TC q̄−(x)q−(x)q̄+(y)q+(y)〉 = 1
Z0

(

iδ

δη−(x)

)( −iδ
δη̄−(x)

)(

iδ

δη+(y)

)( −iδ
δη̄+(y)

)

Z[η̄, η]

∣

∣

∣

∣

η̄=η=0

= S++(0)S−−(0)− S−+(x− y)S+−(y− x) ,
(5.6c)

〈TC q̄+(x)q−(x)q̄−(y)q+(y)〉 = 1
Z0

(

iδ

δη−(x)

)( −iδ
δη̄−(x)

)(

iδ

δη−(y)

)( −iδ
δη̄−(y)

)

Z[η̄, η]

∣

∣

∣

∣

η̄=η=0

= S−−(0)2 − S−−(x− y)S−−(y− x) .
(5.6d)

Then, neglecting all two-loop contributions, which cancel for S++(0) = S−−(0),

iSIF[σ
+, σ−] = −1

2
g2
∫

d4x
∫

d4y

(

−S++(x− y)S++(y− x)σ+(x)σ+(y)

+ S+−(x− y)S−+(y− x)σ+(x)σ−(y)

+ S−+(x− y)S+−(y− x)σ−(x)σ+(y)

− S−−(x− y)S−−(y− x)σ−(x)σ−(y)

)

.

(5.7)

The structure of the influence functional becomesmost obvious when rewriting it in terms
of the center and relative field variable

σ̄ =
1
2
(σ+ + σ−) , (5.8a)

∆σ = σ+ − σ− . (5.8b)
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We obtain

iSIF[σ̄,∆σ] = −1
2
g2
∫

d4x
∫

d4y ×

×
[

σ̄(x)σ̄(y)

(

−S++(x− y)S++(y− x) + S+−(x− y)S−+(y− x)

+ S−+(x− y)S+−(y− x)− S−−(x− y)S−−(y− x)

)

+
1
2

∆σ(x)σ̄(y)

(

−S++(x− y)S++(y− x) + S+−(x− y)S−+(y− x)

− S−+(x− y)S+−(y− x) + S−−(x− y)S−−(y− x)

)

+
1
2

∆σ(y)σ̄(x)

(

−S++(x− y)S++(y− x)− S+−(x− y)S−+(y− x)

+ S−+(x− y)S+−(y− x) + S−−(x− y)S−−(y− x)

)

+
1
4

∆σ(x)σ̄(y)

(

S++(x− y)S++(y− x) + S+−(x− y)S−+(y− x)

+ S−+(x− y)S+−(y− x) + S−−(x− y)S−−(y− x)

)]

.

(5.9)

With the relations (3.50a) and (3.50b) the sums of products of propagators in the brackets
in (5.9) can be evaluated. We write S+− = S< and S+− = S>. Finally, we are left with one
term that is linear and one term that is quadratic in ∆σ,

iSIF[σ̄,∆σ] = −g2
∫

d4x
∫ x0

y0
d4y∆σ(x)σ̄(y)

(

S<(x− y)S>(y− x)− S>(x− y)S<(y− x)

)

+
1
4
g2
∫

d4x
∫

d4y∆σ(x)∆σ(y)

(

S<(x− y)S>(y− x) + S>(x− y)S<(y− x)

)

= i
∫

d4xD(x)∆σ(x)− 1
2

∫

d4x
∫

d4y∆σ(x)N (x, y)∆σ(y) ,

(5.10)

with the damping kernel

D(x) = ig2
∫ x0

y0
d4yσ̄(y)

(

S<(x− y)S>(y− x)− S>(x− y)S<(y− x)

)

, (5.11)

and the noise kernel

N (x, y) = −1
2
g2
(

S<(x− y)S>(y− x) + S>(x− y)S<(y− x)

)

. (5.12)

The influence functional

SIF[σ̄,∆σ] =
∫

d4xD(x)∆σ(x) +
i

2

∫

d4x
∫

d4y∆σ(x)N (x, y)∆σ(y) , (5.13)
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has an imaginary part. It is exactly this term that causes the underlying quantum system to
decohere and allows for a classical description of the dynamics of the system. This means
that every trajectory can be assigned a unique probability. For these trajectories the relative
field variable vanishes ∆σ(x) = 0, because trajectories that have a significantly large ∆σ
are exponentially suppressed. Together with the coarse graining of the environment, the
decoherence leads to the quantum-to-classical transition of the system. Fluctuations in
the classical equation of motion appear as a remnant of coarse graining and decoherence
[Hu92, Hu93, Gel93, Cal95a, Cal95b].

5.1.2. The noise kernel and fluctuations

At first glance, the noise kernel seems to be redundant, because it is quadratic in ∆σ(x)
and, therefore, vanishes after variation with respect to ∆σ(x). However, the semiclassical
concept of obtaining the equation of motion from varying the action is well-defined only
for real actions. Here, the noise kernel introduces an imaginary part, which we need to
rewrite in order to obtain a real action. This is done by introducing a new stochastic field
ξ, which discloses the physical significance of the noise kernel. The imaginary part of SIF
can be rewritten by making use of the Gauss integral evaluation

exp
(

−1
2

∫

d4x
∫

d4y∆σ(x)N (x, y)∆σ(y)

)

=
∫

DξP[ξ] exp
(

i
∫

d4xξ(x)∆σ(x)

)

. (5.14)

Here, the stochastic weight P[ξ] is a Gauss distribution

P[ξ] = N′ exp
(

−1
2

∫

d4x
∫

d4yξ(x)N −1(x, y)ξ(y)
)

, (5.15)

with a normalization constant N′. Then, the stochastic field ξ is fully determined by its
first two moments, a vanishing expectation value and the variance:

〈ξ(x)〉 = 0 , (5.16a)

〈ξ(x)ξ(y)〉 = N (x, y) . (5.16b)

This stochastic force ξ plays an essential role in the equilibration of the classical fields, as
was discussed in general terms in section 3.3. By the dissipation-fluctuation theorem it
enforces the relaxation to the correct equilibrium state.

5.1.3. The semiclassical equations of motion

The semiclassical equations of motion for the sigma field are obtained from the stochastic
influence functional S̃IF, defined in

exp(iSIF) =
∫

DξP[ξ] exp
(

i
∫

d4x(D(x) + ξ(x))∆σ(x)

)

=
∫

DξP[ξ] exp
(

iS̃IF
)

, (5.17)

by varying
Scl[σ

+]− Scl[σ
−] + S̃IF[σ̄,∆σ] (5.18)
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with respect to ∆σ and then setting ∆σ = 0. From the classical action one obtains

δ(Scl[σ
+]− Scl[σ

−])

δ∆σ

∣

∣

∣

∣

∆σ=0
=

δScl[σ̄]

δσ̄
. (5.19)

The semiclassical Langevin equation for the sigma field is

−δScl[σ̄]

δσ̄
− D = ξ . (5.20)

Note that the damping kernel D generally depends on σ̄, too. We also note that in the
perturbative approach to the influence functional we do not obtain the thermal mass cor-
rection of the sigma field. For the calculation of the mass correction one needs to include
further information. For example, it is possible to find this term by directly calculating the
equation of motion as it was done in [Ris98] for φ4 theory.

5.2. The 2PI effective action for the linear sigma model with
constituent quarks

The formalism of the 2PI effective action was introduced in section (3.6). It is well-suited
for our purpose because it yields a selfconsistent and thermodynamically consistent de-
scription of the entire system. In the scheme that is developed in the following we want
to make the semiclassical approximation for the sigma field. We restrict ourselves to the
sigma mean-field and do not include the propagator of the sigma field. We, thus, work
with a theory of fermions coupled to an external mean field. One often defines the mean
field as an average over quantum and thermal fluctuations in which case there is neither
damping nor noise. Within the 2PI effective action formalism the mean field is obtained
from an integration over quantum fluctuations only and thus still contains the necessary
information about dissipation and noise. Since the quarks have a vanishing mean field,
they are represented by their propagators. Then the 2PI effective action is a functional of
the sigma mean-field σa(x) and the full quark propagator Sab(x, y)

Γ[σ, S] = Scl[σ]− iTr ln S−1− iTrS−10 S+ Γ2[σ, S] , (5.21)

where the trace operation includes
∫

C d
4x ∑flavor ∑Dirac and Scl[σ] is the classical action of

the sigma mean-field. The free propagator for a fermion mass m f reads

(i/∂ −m f )S
ab
0 (x, y) = −iδabC (x− y) , (5.22)

by which it is defined up to the boundary conditions. The free fermionic propagators on
the contour are given in equations (3.61). The first three terms in (5.21) are the one-loop
results. The additional term Γ2[σ, S] is the sum of all 2PI diagrams.
In the absence of external sources the equation of motion for the sigma mean-field σa,
obtained by variation of the effective action (5.21) with respect to σa, is

δΓ[σ, S]
δσa

= 0 , (5.23)
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5.2. The 2PI effective action for the linear sigma model with constituent quarks

and for the full quark propagator Sab, obtained by variation with respect to Sab,

δΓ[σ, S]
δSab

= 0 . (5.24)

The proper self energy of the quarks is

Σab(x, y; S) = Sab
0 (x, y)−1 − Sab(x, y)−1 . (5.25)

Inserting the self energy (5.25) into the effective potential (5.21) and neglecting constant
terms gives

Γ[σ, S] = Scl[σ]− iTr ln S−1 − iTrΣS+ Γ2[σ, S] . (5.26)

With δΣ/δS = 1/S2, the variation (5.24) reads

−iΣab(x, y) = − δΓ2[σ, S]
δSab(x, y)

. (5.27)

This means that the equation of motion for the full quark propagator Sab (5.24) is equiv-
alent to equation (5.25), where the self energy is given by the expression (5.27). From
equation (5.25) we obtain the Schwinger-Dyson equation

S−10 S− ΣS = 1 , (5.28)

which is in explicit terms

(i/∂ −m f )S
ab(x, y)− i

∫

C
d4zΣac(x, z)Scb(z, y) = iδabC (x− y) . (5.29)

Since implicit dependencies are not varied, the equation of motion for the sigma mean-
field is

−δScl[σ]

δσa
=

δΓ2[σ, S]
δσa

. (5.30)

To solve the equation of motion for the quark propagator (5.29) and for the sigma mean-
field (5.30) we need the explicit form of the self energy and with expression (5.27) the
explicit form of Γ2[σ, S].

5.2.1. The explicit form of Γ2[σ, S] and the self energy

Since all graphs with more than one mean-field insertion are necessarily two-particle re-
ducible, they are not included in Γ2[σ, S]. A single mean-field insertion represents them
all, and we have to calculate only one diagram within the closed time path formalism,
see figure 5.1. For the inclusion of such types of diagrams in the Φ-functional approach
see [Leu07]. Note, that this is exact within the mean-field approximation for the sigma
field, because there are no quark self-interactions in the theory that could contribute to
the 2PI effective action. It consists of one graph with a +- and one with a −-vertex. The
corresponding Feynman rules are given in appendix E.
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5. Selfconsistent system-heat bath coupling

Figure 5.1.: The only dia-
gram for Γ2[σ, S].

The diagram is

Γ2[σ, S] = g
∫

C
d4x tr (S++(x, x)σ+(x) + S−−(x, x)σ−(x)) ,

(5.31)
with the trace operation tr = ∑flavor ∑Dirac. Then, the self en-
ergy from (5.27) reads

Σab(x, y) = −igδabC (x− y)σb(x) . (5.32)

5.2.2. The coupled equations of motion

With the explicit form of the self energy (5.32) the Schwinger-
Dyson equation (5.29)

(i/∂ −m f )S
ab(x, y)− gσa(x)Sab(x, y) = iδabC (x− y) , (5.33)

and the field equation for the sigma mean-field

−δScl[σ]

δσa
= g trSaa(x, x) (5.34)

are a coupled set of equations. In principle, we have to solve (5.33) and put the solution
for the full propagator Sab into (5.34). Due to the space-time dependence of σa in (5.33)
it is generally nontrivial to find the solution for Sab, which is exact for the given form
of Γ2 (5.31). We, therefore, have to approximate the full propagator. This is a crucial as-
pect because only the full approach of the 2PI effective action is a conserving, selfconsis-
tent and thermodynamically consistent approximation to the exact quantum field theory
[BayKad61, Bay62, Iva99]. For exact solutions of coupled propagator and mean-field dy-
namics for some model systems, see e.g. [Ber02, Juc04a, Juc04b].
We split the mean field into one component σa

0 that has a slow variation compared to Sab

and a fluctuation part δσa, which we assume to be small. We will later disclose the actual
meaning of this splitting

σa(x) = σa
0 (x) + δσa(x) . (5.35)

We also expand the full propagator around the thermal propagator

Sab(x, y) = Sab
th(x, y) + δSab(x, y) + δ2Sab(x, y) . (5.36)

Then for the various orders of the expansion the Schwinger-Dyson equation reads

O(0) : (i/∂ −m f )S
ab
th(x, y)− gσa

0 (x)S
ab
th(x, y) = iδabC (x− y) (5.37a)

O(1) : (i/∂ −m f )δS
ab(x, y)− gσa

0 (x)δS
ab(x, y)− gδσa(x)Sab

th(x, y) = 0 (5.37b)

O(2) : (i/∂ −m f )δ
2Sab(x, y)− gσa

0 (x)δ
2Sab(x, y)− gδσa(x)δSab(x, y) = 0 . (5.37c)

From the solution of (5.37a), we see that the σa
0 part of the sigma field generates themass of

the quarks dynamically m = m f + gσ0. As already noted the idea is that the x-dependence
of σ0 is weak compared to the x-dependence of the propagator S. We identify the spatial
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5.2. The 2PI effective action for the linear sigma model with constituent quarks

and temporal variation of sigmawith the corresponding variation of the local temperature
in the fluid dynamic description of the quarks and antiquarks. In that spirit the solution
of equation (5.37a) is given by (3.61). From (5.37b)

δSab(x, y) = −ig
∫

C
d4zSac

th(x, z)δσc(z)Scb
th(z, y) , (5.38)

and from (5.37c)

δ2Sab(x, y) = −g2
∫

C
d4zd4z′Sac

th(x, z
′)δσc(z′)Scd

th(z
′, z)δσd(z)Sdb

th (z, y) . (5.39)

The approximated propagator (5.36) rewritten in center and relative variables

δσ̄ =
1
2
(δσ+ + δσ−) (5.40a)

∆δσ = δσ+ − δσ− (5.40b)

yields

trSab(x, y) = trSab
th(x, y) + ig

∫ x0

y0
d4yδσ̄(y)

(

S<(x− y)S>(y− x)− S>(x− y)S<(y− x)

)

− i

2
g
∫

d4y∆δσ̄(y)

(

S<(x− y)S>(y− x) + S>(x− y)S<(y− x)

)

∆δσ=0
= trSab

th(x, y) +
D(x)

g
.

(5.41)

In the last step we identified the same damping kernel as in (5.11). The term similar to the
noise kernel in (5.12) vanishes by taking ∆δσ = 0. In order to recover the noise kernel we
need to calculate the effective action Γ[σ, S] explicitly from (5.21) with the approximations
of the propagator (5.36) and (5.38-5.39). It is

Γ[σ, S] = Scl[σ] + gtr S++

th (x, x)∆σ(x)

+
i

2
g2
∫

d4x
∫ x0

y0
d4y∆δσ(x)δσ̄(y)

(

S<(x− y)S>(y− x)− S>(x− y)S<(y− x)

)

− i

4
g2
∫

d4x
∫

d4y∆δσ(x)∆δσ(y)

(

S<(x− y)S>(y− x) + S>(x− y)S<(y− x)

)

(5.42)

We can readily identify the same damping (5.11) and noise kernel (5.12) as we found in
the influence functional approach.
The equation of motion for the sigma mean-field obtained by varying Γ[σ, S] with respect
to ∆σ is

−δScl[σ, S]
δσa

= gtr S++
th (x, x) + D(x) + ξ(x) , (5.43)

where we introduced the same stochastic field as was discussed in section 5.1.2. Note, that
within the 2PI effective action we obtain the standard mean-field result as the first term
on the right hand side of equation (5.43), which is formally of order g, while the damping
and the noise kernel are of order g2. Therefore, the standard mean-field result is the lowest
order contribution.
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5.2.3. The thermodynamic quantities of the quark fluid

Using the 2PI effective action we can include the local equilibrium properties of the quark
fluid. In (5.42) the calculations were performed along the real-time contour from figure
3.2. For the calculation of equilibrium properties of a thermodynamic system we cannot,
however, neglect the imaginary-time path C3. In the imaginary-time formalism the ther-
modynamic potential can be evaluated in a diagrammatic expansion [Kap94]. The pertur-
bative expansion of the thermodynamic potential in real-time formalism is more difficult.
The Bogoliubov assumption of an uncorrelated initial state [Bog62] leads to the factoriza-
tion of the generating functional [Das97]. For the derivation of the Green’s functions and
the dynamics of the system the imaginary-time path C3 of the contour can be neglected. To
obtain the correct equilibrium properties of the coupled system it must be included since
it contributes to the pressure

p =
T

V

(

lnZC [JC = 0] + lnZ3[J3 = 0]
)

= −Γ[σ, S] +
T

V
lnZ3[J3 = 0] . (5.44)

In equilibrium with Γ[σ, S]|∆σ=0 = 0 the full pressure is given by the imaginary time path
C3 of the full contour. Due to the Bogoliubov initial conditions [Bog62] we are left only
with the one-loop effective potential. More advanced techniques are required to set up a
consistent real-time perturbation expansion for equilibrium properties [Lan86]. Since we
restricted the model to the mean-field dynamics higher loop corrections to the pressure
associated with propagators of the sigma field are discarded in the entire setting. This is-
sue was briefly mentioned in the beginning of this section. Here, it assures that we capture
the full equilibrium properties by the mean-field pressure calculated in section 4.1.1.

5.3. The equation of motion for the sigma field

We now turn to the explicit calculation of the terms in the equation ofmotion for the sigma
field (5.43). On the right hand side, it includes the lowest order contribution, a damping
term and the correlation of the noise.

5.3.1. Lowest order

For the lowest order contribution we calculate the first term on the right hand side of
equation (5.43) with the thermal part of the free quark propagator (3.61a)

g trS++(x, x) = ig
∫ d4p

(2π)4
tr 2iπnF(|p0|)(γµpµ +mq(x))δ(p

2 −m2
q)

= −2dqg2σ(x)
∫ d3p

(2π)3
nF(Ep)

Ep

= −gρs(x)

(5.45)

with the dynamically generated quark mass mq(x) = gσ(x) and the degeneracy factor
dq = 12 from the trace over flavor, color and spin. The energy of the quarks is Ep =
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√

~p2 +m2
q. We see that to this order the equation of motion does not include any terms

leading to damping and noise. It is the same classical equation of motion with the scalar
density (4.9a) that was used in chapter 4.

5.3.2. The damping kernel

The explicit form of the damping kernelD(x) is given in equation (5.11). For its evaluation
we define the following quantity

M(x− y) = tr (S<(x− y)S>(y− x)− S>(x− y)S<(y− x)) . (5.46)

Its Fourier transform is

M(ω,k) =
∫ d4p

(2π)4
tr (S<(p+ k)S>(p)− S>(p+ k)S<(p)) . (5.47)

To explicitly evaluateM(ω,k) in (5.47) we need the trace over flavor, color and spin for
products of propagators. This is obtained from the relations for the Dirac γ-matrices

tr
(

(γµ(pµ + kµ)−mq)(γ
νpν −mq)

)

= 4dq

(

(pµ + kµ)pµ +m2
q

)

. (5.48)

The integration over p0 is readily performed by the use of the delta functions from (3.61b)
and (3.61c). With Θ(−Ep) = 0 and Θ(Ep) = 1, it gives

M(ω,k) =− 4π2dq

∫ d3p

(2π)4
1

EpEk+p
×

×
(

(−Epω− k · p+ 2mq)(δ(ω − Ep + Ek+p) + δ(ω− Ep − Ek+p))×

×(nF(Ep)Θ(−ω + Ep) + Θ(ω − Ep)−Θ(ω − Ep)− nF(|ω − Ep|))

+ (Epω− k · p+ 2mq)(δ(ω + Ep + Ek+p) + δ(ω + Ep − Ek+p))×

×(nF(Ep)Θ(−ω − Ep)−Θ(−ω − Ep)−Θ(ω + Ep) + nF(|ω + Ep|))
)

.

(5.49)

We can now sort the various scattering processes according to their energy balance, given
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by the delta functions, in order to make the physical processes more obvious. We obtain

M(ω,k) =− dq

4π2

∫

d3p
1

EpEk+p
×

×
(

(−(Ep + Ek+p)Ep + 2m2
q − k · p)×

×
{

δ(ω + Ep + Ek+p)(nF(Ek+p)nF(Ep)− (1− nF(Ep))(1− nF(Ek+p)))

+δ(ω − Ep − Ek+p)((1− nF(Ep))(1− nF(Ek+p))− nF(Ek+p)nF(Ep))
}

+ ((−Ep + Ek+p)Ep + 2m2
q − k · p)×

×
{

δ(ω + Ep − Ek+p)((1− nF(Ep))nF(Ek+p)− nF(Ep)(1− nF(Ek+p)))

+δ(ω− Ep + Ek+p)(nF(Ep)(1− nF(Ek+p))− (1− nF(Ep))nF(Ek+p))
}

)

(5.50)

Here, one sees the antisymmetric property M(−ω,k) = −M(ω,k). The structure of
M(ω,k) is clear. It describes the difference between a gain and a loss term. The term
nF(Ek+p)nF(Ep) is the probability for a quark-antiquark pair to form a sigma mode q̄q →
σ, and the term (1− nF(Ep))(1− nF(Ek+p)) is the statistical weight of the decay of a sigma
mode to a quark-antiquark pair σ → q̄q. The mixed terms (1− nF(Ep))nF(Ek+p) describe
the scattering of a quark (antiquark) off a sigma mode to form an antiquark (quark). For
each delta function, the ratio of the loss to the gain term is

Γloss

Γgain
= exp

(ω

T

)

. (5.51)

This is the detailed balance relation for the thermal quarks and antiquarks. For fixed quark
masses the delta functions constrain the allowed scattering processes [Wel83].
The damping kernel is then

D(x) = ig2
∫ x0

y0
d4yM(x− y)δσ̄(y)

= ig2
∫ x0

y0
d4y

∫ d4k

(2π)4
exp(−ik(x− y))M(ω,k)δσ̄(y) ,

(5.52)

where we take the spatial Fourier transform

δσ̄(y0,k) =
∫

d3y exp(−ik · y)δσ̄(y0, y) . (5.53)

To simplify further calculations we make the substitution y0 = x0− τ and assume that the
initial time x0 − y0 → −∞, such that τ → ∞. Then

D(x) = ig2
∫

d3k

(2π)3
exp(ik · x)

∫ ∞

0
dτ
∫

dω

(2π)
exp(−iωτ)M(ω,k)δσ̄(x0 − τ,k) . (5.54)
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We see that the sigma mean-field now depends on the history t < x0. It is known that
an instantaneous approximation to this time dependence is too constraining because the
dissipative terms vanish [Mor86, Gle93]. We assume that the effect of the past can be
described by harmonic oscillations around a constant value

σ̄(t− τ,k) ≃ a(t) cos(Ekτ) + b(t) sin(Ekτ) . (5.55)

This is the linear harmonic approximation which is also used in [Gre97, Ris98]. Here, we
obtain the coefficients from the requirements at τ = 0

σ̄(t− τ,k)|τ=0 = σ̄0(t,k) ⇒ a(t) = σ̄0(t,k) (5.56)

∂σ̄(t− τ,k)
∂τ

|τ=0 = −
∂σ̄(t,k)

∂t
⇒ b(t) = − 1

Ek
∂tσ̄(t,k) . (5.57)

Then, we find that

σ̄(t− τ,k) ≃ σ0(t,k) cos(Ekτ)−
1
Ek

∂tσ̄(t,k) sin(Ekτ)

= σ0(t,k) + δσ̄(t,k) .
(5.58)

We now see the meaning of the splitting of σ(x) that was done in (5.35) and

δσ̄(t,k) = σ0(t,k)(cos(Ekτ)− 1)− 1
Ek

∂tσ̄(t,k) sin(Ekτ) . (5.59)

The first term gives a mass shift for the sigma field, which is only a correction to the
leading order result (5.45). We assume that this correction is small as cos(Ekτ) − 1 ≃ 0.
Then, we can replace the fluctuation δσ̄(t,k) by the sine-modulated time derivative of the
full field. With this we can evaluate the integral over the history and obtain quantities that
are local in time. Such an approximation will later be used for the derivation of the noise
correlator, too. Writing

δσ̄(t− τ,k) = − 1
2iEk

(exp(iEkτ)− exp(−iEkτ))∂tσ̄(t,k) (5.60)

and using the relation
∫ ∞

0
dτ exp(i(ω − E)τ) = iP 1

ω− E
+ πδ(ω − E) (5.61)

we arrive at

D(x) = −g2
∫ d3k

(2π)3
exp(ik · x)

∫ dω

(2π)
M(ω,k)×

×
1

2Ek

(

iP 1
Ek −ω

+ πδ(Ek − ω)− iP 1
−ω − Ek

− πδ(−ω− Ek))∂tσ̄(t,k)
)

= −g2
∫ d3k

(2π)3
exp(ik · x)

∫ dω

(2π)
M(ω,k)

π

Ek
δ(ω− Ek)∂tσ̄(t,k) .

(5.62)
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In the final step, we used that the principle integral terms cancel by applying the antisym-
metry ofM(ω,k). We obtain for the damping kernel

D(x) = −g2
∫ d3k

(2π)3
exp(ik · x) 1

2Ek
M(Ek,k)∂tσ̄(t,k) . (5.63)

M(ω,k) contains the on-shell reaction rate of the processes given in equation (5.50). They
lead to the dissipative part of the equation of motion.
In a perturbative expansion the damping term appears first at next-to-leading order g2

as one can immediately read off from (5.63). Also the thermal mass correction, which we
have neglected is of this order g2. However, it is in fact only a correction to the mass of the
sigma meson, which gets contributions from leading order (5.45), i.e. from the standard
mean-field contribution, and even more from the sigma field potential (4.2).
Being interested in the long-range oscillations of the sigma field we calculate the damp-
ing coefficient η for the zero mode, k = 0, of the sigma mean-field and approximate
M(Ek,k) ≃ M(mσ, 0). Then for mσ > 2mq only the process σ → q̄q and the reverse
reaction q̄q→ σ are kinematically possible. We find

M(mσ, 0) = −
dq

2π2

∫

d3p
(m2 − E2

p)

E2
p

(1− 2nF(Ep))δ(mσ − 2Ep)

= 2
dq

π

(

1− 2nF
(mσ

2

)) 1
mσ

(

m2
σ

4
−m2

q

)3/2
(5.64)

With the same approximation Ek ≃ mσ the damping kernel becomes

D(x) ≃ −g2
∫ d3k

(2π)3
exp(ik · x) 1

2mσ
M(mσ, 0)∂tσ̄(t,k)

= −g2 dq
π

(

1− 2nF
(mσ

2

)) 1
m2

σ

(

m2
σ

4
−m2

q

)3/2

∂tσ̄(t, x) .

(5.65)

With the equation of motion (5.43) the damping coefficient can be identified as

η = g2
dq

π

(

1− 2nF
(mσ

2

)) 1
m2

σ

(

m2
σ

4
−m2

q

)3/2

. (5.66)

We use the equilibrium value of the sigma field in mq = gσ and the sigma mass mσ deter-
mined in equilibrium via (4.15a). Alternatively one could try to use the actual value of the
sigma field for the evaluation of the quark mass. For the determination of the sigma mass
one presumably would have to study the (local) response of the sigma field to small vari-
ations on the basis of the equation of motion. At the critical point the equilibrium sigma
mass becomes very small, but we expect to see fluctuations, which can locally change
this effective mass. Concerning a first-order phase transition it is known that in nonequi-
librium in the spinodal region the sigma mass becomes small, too, or even tachyonic. In
principle, the explicit dependence of η = η(σ, T) could take these nonequilibrium effects
into account. Still a lot of subtle questions need to be addressed, e.g., which “mass” should
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Figure 5.2.: Temperature dependence of the damping coefficient η for a the different cou-
plings g = 5.5, g = 3.63 and g = 3.3, which correspond to scenarios with a first order
phase transition, a critical point and a crossover.

enter formula (5.66), if the effective mass becomes tachyonic. In the present work, how-
ever, we disregard these issues and use the local equilibrium value for the determination
of the sigma and quark masses which in turn enter the damping rate (5.66). Its tempera-
ture dependence is shown in figure 5.2 for the three different phase transition scenarios.
Since η ∝ g2 it is larger in a scenario with a first order phase transition than in a critical
point scenario. This issue appears because we work at µB = 0 and tune the strength of the
phase transition by different values of the coupling g. In the linear sigma model with con-
stituent quarks a realistic constituent quark mass is obtained for g = 3.3. Moreover, the
damping is very large compared to the value calculated in the chirally symmetric phase
of the linear sigma model [Bir97], with η = 2.2/fm, and even larger than the damping
terms calculated in the broken phase [Ris98]. Though the linear sigma model with con-
stituent quarks does not include confinement the damping coefficient for the zero mode
of the sigma field obtained from the interaction with the quarks vanishes below the phase
transition. This gives a realistic description at low temperatures. The reason is that at
high temperatures the (mostly dynamically generated) quark mass is small and therefore
mσ > 2mq is satisfied. Hence the reactions σ↔ q̄q can take place.With lower temperatures
mq rises and at some point the reactions, which cause damping and noise in our model are
kinematically forbidden. Physically, we expect that at low temperatures the decay and for-
mation processes σ ↔ 2π become important since the pions as quasi-Goldstone bosons of
chiral symmetry breaking become very light. In the present approach we have neglected
the pions. This will be improved in the future. In that context it is interesting to note that
our values for the damping are very large compared to the ones deduced from the linear
sigma model without quarks [Bir97, Ris98].
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5.3.3. Correlation of the noise fields

For the derivation of the correlation of the noise fields we perform the same steps for the
noise kernel (5.12) as forM(x− y). For the Fourier transform of (5.12) we find analogously

N (ω,k) =
dq

4π2

∫

d3p
1

EpEk+p
×

×
(

(−(Ep + Ek+p)Ep + 2m2
q − k · p)×

×
{

δ(ω + Ep + Ek+p)(nF(Ek+p)nF(Ep) + (1− nF(Ep))(1− nF(Ek+p)))

+δ(ω− Ep − Ek+p)((1− nF(Ep))(1− nF(Ek+p)) + nF(Ek+p)nF(Ep))
}

+ ((−Ep + Ek+p)Ep + 2m2
q − k · p)×

×
{

δ(ω + Ep − Ek+p)((1− nF(Ep))nF(Ek+p) + nF(Ep)(1− nF(Ek+p)))

+δ(ω − Ep + Ek+p)(nF(Ep)(1− nF(Ek+p)) + (1− nF(Ep))nF(Ek+p))
}

)

.

(5.67)

Since the noise term has the same microscopic origin as the damping term it is not sur-
prising that the structure is very similar to (5.50). Especially, we find that N (ω,k) is pro-
portional to the sum of the loss and the gain term of the same scattering processes. The
variance of the noise fields is

〈ξ(t, x)ξ(t′ , x′)〉ξ = N (x, y)

=
∫ d4k

(2π)4
N (ω,k) exp(−iω(t− t′)) exp(ik · (x− x′)) ,

(5.68)

where the average 〈〉ξ is taken with respect to the Gauss distribution (5.15). With the ap-
proximation N (ω,k) ≃ N (mσ, 0) the integral over k can be evaluated to yield a spatial
delta-function, which is replaced by the inverse volume term. Then

〈ξ(t)ξ(t′)〉ξ =
1
V

∫ dω

2π
N (mσ, 0) exp(−iω(t− t′))

=
1
V
N (mσ, 0)δ(t− t′) .

(5.69)

With

2n2F(Ep)− 2nF(Ep) + 1 = (1− 2nF(Ep)) coth
(

Ep

T

)

(5.70)

in (5.67) the relation betweenN (mσ, 0) andM(mσ, 0) reads

N (mσ, 0) =M(mσ, 0)coth
(mσ

2T

)

. (5.71)
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5.4. Discussion of the hard-mesonic heat bath

With the explicit form ofM(mσ, 0) (5.64) and the damping coefficient (5.66), we finally
find

〈ξ(t)ξ(t′)〉ξ =
1
V

δ(t− t′)mση coth
(mσ

2T

)

. (5.72)

The approximation k = 0 and ω = mσ leads to the delta-function in the noise correlator.
The noise fields are only correlated for equal times. This is the white-noise or Markovian
approximation. It would be interesting to include the effect of higher modes and see how
this leads to additional damping processes. This would require a non-Markovian descrip-
tion, where N (ω,k) and M(ω,k) have a full dependence on k. The delta-function in
(5.69) is replaced by a noise kernel that includes the memory effects of the history of the
noise fields. In addition, the damping kernel in (5.65) is nonlocal. Non-Markovian noises
pose a difficult problem for numerical studies [Xu00].

Finally, the equation of motion for the sigma field is

∂µ∂µσ +
δU

δσ
+ gρs + η∂tσ̄(x) = ξ(x) (5.73)

with the scalar density ρs from (4.9a), the damping coefficient η given in (5.66) and the
correlation of the noise field ξ given in (5.72).

5.4. Discussion of the hard-mesonic heat bath

In the above derivation we have restricted the analysis to the sigma mean-field. Besides
having neglected the soft pion modes as explicit dynamic degrees of freedomwe ignored
the influence of the hard chiral modes, which constitute themselves a heat bath for the
soft modes of the chiral fields. Due to the interaction with the hard modes, the soft modes
undergo additional dissipative processes.Within the influence functional method this sep-
aration of the soft and hard modes at a scale kc can be easily realized. The chiral fields are
split according to

σ(x, t) = σ̃(x, t) + Σ(x, t) (5.74a)

~π(x, t) = ~̃π(x, t) + ~Π(x, t) , (5.74b)

with the soft modes

σ̃(x, t) =
∫ d3k

(2π)3
exp(ik · x)σ(x, t)Θ(kc − |k|) , (5.75a)

~̃π(x, t) =
∫ d3k

(2π)3
exp(ik · x)~π(x, t)Θ(kc − |k|) , (5.75b)

and the hard modes

Σ(x, t) =
∫ d3k

(2π)3
exp(ik · x)σ(x, t)Θ(|k| − kc) , (5.76a)

~Π(x, t) =
∫ d3k

(2π)3
exp(ik · x)~π(x, t)Θ(|k| − kc) . (5.76b)
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5. Selfconsistent system-heat bath coupling

The influence functional can again be calculated from the perturbative expansion (3.96)
with Φ = Σ, ~Π and φ = σ̃, ~̃π. The general structure is more complicated. There are mul-
tiplicative noises, which are field-dependent, accompanied by dissipative terms, which
depend on the square of the fields [Gle93]. Calculations of the influence functional for a
system of soft modes interacting with a heat bath of hard modes have extensively been
studied in φ4 theory [Mor86, Gle93, Boy96, Gre97], in gauge theories [Boe95, Son97] and in
O(N) chiral models [Ris98]. Below the phase transition we know that the sigma field can
decay in two pions. This interaction is well known to result in a damping for the sigma
field, too.

5.5. Energy-momentum conservation

From the Lagrangian (4.1) we calculate the divergence of the total averaged energy mo-
mentum tensor. On the operator level we have the Dirac equation for the quark operator
and the conjugate for the adjoint operator

(i/∂ − gσ)q = 0 and q̄(i
←
/∂ + gσ) = 0 . (5.77)

Then, the energy-momentum tensor for the quarks reads

T
µν
q (x) = iq̄(x)γµ∂νq(x) . (5.78)

Taking the divergence yields

∂µT
µν
q = iq̄

←
/∂ ∂νq+ iq̄∂ν

→
/∂ q

= gq̄q∂νσ ,
(5.79)

where we used the Dirac equation (5.77). The energy-momentum tensor for the sigma
field can easily be derived from the purely mesonic part of the Lagrangian (4.1)

Lσ =
1
2

∂µσ∂µσ−U(σ, ~π = 0) . (5.80)

The equation of motion for the sigma field is then found by the variational principle

∂µ∂µσ +
δU

δσ
+ gq̄q = 0 . (5.81)

The divergence of the energy-momentum tensor for the sigma field is

∂µT
µν
σ =

(

∂µ∂µσ +
δU

δσ

)

∂νσ = −gq̄q∂νσ . (5.82)

From (5.79) and (5.82) it is clear that the sum ∂µT
µν
q + ∂µT

µν
σ = 0 and, thus, the total energy

of the system is conserved.Within the full formalism of the 2PI effective actionwe can now
take the ensemble averages of the calculated quantities. Since the sigma field is treated in
mean-field approximation we find with (3.49a),

∂µT
µν
q (x) = −S++(x, x)∂ν

xσ(x) (5.83)
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5.5. Energy-momentum conservation

and
∂µT

µν
σ = S++(x, x)∂ν

xσ(x) . (5.84)

The total averaged energy-momentum tensor is, thus, conserved,

∂µT
µν
total = ∂µ(T

µν
q (x) + T

µν
σ (x)) = 0 . (5.85)

The situation is more difficult for any approximation to the full propagator due to the
space-time dependence of the effective mass generated by the dynamic symmetry break-
ing. We write the energy-momentum tensor of the quarks in the symmetric form

T
µν
q (x) =

i

4
q̄(x)(γµ∂νq(x) + γν∂µq(x))− i

4
(∂µq̄(x)γν + ∂νq̄(x)γµ)q(x)

=
i

4

(

∂ν
x q̄(y)q(x)|y=xγµ + ∂

µ
x q̄(y)q(x)|y=xγν

− ∂
µ
y q̄(y)q(x)|x=yγν − ∂ν

y q̄(y)q(x)|x=yγµ
)

.

(5.86)

After a transformation to center and relative variable X = 1/2(x + y) and u = x− y we
see that the differentiation with respect to the center variable cancels and the remaining
expression for the energy-momentum tensor of the quarks reads

T
µν
q (X) = − i

2
∂ν
uS

+−(X, u)|u=0γµ − i

2
∂

µ
uS

+−(X, u)|u=0γν . (5.87)

The energy-momentum tensor of the sigma field remains the same by using the equation
of motion (5.34) defined on the center variable

∂µT
µν
σ (X) =

(

∂µ∂µσ +
δU

δσ

)

∂νσ =
δΓ2

δσ
∂νσ = S++(X)∂ν

Xσ(X) . (5.88)

With the approximation to the full propagator in equation (5.36) to first order (5.38) the
energy-momentum balance of the entire system reads

∂µT
µν
q,appr.(X) + ∂µT

µν
σ,appr.(X) = ∂µ

(

− i

2
∂ν
uS

+−
th (X, u)|u=0γµ − i

2
∂

µ
uS

+−
th (X, u)|u=0γν

− i

2
∂ν
uδS+−(X, u)|u=0γµ − i

2
∂

µ
uδS+−(X, u)|u=0γν

)

+ S++

th (X)∂ν
Xσ(X) + δS++(X)∂ν

Xσ(X) ,
(5.89)

where we identify the four contributions

∂µT
µν
q,appr.(X) + ∂µT

µν
σ,appr.(X) = ∂µT

µν
q,th(X) + ∂µT

µν
σ,th(x) + ∂µδT

µν
q (X) + ∂µδT

µν
σ (x) (5.90)

The first term evaluates to

T
µν
q,th(X) = −

i

2
∂ν
uS

+−
th (X, u)|u=0γµ − i

2
∂

µ
uS

+−
th (X, u)|u=0γν

= 8πdq

∫ d4p

(2π)4
pµpνnF(|p0|)δ(p2 − g2σ(X)2)

= 2dq
∫ d3p

(2π)3
pµpν

p0
nF(X,~p) .

(5.91)
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5. Selfconsistent system-heat bath coupling

It gives the energy-momentum tensor for an ideal fluid with the energy density and the
pressure obtained from the equilibrium one-loop effective potential in mean-field approx-
imation. This is exactly what we intend to use for the fluid dynamic expansion of the
quark-antiquark fluid. What remains is the correction to the energy-momentum tensor of
the quark fluid δT

µν
q (X).

The thermal part of the divergence of the energy-momentum tensor of the sigma field
∂µT

µν
σ,th gives exactly the same result (4.26) as was obtained in section 4.2. In the present

nonequilibrium model we find a correction, which from (5.41) is given by

∂µδT
µν
σ (X) = D(X)∂ν

Xσ(X) . (5.92)

With the explicit result of the damping kernel D(X) for the zero mode (5.65), the total
energy-momentum dissipation from the sigma field is

∂µT
µν
σ,appr. = (−gρs − η∂tσ) ∂νσ . (5.93)

It includes the dissipative part of the dynamics of the sigma mean-field. It can, however,
not account for the average energy transfer from the heat bath to the field given by the
auxiliary noise field ξ. We will see its consequences in the next chapter, in which we in-
vestigate the dynamics of the sigma field coupled to a static heat bath.
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6. Equilibration and relaxation times

In the previous chapter we have derived the Langevin equation of motion for the sigma
field coupled to quarks and given explicit expressions for the damping coefficient and
the correlation of the noise term. In this chapter we want to investigate the relaxational
dynamics of the sigma field and time scales associated with it. Equilibration of the sigma
field with a heat bath can be understood on different levels. The first requirement is that
the average of the sigma field relaxes to the global minimum of the effective potential
for large times. The second requirement is the Gaussian thermal distribution around the
average value. The relaxational properties of the sigma field are important for studies
of the phase transition. In a nonequilibrium situation one expects the coexistence phase
for a first order phase transition, and due to critical slowing down one also expects long
relaxation times at the critical point.
In section 6.1 we explain the setup for the numerical investigation of the Langevin equa-
tion for the sigma mean field. We study the equilibration properties of the sigma field
within our model for a static and isothermal heat bath in section 6.2. During the relaxation
process the sigma field loses energy due to dissipation. This is studied in comparison with
the energy conservation of the entire system in section 6.3. Finally, we include this energy
exchange and take reheating of the heat bath into account in section 6.4.
This chapter is based on [Nah11c].

6.1. Numerical implementation of the Langevin equation

In chapter 4 we solved the classical equation of motion, which is a wave equation with
a field-dependent source term, by a staggered leap-frog algorithm. The numerical imple-
mentation of an algorithm to solve the Langevin equation

∂µ∂µσ(t, x) +
δU

δσ
+ gρs + η∂tσ(t, x) = ξ(t, x) (6.1)

including a noise term on a lattice is more complicated. Here we apply the well tested
algorithm used in [Cas07].
For the kinematic range mσ > 2mq, where the decay of the sigma in a quark-antiquark
pair is allowed the damping coefficient η for the zero mode of the sigma field is given in
(5.66). For the present calculations we use the respective equilibrium values of the sigma
mass mσeq(T) = (∂2Veff(T, σ)/∂σ2)|σ=σeq and σeq(T) to evaluate this criterion. Then, the
temperature dependence of η is shown in figure 5.2. We use (5.66) also for the nonzero
modes in the Langevin equation (6.1). In this framework there would be no damping in
the low-temperature phase because the quarks are not light enough to allow for the decay
σ→ q̄q. Physically this makes sense, because the quarks should be confined anyway. Ad-
ditional damping is provided by the decay σ → 2π. Strictly speaking this is not included
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6. Equilibration and relaxation times

in our present framework. Nonetheless, to obtain a more realistic setup we include the
zero-temperature damping coefficient from [Ris98] when the constituent quark mass is
too large for the σ→ q̄q decay. The damping coefficient for the present setup is

η =







g2
dq
π

(

1− 2nF
(

mσ
2

)) 1
m2

σ

(

m2
σ
4 −m2

q

)3/2
, for mσ(T) > 2mq(T) = 2gσeq(T)

3/fm, for mσ(T) < 2mq(T) = 2gσeq(T)
. (6.2)

The noise correlation is given by (5.72).
In this chapter we investigate the time evolution of the following quantities. The volume
average of the sigma field for one configuration of the noise field ξijk is

〈σ〉n =
1
N3 ∑

ijk

σijk,n , (6.3)

where N is the number of cells in each direction. We average over several different con-
figurations of the noise

〈σ〉 = 1
Nr

Nr

∑
n=1

〈σ〉n , (6.4)

typically between Nr = 5 and Nr = 20 depending on how different the trajectories really
are for the various temperatures.
The variance of the sigma fluctuations for one noise configuration is

〈σ2〉n =
1
N3 ∑

ijk

(σijk,n − 〈σ〉n) , (6.5)

and its average over noise configurations is

〈σ2〉 = 1
Nr

Nr

∑
n=1

〈σ2〉n . (6.6)

In the calculations presented here, we choose N = 32. The size of time steps is ∆t =
0.02 fm and the lattice spacing is ∆x = 0.2 fm.

6.2. Equilibration for a global, isothermal heat bath

In this section we study the equilibration of the sigma field with a global, i.e space-
homogeneous, and isothermal heat bath. Concerning the energy exchange the back reac-
tion of the sigma field on the heat bath is ignored. Therefore, the temperature of the heat
bath is constant and determines the shape of the effective potential. This is very different
for the first order phase transition and the critical point. We, therefore, expect a different
evolution of the sigma field for these two scenarios.
While the initial conditions for the sigma field are varied in the next sections, the time
derivative of the sigma field ∂tσ is initially zero. There is no clear physical motivation for
the choice of the initial ∂tσ. When it is initialized in direction of the relaxation process the
sigma field relaxes faster. A random distribution for the initial ∂tσ averages out.
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Figure 6.1.: The distribution of the sigma field for T = 160 MeV at different times. The
initial distribution is flat. It quickly turns into a Gaussian centered at a mean of 2.89 MeV
with a width of 1.62 MeV. The Gaussian fit is to the distribution at t = 80 fm

6.2.1. First order phase transition

The evolution in a first order scenario is especially interesting because the effective po-

tential has two minima in the spinodal region 108MeV ≃ T
(1)
sp < Tc < T

(2)
sp ≃ 128 MeV.

We expect that for some configurations the sigma field relaxes partly to the unstable mini-
mum instead of the true thermal expectation value. This is even more likely in the vicinity
of Tc, where both minima are almost degenerate.
In order to study the relaxation of the sigma field to its thermal equilibrium state at the
temperature of the heat bath we need a clear nonequilibrium initial situation. In our inves-
tigation we distinguish between two cases for which the initial nonequilibrium situation
is realized differently: the equilibration at temperatures above and at temperatures below
the transition temperature.

Equilibration at high temperatures T > Tc

For the equilibration at temperatures above the phase transition temperature we initially
distribute the sigma field linearly between σmin ≃ 0 and σmax > 0 such that the initial
average of the sigma field is 〈σ〉n ≃ 50MeV. The flat distribution is far from being thermal.

For temperatures T above T
(2)
sp the time dependence of 〈σ〉/σeq is shown in figure 6.2.

As expected the sigma field relaxes more slowly for lower temperatures. The individual
trajectories do not differ much for different realizations of the noise. This is clear because
the potential has only one minimum and a steep curvature.
In figure 6.1 we see how the initially flat distribution develops for an example evolution
at T = 160 MeV. It becomes Gaussian after times t ≃ 20 fm, which correspond to the re-
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Figure 6.2.: The time evolution of the scaled noise average of the sigma field in a first order
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Figure 6.4.: The long relaxation process of the sigma field for T = 125 MeV. The scaled
noise average 〈σ〉/σeq and two individual noise configurations are given. Due to the bar-
rier between the two minima the relaxation to the global minimum is very slow. The indi-
vidual noise configurations differ substantially.

laxation times in figure 6.2. It shows the equilibration of the sigma field to its proper equi-
librium value at the respective temperature. This is ensured by the fluctuation-dissipation
theorem (5.72), which relates the variance of the noise field to the damping coefficient.
The noise average of the sigma fluctuations is shown in figure 6.3. Here, we must note a
small difference to the values one obtains from the effective potential via equation (4.19).
We can attribute this discrepancy to the approximation we applied by using the equi-
librium sigma mass to calculate the damping coefficient (5.66) and the noise correlation
(5.72) instead of the local sigma mass calculated from the local shape of the potential. The
variance of the noise is consequently slightly too small. Since the values of the final vari-
ances of the fluctuations of the sigma field are, however, of the same order, it still gives a
reasonable description of the final equilibrium.
The dynamics of the system becomes different for Tsp > T > Tc. In figure 6.4 the scaled
noise average 〈σ〉/σeq and the volume average 〈σ〉n/σeq for two individual noise realiza-
tions are shown for T = 125 MeV. Because of the twominima the system takes a long time
to relax to the global minimum at σeq ≃ 6 MeV. Since the initial average is slightly shifted
towards the low-temperature minimum the system first tends to this phase, but finally
relaxes to the true minimum at very large times.
At the transition temperature Tc = 123.27 MeV the distribution of the sigma field for one
noise configuration is shown in figure 6.5. The system is in the expected phase coexistence
and the sigma field does not relax at all. Instead we observe that the system is split into
one part in the high-temperature and one part in the low-temperature minimum.
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Figure 6.5.: The distribution of the sigma field at the transition temperature Tc =
123.27 MeV of the first order phase transition scenario. The system shows phase
coexistence.

Equilibration for a quench to temperatures T < Tc

After initializing the sigma field in equilibrium with an initial temperature of Tini =
160 MeV the system is suddenly quenched to different temperatures T < Tc for which
the Langevin equation for the sigma field is solved . It is known that for the linear sigma
model with constituent quarks the nucleation rates are rather low and that the main re-
laxation mechanism is that of spinodal decomposition [Sca01b]. This is also observed in
our calculations. In figure 6.6 we show the time evolution of the relaxation of the sigma
field. For T = 115 MeV, where we still have a substantial barrier between the twominima,
the relaxation times are significantly larger than for lower temperatures. Here, the system
remains in the local minimum σ ≃ 10 MeV until at t ≃ 15 fm it begins to decay to the
global minimum, which is also a slow process. It resembles the case of an exponentially
damped system, which decays without oscillations. At T = 100 MeV we can clearly see
the oscillating relaxation. It occurs much faster.
Figure 6.7 shows the variance of the fluctuations of the sigma field. During the relaxation
process the size of the fluctuations develop a peak. For lower temperatures, significant
fluctuations remain only for a short time, while they are enhanced during the whole long

relaxation process at T = 115 MeV. For T > T
(1)
sp the maximum size of the fluctuations is

approximately half the distance of the two minima.

6.2.2. Critical point

The effective potential for a scenario with a critical point has only oneminimum at all tem-
peratures. It continuously shifts from σ ≃ 0 to the vacuum expectation value 〈σ〉vac = fπ

106



6.2. Equilibration for a global, isothermal heat bath

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

〈σ
〉/
σ
e
q

t/fm

T = 100 MeV
T = 108 MeV
T = 110 MeV
T = 115 MeV

Figure 6.6.: The time evolution of the scaled noise average of the sigma field in different
quenched scenarios for a first order phase transition scenario.
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Figure 6.8.: The time evolution of the scaled noise average of the sigma field for a critical
point scenario for various temperatures. The relaxation time becomes large at the critical
point.

when lowering the temperature. At the critical point this minimum becomes very flat and
we expect long relaxation times. For different temperatures, the evolution of the noise
averaged sigma field can be best compared by choosing the same initial conditions, the
thermal equilibrium state at T = 160 MeV. The system is then quenched to temperatures
T < 160 MeV. The results are shown in figure 6.8. For low temperatures the potential is
steeper and the relaxation process occurs faster. The field oscillates before relaxing. Ap-
proaching the critical temperature relaxation times become larger with a clear maximum
at Tc. Here, fluctuations remain enhanced for long times, see figure 6.9. However, we have
to note that the observed fluctuations are by far smaller than the expected fluctuations
in thermal equilibrium, obtained from a Gaussian approximation to the effective poten-
tial. This effect is much larger for a critical point scenario than for the first order phase
transition scenario.

6.3. The energy dissipation

During the relaxation of the sigma mean-field to its equilibrium value the dissipative
term in the Langevin equation (6.1) causes energy dissipation. By the interaction with
the quarks it is transfered to the heat bath. In sectin 5.5 we derived a conserved energy-
momentum tensor of the entire system including a dynamics of the heat bath. In this pa-
per, we do not include the fluid dynamic expansion of the heat bath. In this section we in-
vestigate the relevant energy exchange between the sigma field and the heat bath. The en-
ergy dissipation of the field to the heat bath can be obtained from the energy-momentum

108



6.3. The energy dissipation

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80

√

〈σ
2
〉/
M
eV

t/fm

T = 150 MeV
T = 145 MeV

T = Tc = 139.88 MeV
T = 135 MeV
T = 130 MeV
T = 120 MeV
T = 100 MeV

Figure 6.9.: The time evolution of the noise averaged variance of the sigma fluctuations.
During the relaxation process fluctuations are enhanced. See text for the discussion of the
fluctuations.

tensor of the sigma field
∂µT

µ0
σ = −(gρs + η∂tσ)∂tσ, (6.7)

where Tµν
σ is the energy-momentum tensor of the purely mesonic Lagrangian

Lσ =
1
2

∂µσ∂µσ−U(σ) . (6.8)

We make the same approximation as in (4.41b). Then, the energy dissipation is described
by

∆Ediss = (gρs + η∂tσ)∂tσ∆t . (6.9)

The total energy of the sigma field is given by

Eσ =
1
2

∂tσ
2 +

1
2
~∇σ2 +U(σ) . (6.10)

It has a kinetic, potential and fluctuation energy term. During relaxation to the vacuum
expectation value the potential energy is transfered to kinetic energy as ∂tσ grows. Then,
the damping becomes substantial and causes energy dissipation. This flow of energy from
the field to the heat bath is given by (6.9). There is a reverse flow of energy from the heat
bath to the field ∆Eξ associatedwith the noise field ξ in the Langevin equation (6.1), which
is an averaged quantity balancing the energy dissipation ∆Ediss in equilibrium and thus
restoring the proper thermal equilibrium. Assuming that the made approximations in sec-
tion 5.5 and (4.41b) cause only a small violation of energy conservation we can determine
∆Eξ from comparing ∆Ediss to the energy difference in the field before and after each nu-
merical time step ∆Eσ.
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Figure 6.10.: Energy dissipation for a scenario with a first order phase transition (a) and
for a critical point scenario (b). The system is quenched from Tini = 160 MeV to T = 100
MeV in the first order phase transition scenario and from Tini = 160 MeV to T = 130 MeV
in the critical point scenario. The Langevin equation is once solved with the noise term ξ
and once without it. For each case the comparison between the total energy dissipation
∑V ∆Ediss and the energy difference in the field ∑V ∆Eσ summed over the whole volume
is shown.
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Here, we first show that the difference between ∆Ediss and ∆Eσ is small if one ignores the
noise term in the Langevin equation. This is shown in figure 6.10(a) for the quench from
Tini = 160 MeV to T = 100 MeV in a scenario with a first order phase transition and for
a critical point scenario quenched from Tini = 160 MeV to T = 130 MeV in figure 6.10(b).
The resulting difference is a measure of the violation of energy conservation due to the
approximations made in section 5.5 and (4.41b). It is numerically small. In figure 6.10 we
also show the difference between ∆Ediss and ∆Eσ including the noise term. We identify
this difference with ∆Eξ .

6.4. Equilibration for a heat bath with reheating

In this section we want to investigate the influence of the energy conservation on the
equilibration of the entire system. While the sigma field relaxes after a sudden temper-
ature quench energy dissipates from the system to the heat bath. This in return changes
the temperature of the quark fluid and the effective potential. Thus, the evolution of the
sigma field itself is altered. In the last section we discussed the energy transfer between
the sigma field and the heat bath. It has the two components ∆Ediss and ∆Eξ . In the fol-
lowing we locally calculate ∆Eσ and add this to the local energy density of the heat bath
given by (4.25). The new energy density is inverted to find the local temperature.

6.4.1. First order phase transition

We present four results for scenarios with a first order phase transition. We quench from
Tini = 160 MeV to Tsys = 100, 80, 50 and 20 MeV. During the relaxation of the volume
averaged sigma field, see figure 6.11, the average temperature increases rapidly to Tfin,
see figure 6.12. The exact values are shown in table 6.1. Three temperatures are above Tc

and below or close to the upper spinodal temperature T
(2)
sp , where the effective potential

has two minima. The sigma field initially relaxes towards the vacuum value. This relax-
ation reheats the heat bath and causes an increase in the temperature to above Tc. Large
parts of the sigma field now remain in the unstable low-temperature minimum. We see
that including reheating the entire system does not equilibrate for these temperatures.
Obviously, the reheating locally changes the effective potential such that it counteracts
the relaxational process. Only for the very low temperature Tsys = 20 MeV, which is close
to vacuum conditions, the final temperature is below Tc. Thus, the initial relaxation of the
sigma field corresponds already to the equilibrium state at Tfin.

6.4.2. Critical point

In a scenario with a critical point the effective potential has only one minimum for all tem-
peratures. Therefore, we expect the entire system to equilibrate. We consider the following
four temperature quenches from Tini = 160 MeV to Tsys = 140, 130, 100, and 80 MeV re-
spectively. The corresponding volume averaged values are shown in table 6.2. The volume
averaged variances of both quantities are explicitly given. We clearly see that the entire
system relaxes at a temperature Tfin and σfin ≃ σeq(T = Tfin) in figures 6.13 and 6.14. We

111



6. Equilibration and relaxation times

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

〈σ
〉/
M
eV

t/fm

Tsys = 100 MeV
Tsys = 80 MeV
Tsys = 50 MeV
Tsys = 20 MeV

Figure 6.11.: Time evolution of the volume averaged sigma field in a scenario with a first
order phase transition for different temperature quenches. The energy dissipation from
the sigma field to the heat bath is taken into account.
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Figure 6.12.: Time evolution of the temperature in a scenario with a first order phase tran-
sition for different temperature quenches. The temperature is changed by the energy dis-
sipation from the sigma field to the heat bath.
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6.4. Equilibration for a heat bath with reheating

Tsys/MeV Tfin/MeV σfin/MeV σeq(T = Tfin)/MeV
100 131.89 69.06 5.00
80 127.69 80.11 5.56
50 123.59 87.57 6.25
20 121.41 85.60 84.82

Table 6.1.: Exact values for the relaxation of the volume averaged sigma field and the final
temperatures for the different quenches for Tini = 160 MeV to Tsys. Here for a scenario
with a first order phase transition.

observe that for a temperature quench to Tsys = 130 MeV the final temperature comes
closest to the critical temperature Tc = 139.88 MeV. As seen in figure 6.13 and figure 6.14,
relaxation times are longest for this quench.

Tsys/MeV Tfin/MeV σfin/MeV σeq(T = Tfin)/MeV
140 141.42± 0.31 23.33± 1.92 24.37
130 138.96± 0.47 53.43± 1.52 54.52
100 124.53± 0.57 78.46± 1.40 78.60
80 115.44± 0.62 83.82± 1.43 83.90

Table 6.2.: Exact values for the relaxation of the volume averaged sigma field and the final
temperatures for the different quenches for Tini = 160 MeV to Tsys. Here for a critical point
scenario.

We have studied the dynamics of the sigma field given by the Langevin equation (6.1)
with the damping (6.2) and the noise correlator from chapter 5. It leads to the relaxation
of the sigma field with a static isothermal heat bath. Including reheating of the heat bath
we find full relaxational dynamics only for a scenario with a critical point. For a first
order phase transition the system stays in the low-temperature minimum, which due to
reheating becomes the unstable minimum at the final temperature. At the critical point
we observed longest relaxation times which is in accordance with critical slowing down.

In the next chapter we will include the fluid dynamic expansion of the heat bath and thus
study the full nonequilibrium chiral fluid dynamics.
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Figure 6.13.: Time evolution of the volume averaged sigma field in a critical point scenario
for different temperature quenches. The energy dissipation from the sigma field to the heat
bath is taken into account.
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7. Chiral fluid dynamics II

After having investigated the relaxational dynamics of the chiral sector in the previous
chapter we are now ready to study the coupled dynamics of an expanding and cooling
quark fluid and the relaxation of the sigma field. This coupling occurs on several points
in the complete setup:

• The one-loop effective potential Veff for the sigma field in presence of the quarks
drives the chiral phase transition. By variation with respect to the sigma field it gives
the one-loop scalar density ρs, which is the lowest order contribution to the equation
of motion of the sigma field.

• The pressure and the energy density of the locally equilibrated quark fluid in the
equation of state p(e) depend on the local value of the sigma field, which plays the
role of an external parameter in the thermodynamic sense.

• The damping coefficient η, which describes the dissipative and stochastic processes
in the equation of motion of the sigma field, is given by the interaction with the heat
bath. It depends on the temperature of the heat bath and consistently on the sigma
field itself via the masses of the quarks and of the sigma mesons.

• To account for the energy-momentum exchange between the two sectors we con-
structed an energy-momentum tensor, which is conserved for the full 2PI effective
action. The approximations used for the derivation of the dynamics of the sigma
field generate additional terms in the energy-momentum balance, which were de-
rived in section 5.5.

We now implement this consistent coupling numerically and study the full dynamics of
the entire system with respect to effects at the phase transition. We have seen in chapter
5 that the thermodynamic quantities, the pressure and the energy density, as calculated
in chapter 4, are still consistent in the new setup including nonequilibrium effects. The is-
sues discussed in chapter 4 can thus be adopted. We use the same parametrization of the
equation of state, see section 4.3.4 and appendix D. The initial conditions are the same as in
section 4.3.3 with one exception. Before we start the fluid dynamic expansion the equation
of motion for the sigma field is solved a couple of times to generate an initial distribution
of the time derivative of the sigma field. Section 4.3.5 on the inclusion of the source term
remains largely valid. The additional aspects that have come in section 5.5 and 6.3 are dis-
cussed here in section 7.1. In section 7.2 we investigate the nonequilibrium effects of the
coupled dynamics for three different damping coefficients. The sigma field is the order
parameter of chiral symmetry breaking. It is expected to fluctuate characteristically at the
phase transition. In section 7.3 we take a look at the intensity of the nonequilibrium fluc-
tuations of the sigma field. At later times these numbers can be interpreted as the number
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7. Chiral fluid dynamics II

of sigma particles which are produced from the coherent decay of the field. The growth of
the correlation length is an equilibrium phenomenon at a critical point and the basis for
the large thermodynamic fluctuations. We see that the correlation function exhibits more
structure in nonequilibrium and the definition of a correlation length becomes more dif-
ficult in an inhomogeneous and dynamic system in section 7.4. Finally, in section 7.5 we
take a look at the momentum anisotropy in the fluid.
Parts of this chapter are published in [Nah10b, Nah11a, Nah11d].

7.1. Energy-momentum conservation

The energy-momentum conservation was discussed in section 5.5, where we found a con-
served energy-momentum tensor for the full 2PI effective action. In the approximated the-
ory additional terms contribute to the energy-momentum balance in equation (5.89). The
thermal contributions for the quark fluid and the sigma field were already investigated in
chapter 4 and yielded energy-momentum conservation to a very good degree. The correc-
tion to the divergence of the energy-momentum tensor of the sigma field is given by the
dissipative part of the equation of motion. It describes the energy that dissipates out of
the field. We assume that it is most important for the energy exchange between the field
and the fluid. In section 6.3 we studied the behavior of this source term. As was expected,
it well describes the dissipation of energy. It does not, however, account for the average
energy transfer from the heat bath to the sigma field given by the stochastic field in the
Langevin equation. As in section 6.4, where we studied the relaxation of the sigma field
in a static heat bath with reheating, we will use the numerically determined energy and
momentum difference in the sigma field for each time step.
In the beginning of the simulation the field configuration gains energy due to the increase
of fluctuations. Locally this might exceed the energy in the fluid. In these cells the energy
density is set to zero at the end of each numerical time step. In the beginning we, thus,
observe a net increase of the total energy by. 10% in the scenario with a first order phase
transition the energy conservation is well fulfilled during the expansion. In a scenario
with a critical point the energy is very well conserved during the entire evolution. The
quark fluid reaches the edges of the grid at around t ≃ 8 fm and disappears. In a test case
with a larger grid energy was conserved well for a longer time. In addition, the evolution
of the system in the inner region was not altered. The figures showing the energy balance
for the different damping and phase transition scenarios are deferred to appendix F.
In addition to the energy conservation we also have to show momentum conservation
when we include the expansion of the system. The total momentum of the system is close
to zero. Due to the finite initial time derivative of the sigma field each initial field configu-
ration has a small overall momentum, which is slightly enhanced in the beginning of the
simulation. The total momentum in each of the three directions is of the order of 0.1% of
the total momentum in positive direction.
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Figure 7.1.: The average values and the variances of the fluctuations
√

〈δσ2〉 of the sigma
field for η = 2.2/fm and both phase transition scenarios.

7.2. Supercooling and reheating

In this first section we investigate the coupled dynamics of the system for two constant
damping coefficients, η = 2.2/fm and η = 10/fm, and a temperature-dependent damping
coefficient η = η(T). A parametric, constant damping coefficient η generally investigates
dissipation and relaxation. The temperature dependence of η = η(T) includes more as-
pects of the phase transition scenario. The time evolution of the energy density and the
sigma field for all scenarios are shown in appendix G and H.

7.2.1. Constant damping coefficient η = 2.2/fm

The constant damping coefficient of η = 2.2/fm is motivated by the study of the DCC
formation within a Langevin approach [Bir97]. The time evolution of the average value of
the sigma field 〈σ〉 and its fluctuations

√

〈δσ2〉 =
√

〈(σ− 〈σ〉)2〉 are shown in figure 7.1.
Figure 7.2 shows the time evolution of the average temperature 〈T〉 and its fluctuations
√

〈δT2〉 =
√

〈(T − 〈T〉)2〉. The average is taken over an initially hot and dense sphere
with radius r = 3 fm. The phase transition temperature in a critical point scenario Tc =
139.88 MeV is crossed at around t = 5 fm, after which the slightly enhanced fluctuations
fall off. The average sigma field smoothly relaxes towards its vacuum value. As the phase
transition temperature of the first order phase transition, Tc = 123.27 MeV, is lower than
at a critical point the system relaxes later but the relaxational process itself is faster in a
first order phase transition scenario. The vacuum value is reached around the same time,
but the average sigma field shows strong oscillations and the fluctuations are enhanced in
the first order phase transition scenario.
When the first order phase transition temperature is reached after t ≃ 5 fm large parts of
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Figure 7.2.: The average values and the variances of the fluctuations
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〈δT2〉 of the tem-
perature for η = 2.2/fm and both phase transition scenarios.

the system are still in the chirally broken phase as the average value of the sigma field is
still 〈σ〉 . 10 MeV. These large deviations of the sigma field from its equilibrium value is
the nonequilibrium effect of supercooling.
Due to the steep curvature in the effective potential experienced by the system once
the barrier is overcome, the potential energy is transformed effectively in kinetic energy,
which leads to the dissipation of energy via η(∂tσ)2 in the source term. In figure 7.2 we can
clearly observe the reheating effect at the first order phase transition. Between t = 7 fm
and t = 9 fm the system is reheated from T ≃ 118 MeV below Tc to T ≃ 125 MeV above
Tc, followed by a subsequent cooling. Thus, the reheating causes the system to cross the
phase transition two more times, once in the reverse direction from the low temperature
phase to the high temperature phase around t = 8 fm and again at around t = 9 fm. This
contributes to a slower relaxation of the average sigma field.
The effective potential with a critical point is very flat at the transition temperature and
reheating is not observed. Instead the cooling is slightly decelerated as seen in figure 7.2
between t = 5 fm and t = 6 fm.

7.2.2. Constant damping coefficient η = 10/fm

The damping coefficient in the linear sigma model with constituent quarks is larger at
higher temperatures, as shown in figure 5.2. An average value for the whole time and both
phase transition scenarios is of the order of η = 10/fm. The larger the constant damping
coefficient the longer are the relaxation times, especially for a first order phase transition,
because here the system is locally damped to the unstable minimum first.
If we chose the damping coefficient to be even larger, the relaxation time would by far
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exceed the expansion time of the fluid. This contradicts the goal to investigate realistically
coupled dynamics.
The time evolution of the average sigma field and its fluctuations are shown in figure
7.3 and of the average temperature and fluctuations of the temperature in figure 7.4. The
relaxation times of the sigma field are larger than in the previous section for η = 2.2/fm.
In both phase transition scenarios the average temperature is already below T = 100 MeV,
when the average sigma field approaches its equilibrium value at around t = 12 fm for a
critical point scenario and t = 16 fm in a first order phase transition scenario.
The overall evolution is very smooth and the oscillations in a first order phase transition
scenario are damped. In figure 7.4 we observe that the reheating process is more pro-
nounced and takes longer time.

7.2.3. Temperature dependent damping coefficient η = η(T)

We now take the temperature dependence of the damping coefficient into account. As
calculated in equation (5.66) the damping coefficient depends on the local value of the
sigma field via the sigma mass and the quark mass. We calculated these masses by using
the local equilibrium value of sigma. This results in a temperature dependence as shown
in figure 5.2.
At lower temperatures it vanishes because the decay of the zero mode of the sigma field
in a quark-antiquark pair is kinematically forbidden as mσ(T) < 2mq(T) = 2gσeq(T).
Albeit confinement is not included in the model, the vanishing of the damping process
σ → q̄q at low temperatures is in agreement with confinement. Physically the sigmas get
further damped by interactions with the hard chiral modes [Gre97, Ris98], as discussed in
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section 5.4. These effects are not included in our mean-field approach. To account for them
we add by hand a value of η = 2.2/fm [Bir97]. We interpret this value of η as processes
coming from the reactions σ↔ 2π. Consequently this damping effect should vanish when
the sigma mass undershoots two times the pion mass. This occurs only in a critical point
scenario, where the sigma mass is very small.
To summarize,

η =















g2
dq
π

(

1− 2nF
(

mσ
2

)) 1
m2

σ

(

m2
σ
4 −m2

q

)3/2
, for mσ(T) > 2mq(T)

2.2/fm, for 2mq > mσ(T) > 2mπ

0, for mσ(T) < 2mπ , 2mq

. (7.1)

In a scenario with a critical point the vanishing of the damping coefficient leads to strong
oscillations of the average sigma field during the relaxational process, as seen in figure
7.5. In a scenario with a first order phase transition the sigma field is strongly damped at
high temperatures. At the phase transition temperature Tc the sigma mass drops below
the threshold of quark-antiquark production but is larger than twice the pion mass. The
damping coefficient shows a discontinuity from η(T > Tc) ≃ 26.6/fm to η(T < Tc) =
2.2/fm. In this scenario the average of the sigma field stays constant up to almost t ≃ 5 fm
and the relaxational process starts only when the average temperature is close to the phase
transition temperature as can be seen by comparing figure 7.5 with 7.6. The cooling of the
system is inhomogeneous.While the center is still very hot, outer parts have cooled down
already. The fluctuations of temperaturewithin the inner regionwith radius r = 3 fm have
a variance of almost 10 MeV. We conclude that even in this small inner region the outer
parts have already cooled below the phase transition temperatures at t = 5 fm and that it
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7. Chiral fluid dynamics II

is these parts that relax first due to the lower damping coefficient η.
For the average temperature we again see the effect of reheating in a scenario with a first
order phase transition, which resembles the case for constant η = 2.2/fm as this is the
predominant value for the damping for average temperatures below Tc. However, when
the system is reheated to a temperature close to Tc parts of the system again experience
a larger damping so that the subsequent cooling is slightly delayed. The average tem-
perature in a critical point scenario is influenced by the oscillations of the average sigma
field.

7.3. The intensity of sigma fluctuations

In various studies on the formation of DCC a large amplification of pion fields was ob-
served at the phase transition [Raj93, Bir97, Mis99a, Xu00]. The pionic excitations were
found to be triggered by violent oscillations of the sigmamodes. Moreover, the zero mode
of the sigma field is the order parameter of chiral symmetry breaking. The soft modes
are thus expected to show large fluctuations at a critical point in thermodynamic systems.
We are, therefore, especially interested in the intensity of sigma fluctuations at the phase
transition.
The intensity of the sigma fluctuations is given by [Aba97, Ame97]

dNσ

d3k
=

a∗k ak
(2π)32ωk

=
1

(2π)32ωk

(

ω2
k |δσk|2 + |∂tσk|2

)

, (7.2)

where a∗k and ak are the fourier coefficients in the expansion of the field and its conjugate
momentum field

δσ(x) =
∫ d3k

(2π)32ωk

(

ak exp(−ikx) + a∗k exp(ikx)
)

(7.3a)

∂tσ(x) =
∫ d3k

(2π)32ωk

i

2

(

−ak exp(−ikx) + a∗k exp(ikx)
)

(7.3b)

and read

ak =
∫

d3x
(

i∂tσ(x) + ωkδσ(x)
)

exp(ikx) (7.4a)

a∗k =
∫

d3x
(

ωk∂tδσ(x) + i∂tσ(x)
)

exp(−ikx) . (7.4b)

δσk and ∂tσk are the Fourier transforms of the fluctuations of the sigma field and the time
derivative. Here, it is a crucial issue of how we define the fluctuations of the sigma field.
In the last section we showed results of the variance of the sigma fluctuations around the
average sigma field in a hot region of radius r = 3 fm. Now,we are interested in quantities
that can be defined over the entire volume of the system but have a meaning locally. In a
typical potential for a critical point fluctuations around the thermal equilibrium are large.
We define the sigma fluctuations as the fluctuations around the local thermal equilibrium
value of the sigma field. This is the average sigma field in the initial state and after relax-
ation and takes nonequilibrium effects at the first order phase transition into account. At
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Figure 7.7.: Transverse momentum spectra for different times during the expansion and a
critical point scenario.

later times when the nonlinearities in the equation of motion can be neglected the quan-
tity Nσ in equation 7.2 gives the number of sigma particles produced from the excitations
of the sigma field. The energy ωk of the kth mode of the sigma field is given by

ωk =
√

|k|2 +m2
σ . (7.5)

We define the sigma mass via the curvature of the effective potential at its equilibrium
value corresponding to the average temperature Tav in a hot region of radius r = 3 fm. It
turns out that the intensity of sigma fluctuations does not depend strongly on the choice
of the radius.
At the end of each time step the Fourier transform of the sigma field is calculated by a
Fast Fourier Transform algorithm [NumRec]. These algorithms are implemented effec-
tively only on lattices with N = 2n, n ∈ N, cells in each direction. This limits the realistic
choice of how to define the entire volume of the system.We simply perform Fourier trans-
formations of the entire grid.
Spectra of transverse momentum at different times are shown in figure 7.7 for a critical
point scenario and in figure 7.8 for a scenario with a first order phase transition.
For the three damping coefficients and the two phase transition scenarios we show the
intensity of sigma fluctuations for the zero mode and low momentum modes in momen-
tum ranges of ∆|k| = 50 MeV. Finally, we compare these values to the development of
the deviations of the sigma field from its thermal equilibrium value. The initial condi-
tions, see section 4.3.3, are chosen such that the sigma field is in equilibrium with the
quark fluid at the initial temperature given in equation 4.32. In all three damping sce-
narios the intensity of sigma fluctuations is increased during the expansion and cooling.
For a critical point scenario the results are shown in figure 7.9 for η = 2.2/fm, in figure
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Figure 7.8.: Transverse momentum spectra for different times during the expansion and a
scenario with a first order phase transition.
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Figure 7.9.: The time evolution of the intensity of sigma fluctuations for η = 2.2/fm and a
critical point scenario.
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Figure 7.10.: The time evolution of the intensity of sigma fluctuations for η = 10/fm and
a critical point scenario.
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Figure 7.11.: The time evolution of the intensity of sigma fluctuations for η = η(T)/fm
and a critical point scenario.
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Figure 7.12.: The time evolution of the deviation of the sigma field from its equilibrium
value for all three damping coefficients and a scenario with a critical point.
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Figure 7.13.: The time evolution of the intensity of sigma fluctuations for η = 2.2/fm and
a scenario with a first order phase transition.
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Figure 7.14.: The time evolution of the intensity of sigma fluctuations for η = 10/fm and
a scenario with a first order phase transition.
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Figure 7.15.: The time evolution of the intensity of sigma fluctuations for η = η(T) and a
scenario with a first order phase transition.
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Figure 7.16.: The time evolution of the deviation of the sigma field from its equilibrium
value for all three damping coefficients anda scenario with a first order phase transition.

7.10 for η = 10/fm and in figure 7.11 for the temperature-dependent damping coefficient
η = η(T). We see that the intensity of the soft modes is increased the most for the con-
stant damping η = 10/fm. This can be understood by looking at the time evolution of the
sigma fluctuations around the thermal equilibrium value plotted in figure 7.12 averaged
over a region of radius r = 4 fm. These are maximally increased for times between t = 5
fm and t = 6 fm for η = 10/fm. Here, the fluctuations reach the width of the effective po-
tential. Fluctuations for the temperature-dependent damping are enhanced over the small
constant damping which also results in an enhanced intensity of sigma fluctuations.
For the scenario with a first order phase transition the time evolution of the intensity of
sigma fluctuations is shown in figure 7.13 for η = 2.2/fm, in figure 7.14 for η = 10/fm
and in figure 7.15 for the temperature-dependent damping coefficient η = η(T). Figure
7.16 shows the sigma fluctuations around the thermal equilibrium value. Since these fluc-
tuations are a larger than for the scenario with a critical point, the intensity of sigma fluc-
tuations is also larger for all damping scenarios. We observe that for the smaller damping
the higher modes are extremely populated at t ≃ 6 fm slightly before the lower modes are
intensified between t = 7 fm and t = 8 fm. We attribute this behavior to the relaxation
of parts of the system outside of the region with radius r = 4 fm, for which the sigma
fluctuations around the equilibrium value are shown.

7.4. Correlation length at the critical point

The growth of the correlation length at a critical point is the driving force for the predicted
large fluctuations in observables like mean transverse momentum and particle multiplic-
ities. The divergence of the correlation length only occurs in static infinite and homoge-
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neous systems. In finite systems the correlation length is necessarily limited by the size
of the system. Here, however, finite size scaling [Car96] developed within renormaliza-
tion group methods can be applied to heavy-ion collisions [Pal10b]. More crucial are the
issues of inhomogeneity, where temperature is defined only locally, and the dynamics of
the system, which leads to critical slowing down, as discussed in section 2.4.2. Within a
phenomenological model inspired by theO(4)-Ising model and the dynamic universality
class it was shown that finite time effects are more limiting on the growth of the corre-
lation length than finite size [Ber00]. These calculations were, however, performed in a
homogeneous system.
Here, we want to extract the correlation length of the fluctuations of the sigma field from
the numeric simulation. We consider only the case of the temperature-dependent damp-
ing coefficient η = η(T). Three measures of the correlation length are shown in figure
7.17 versus time. In mean-field approximations the correlation length is the inverse sigma
mass and can thus be obtained from the curvature of the effective potential at the mini-
mum (ξ3 in figure 7.17) or at the local value of the sigma field (ξ1 in figure 7.17). Both of
these values are averaged over the inner sphere of radius r = 3 fm.
The growth of the correlation length ξ3 is severely limited by the inhomogeneity of the
system. The average correlation length ξ1 inherits the oscillations of the sigma mean field
during the relaxational process.
The correlation length is also defined as the characteristic length, over which the radial
correlation function in equation (2.35) exponentially decreases. It is generally difficult to
obtain the thermodynamic correlation function from numeric simulations on finite and
discretized spacetime. From fits to the correlation function (2.35) we obtain the correlation
length ξ2 in figure 7.17. It also shows an increase at the phase transition. This, however, is
where the error becomes rather large.

7.5. Momentum anisotropy

Fluctuations in well-defined thermodynamic systems lead to the most obvious observ-
ables of a phase transition. In heavy-ion collisions there are a couple of other signals,
which are supposed to change characteristically at the phase transition. One of the most
famous is the elliptic flow measured in noncentral collisions. Here, the overlap region
of the two colliding nuclei has a spatial eccentricity in the transverse plane. If the sys-
tem locally thermalizes early and shows collective fluid dynamic behavior, this spatial
anisotropy leads to an anisotropy in the pressure gradients. This mechanism causes a mo-
mentum anisotropy and thus the build-up of elliptic flow in the transverse plane. It can be
measured in the azimuthal angular dependence of particle multiplicity distributions and
is characterized by the second Fourier coefficient

dN
dϕ

=
dN

2πpTdpT

(

1+ 2
∞

∑
n=1

vn cos(nϕ)

)

. (7.6)

Here, ϕ is the azimuthal angle with respect to the collision plane, which is defined by
the direction of the beam axis and the impact parameter~b. v1 is called the directed flow
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Figure 7.17.: The time evolution of the correlation length ξ obtained from different extrac-
tion methods: ξ1 from the sigma mass defined at the local value of the field, ξ2 from fits
to the correlation function and ξ3 from the sigma mass defined at the global minimum of
the potential.

and v2 is the elliptic flow. The collective flow depends on the equation of state and is,
thus, expected to be affected by the phase transition. At a first order phase transition
the equation of state has a softest point, see section 4.3.4, where p/e is very small. This
weakens the build-up of the elliptic flow and one expects to observe less v2 in a scenario
with a first order phase transition. Since by the same argument the fluid spendsmore time
in the transition region it has a longer time for building up the elliptic flow. It has been
found in many calculations that these effects cancel [Kol99, Kol00].
In order to determine the elliptic flow one has to perform a freeze-out, see section 2.4.1, to
obtain the particle multiplicity distributions.We can, however, investigate themomentum
anisotropy of the fluid even during the fluid dynamic expansion. It is

ǫp =
〈Txx − Tyy〉
〈Txx + Tyy〉

(7.7)

with
Tii(x) = vi(x)mi(x) + p(x) . (7.8)

In [Kol99, Kol00] it was found that at the time of the freeze-out it is nearly identical to the
pT-weighted elliptic flow

v2,p2T
=
〈p2T cos(2ϕ)〉
〈p2T〉

, (7.9)

where the average is taken over the distribution of particle momenta. ǫp gives a measure
for the time evolution of the build-up of elliptic flow.
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Figure 7.18.: The time evolution of the momentum anisotropy ǫp for temperature-
dependent damping.

In figure 7.18 we show ǫp as a function of time for the temperature-dependent damp-
ing coefficient η = η(T) and both phase transition scenarios. By and large, the different
calculations do not differ much. The momentum anisotropy is bulid up by the pressure
gradients during the expansion and levels off when the inital spatial anisotropy is gone.
For the smaller damping ǫp is slightly below that for the larger damping. Generally, the
values of ǫp for a first order phase transition are only slightly lower than those for a sce-
nario with a critical point. We do not observe any characteristic time evolution. It very
much resembles the results obtained for an ideal gas equation of state in [Kol00]. We want
to remark that the softest point in the equation of state is an equilibrium effect of the entire
system and we cannot expect to see its effect in a nonequilibrium situation. This does still
not contradict the plateau found in ǫp/ǫx in [Sor99], where the microscopic dynamics are
solved according to a transport equation of one-particle distribution functions, claiming
this to be a nonequilibrium effect. Here, the investigated nonequilibrium effects here are
of Langevin type and therefore different. What we can expect to see is the effect of bub-
ble formation at a first order phase transition. Since these bubbles do not show a spatial
anisotropy on average it should lower the final value of v2. We can observe this effect,
when we take the local temperature dependence of the damping coefficient into account.
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8. Summary and outlook

Nonequilibrium effects become important in the investigation of the QCD phase diagram
by heavy-ion collisions. In this thesis we presented a combined approach to the chiral
phase transition by embedding a field theoretical effective model of QCD into the realistic
description of heavy-ion collisions by fluid dynamics.

While first principle calculations of the thermodynamics of QCD on the lattice predict
the phase transition to be a crossover at zero baryochemical potential, at the present sta-
tus they cannot give reliable results for finite baryonic densities. Concentrating on certain
aspects of QCD, effective models cover broad ranges of the phase diagram. Studies of ef-
fective models strongly suggest that the phase transition is of first order at large baryonic
densities. Thus, the existence of a critical point at the end of the first order phase transi-
tion line is conjectured. Effective models give, however, only a phenomenological picture
of the strong interaction. Heavy-ion collisions can close the gap between phenomenology
and the quantum field theory of the strong interaction, QCD, as they provide the only
experimental tool to study the properties of stongly interacting matter. In order to study
thermodynamic aspects of the underlying theory experimentally, one needs large systems,
for which over long times the external parameters like temperature and pressure can be
controlled. A heavy-ion collision is not like this. The size of the fireball created is of about
the same order as the relevant length scales of the interaction, the dynamics is very fast
and the external control of parameters is limited and possibly restricted to the beam en-
ergy and the type of the colliding nuclei. Still, fluid dynamic descriptions requiring local
thermalization are in reasonable agreement with collective observables like elliptic flow
measurements at RHIC and statistical model fits can reproduce the ratios of different par-
ticle yields. It should, therefore, be possible to observe signals of a phase transition, which
is a thermodynamic concept, in heavy-ion collisions if one properly takes nonequilibrium
effects into account.

In equilibrium, systems of very different microscopic nature show universal macroscopic
properties at a second order phase transitions. Here, fluctuations and their correlation
lengths diverge. This leads to critical phenomena like opalescence at the critical point
of water. The growth of the correlation length is accompanied with very long relaxation
times. In dynamic environments the system is necessarily driven out of equilibrium at a
second order phase transition and the correlation length stays finite. All signals based on
the divergence of the correlation are, therefore, crucially weakened. One of the questions
we studiedwas howmuch of these fluctuation signals survive in the dynamics of a heavy-
ion collision. At a first order phase transition nonequilibrium effects lead to supercooling
and the subsequent relaxation of the systems via nucleation and spinodal decomposition.
Both can lead to the formation of regions where the system is in the unstable phase. The
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8. Summary and outlook

average size of these regions grows for the case of spinodal decomposition. This is pre-
dicted to be seen in the formation of disoriented chiral condensates. Thus, another ques-
tion was how likely these nonequilibrium signals at a first order phase transition develop
in a heavy-ion collision.

In this work we studied both of these questions within chiral fluid dynamics based on the
linear sigma model with constituent quarks. The dynamics of the quarks and antiquarks
is reduced to a fluid dynamic evolution of densities, while the order parameter of chiral
symmetry breaking the sigma field is propagated explicitly. This gives rise to the name
chiral fluid dynamics. As a first reference calculation we showed that fixing the sigma field
to its equilibrium value and including thermal equilibrium fluctuations the growth of the
fluctuations in an expansion scenario with a critical point is limited by the inhomogeneous
temperature distribution.

In a first naïve approach to the dynamics of the sigma field the equation of motion was
derived as a deterministic, classical Euler-Lagrange equation. It has a nontrivial source
term, which depends on the local temperature and thus on the fluid dynamic expansion
of the quarks. The equation of state is obtained from the one-loop thermodynamic poten-
tial in mean-field approximation and explicitly depends on the local value of the sigma
field. In the relativistic fluid dynamic equations we found a source term describing the
energy-momentum exchange between the field and the fluid. This source term showed
to ensure energy-momentum conservation to a very good extent in the numerical simu-
lation. The expansion and cooling of the quark fluid changes the effective potential for
the sigma field and thus drives the system through the phase transition. The sigma field
evolves towards its vacuum expectation. However, large oscillations develop during the
evolution, since relaxational processes are not included in the dynamics. We call this the
off-equilibrium expansion. The time evolution of the sigma field and the energy density
was found to be qualitatively different: while fluctuations are more extended in space in
a scenario with a critical point, bubble formation was observed in a scenario with a first
order phase transition.

It was the main intention of this work to extend off-equilibrium chiral fluid dynamics by
the consistent inclusion of nonequilibrium effects.
We succeeded in deriving the relaxational dynamics of the sigma mean-field from the
two-particle irreducible (2PI) effective action. The 2PI effective action includes dissipative
processes and gives rise to a damping term and a stochastic field. We explicitly evaluated
the damping coefficient and the correlation of the stochastic field in Markovian approxi-
mation for the zero mode of the sigma mean-field. Although there is no confining in the
underlying theory, the damping coefficient caused by the interaction of the sigma field
with the quarks vanishes below the phase transition temperature due to kinematic rea-
sons. While the quarks gain the constituent quark mass, the sigma mass gets smaller at
the first order phase transition and very small at a critical point. Even at a realistic cou-
pling of g = 3.3 the vacuum sigma mass is smaller than twice the constituent quark mass.
The damping coefficient can similarily be derived in the influence functional method,
where an explicit splitting of the system in a relevant sector, here the sigma mean-field,
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and an environment, here the quarks, must a priori be assumed. In these terms the quark
fluid acts as a locally equilibrated heat bath. In the formalism of the influence funtional it
is, however, not possible to control the equilibrium properties of the quark fluid without
further assumptions.
In the work presented, we put special emphasis on the consistent equilibrium properties
of the heat bath. This is the main advantage of the 2PI effective action. It is a conserv-
ing and selfconsistent approximation to the full quantum theory. Besides the equation of
motion for the sigma mean-field we obtain a Dyson-Schwinger equation for the real-time
quark propagators. From the exact (for a given 2PI effective action) solution for the quark
propagatorwe constructed a conserved energy-momentum tensor. For an explicit solution
to the Dyson-Schwinger equation we had to make further approximations.
Wewere able to identify different terms in the divergence of the energy-momentum tensor
of the entire system: a thermal part which coincides with the energy-momentum tensor for
the classical fields and a correction term for both the quark and the sigma contributions to
the energy-momentum balance. The correction to energy-momentum tensor of the sigma
field includes the dissipative dynamics of the mean-field.

Next, we investigated the relaxational dynamics of the sigma mean-field for a global, i.e.
space-homogeneous and isothermal heat bath for both phase transition scenarios accord-
ing to the derived Langevin equation. For an initial distribution out of equilibrium we
found that the system quickly develops a Gaussian distribution around the equilibrium
value. For an initial equilibrium distribution at a high temperature the system relaxes after
a temperature quench to the new equilibrium state. In both phase transition scenarios the
relaxation times are larger for temperatures near the transition temperature. In a scenario
with a first order phase transition this is due to the coexistence of the two phases and in
a critical point scenario the very flat curvature of the effective potential leads to critical
slowing down. During these relaxational processes we compared the energy of the sigma
field to the source term derived in the 2PI effective action formalism. We saw that the net-
energy flow consists of the energy dissipation from the sigma field to the heat bath and
of the averaged energy transfer from the heat bath to the system via the stochastic noise
field. For the investigation of the equilibration of the system coupled to a heat bath in-
cluding reheating we determined the net-energy transfer. During the relaxation the local
temperature of the heat bath increased. For the critical point scenario the entire coupled
system finally reached equilibrium. Again, relaxation times were found to be longest for
quenches that led the system to equilibrate near the critical temperature. For a scenario
with a first order phase transition, however, local reheating prevented the system from
an entire relaxation. Except of quenches to very low temperatures, the phase transition
temperature was crossed once more in the reverse direction, but the system had already
relaxed to the low-temperature phase now being a local minimum.

Finally, we studied the phase transition in the complete nonequilibrium description of
the coupled chiral fluid dynamics. Here, we tested three different damping scenarios, two
constant damping coefficients and the temperature dependent damping coefficient, which
was derived for the linear sigmamodelwith constituent quarks. In the energy-momentum
balance we neglected the correction to the energy-momentum tensor of the quarks and
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found that this is obviously a small quantity. In the time evolution of the average sigma
mean-field and the temperature we observed the nonequilibrium effects of supercooling
and reheating in a first order phase transition scenario. The intensity of this effect depends
on the damping scenario. For the larger damping coefficients relaxation times are found to
be unrealistically large. The most realistic picture is given by the temperature-dependent
damping coefficient. Still, it only takes part of the nonequilibrium effects into account as
it is derived with the equilibrium sigma mass. The intensity of sigma fluctuations, which
gives the number of produced sigma particles at later stages of the evolution, was found
to increase at the phase transition in all scenarios investigated. In a first order phase transi-
tion this is caused by supercooling and the subsequent relaxation via spinodal decompo-
sition. The intensity of sigma fluctuations turned out to be larger in a scenario with a first
order phase transition. While scanning the phase diagram of QCD by heavy-ion collisions
it is thus more likely to observe nonequilibrium fluctuations of the first order phase tran-
sition than equilibrium fluctuations of the critical point. The inhomogeneity of the system
given by the temperature being defined only locally makes it moreover difficult to define
equilibrium quantities like the correlation length. However, these are aspects which also
occur in the realistic scenario of a heavy-ion collision andmake the experimental detection
of equilibrium fluctuations of the critical point evenmore unlikely. The question about the
existence and the location of a conjectured critical point could also be decided by an ex-
perimental proof of the first order phase transition. Combined with the lattice results on
the crossover at zero baryochemical potential this is obvious for the existence of a critical
point. The location could be determined by the beam energy, at which the signal of the
first order phase transition disappears.

The main achievements of this thesis are the following:

• The development of a complete, selfconsistent quantum field theoretical approach
to the treatment of dynamic phase transitions in nonequilibrium. Besides its appli-
cation to the chiral phase transition in heavy-ion collisions it could be of interest for
other fields of physics where phase transitions occur in a dynamic and expanding
medium.

• The successful investigation of nonequilibrium phenomena at the phase transition
embedded into a realistic evolution of a heavy-ion collision including relaxational
dynamics. The effects of critical slowing down, supercooling and reheating were
thoroughly studied and proved an increase of nonequilibrium fluctuations at the
first order phase transition.

Our new approach allows for a couple of further developments leading towards a more
quantitative description of the chiral phase transition in heavy-ion collisions. These cover
both analytic and numeric aspects of the model. It would be interesting to implement the
full nonequilibrium dependence of the damping coefficient η = η(σ, T). The full depen-
dence on the local value of the sigma mean-field would however capture more effects of
spinodal decomposition at the first order phase transition.
So far we have only propagated the sigma field explicitly and fixed the pion degrees of
freedom to their vacuum expectation value 〈~π〉 = 0. Including the pions in the calculation
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is the next step for a complete description. It also implies that the decay of the sigma parti-
cle into two pions need to be considered for a final spectrum of pions. It is also interesting
to perform a freeze-out of the fluid and include this as a background of pions and see if
the pions, which are characteristically produced at the phase transition, leave a significant
imprint on the total pion distribution. This is also an important step towards studies of
event-by-event fluctuations.
Below the phase transition the zero-mode damping coefficient originating from the quark
interaction of the sigma field with the quarks vanishes. It would be interesting to include
the effect of higher modes and see how this leads to additional damping processes. How-
ever, this would go beyond the Markovian approximation and thus complicates future
numerical studies. Additional damping processes potentially also come from the inter-
action of the soft modes of the sigma field with the hard sigma and pion modes. These
processes definitely occur below the phase transition and assure relaxational dynamics of
the sigma field. Especially the decay and formation processes σ ↔ 2π become important
at low temperatures where the pions are light.
For a more quantitative description it would be necessary to improve the model by the
extention to finite baryochemical potential and the inclusion of the Polyakov loop. More-
over, the fluid dynamic treatment of the quarksmight not always be valid, e.g. in the dilute
phase. Starting from the Dyson-Schwinger equation one can derive a Vlasov-equation for
the quark-antiquark Wigner function. It is a more challenging task to derive dissipation
and noise from a Vlasov treatment of the quarks and antiquarks and is subject of ongoing
research.
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Appendix A.

SU(2) and SU(3)

Here,we summarize some important relations corresponding to the special unitary groups
SU(2) and SU(3).
The special unitary group SU(2) consists of all unitary matrices with determinant 1 and is
of special importance to the electroweak part in the standard model. It also appears in the
two-flavor description of chiral symmetry. Every matrix U ∈ SU(2) can be written as

U = exp(iαkσk) , (A.1)

where αk are three real parameters and σk the Pauli spinmatrices, which are the generators
of SU(2).

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (A.2)

They satisfy
[σj, σk] = 2iσlεjkl , (A.3)

with the Levi-Civita tensor εijk.
The special unitary group SU(3) is the group of all 3x3 unitary matrices with determinant
1. It has 8 independent generators, which are represented by 3x3 hermitian (ta = t†a) and
traceless (Tr ta = 0) matrices. A matrix U ∈ SU(3) can be expressed as

U = exp(iβata) , (A.4)

where βa are real parameters. In the fundamental representation the generators of SU(3)
are given by the Gell-Mann matrices

ta =
λa

2
, (A.5)

with

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 , (A.6)

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8=
1√
3





1 0 0
0 1 0
0 0 −2



 .
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The Gell-Mann matrices satisfy the commutation relation (cf. equation (2.5))

[λa,λb] = 2i fabcλ
c , (A.7)

with the structure constants f123 = 1, f147 = f246 = f257 = f345 = f516 = f637 = 1/2,
f458 = f678 =

√
3/2. fabc are odd under the transposition of any two indices and vanish

for any two identical indices.
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Appendix B.

The Grassmann algebra

The most complete and mathematically rigorous explanation of the Grassmann algebra in
physics can be found in [Ber66].

B.1. The basic formulation

In the path integral formulation of the partition sum for fermions one integrates over
classical fields, which by virtue of the spin-statistics theorem anticommute. They are de-
scribed by the Grassmann algebra G, which is an algebra with dimension N over a field
K. Any two elements from this algebra η, θ ∈ G anticommute

ηθ = −θη , (B.1)

from which immediately follows that the square of any Grassmann number vanishes

η2 = 0 . (B.2)

Consequently, the Taylor expansion of a general function f : G 7→ G terminates after the
linear term

f (η) = a+ bη , (B.3)

with any a, b ∈ K.
For the description of Dirac fields one needs to introduce a complex Grassmann algebra,
which is simply a 2N dimensional real Grassmann algebra over the field of complex num-
bers. Then, any Grassmann number η is defined by a real η1 and an imaginary part η2

η =
η1 + iη2√

2
. (B.4)

The complex conjugation is defined like the Hermitian conjugation of operators

(ηθ)∗ = θ∗η∗ = −η∗θ∗ . (B.5)

B.2. Differentiation

Due to the anticommuting property the sign in derivatives must be defined. The usual
convention is

∂

∂η
ηθ = θ and

∂

∂η
θη = −θ . (B.6)
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With the property (B.3) one sees immediately that the second derivative with respect to
the same variable of any function always vanishes

∂2

∂2η
f (η) = 0 . (B.7)

B.3. Integration

For the evaluation of path integrals over Grassmann variables one needs to define the
integration over Grassmann-valued functions and integrationmeasures of the Grassmann
algebra. This can not be done in the samemanner as for complex numbers. Because of (B.7)
one can not simply define the integration as the inverse operation to differentiation. This
means that there is no indefinite integral. Every integral must be translationally invariant

∫

dη f (η + θ)
!
=
∫

dη f (η) . (B.8)

This leads to
∫

dη f (η + θ) =
∫

dη(a+ b(η + θ))

=
∫

dη(a+ bθ) +
∫

dbη

!
=
∫

dη f (η) =
∫

dηa+
∫

dηbη ,

(B.9)

which for any a, b ∈ C and θ ∈ G can be solved nontrivially only for
∫

dη = 0 and
∫

dηη = const. = 1 . (B.10)

A one-dimensional Gauss integral with b ∈ C reads
∫

dη∗dη exp(−η∗bη) =
∫

dη∗dη(1− η∗bη) = b , (B.11)

by Taylor expanding the exponential function. In the samemanner a N-dimensional Gauss
integral evaluates to

∫

dη∗1dη1...
∫

dη∗NdηN exp(−∑
i,j

η∗i Bijηj) = detB , (B.12)

for any hermitian matrix B ∈ CN×N.
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Appendix C.

The one-loop partition function in
imaginary time formalism

The imaginary-time formalism, which was presented in section 3.1, is best suited to study
systems in equilibrium. Here, we explain the explicit calculation of the partition functions
for free bosons and fermions.

C.1. The free propagators in imaginary time

The free bosonic and fermionic imaginary-time propagators are obtained from solving the
Klein-Gordon andDirac equations in Euclidean space. The calculations are the same as for
zero temperature, except for the definition on the discrete Matsubara frequencies instead
of continuous frequencies. For bosons the propagator is

D(~k,ωn) =
1

ω2
n +~k2 +m2

, (C.1)

with the Matsubara frequencies (3.17a). And the fermionic propagator reads

S(~k,ωn) =
1

/k −m
, (C.2)

with k0 = iωn and the Matsubara frequencies (3.17b).

C.2. Partition function for free bosons

The starting point for the evaluation of the partition function is equation (3.4). The Eu-
clidean action for a noninteracting real Klein-Gordon field φ is obtained by aWick rotation
t 7→ −iτ

SE =
∫ β

0
dτ
∫

d3xLE =
1
2

∫ β

0
dτ
∫

d3x

[

(

∂φ

∂τ

)2

+
(

~∇φ
)2

+m2φ2

]

=
1
2

∫ β

0
dτ
∫

d3xφ

(

− ∂2

∂2τ
+ ~∇2 +m2

)

φ ,

(C.3)
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after partial integration and applying the periodicity φ(~x, β) = φ(~x, 0). The Fourier trans-
form of the field φ(~x, τ)

φ(~x, τ) =

√

β

V

∞

∑
n=−∞

∑
~p

exp [i(~p ·~x+ ωnτ)] φn(~p) , (C.4)

is defined on the discrete Matsubara frequencies (3.17a). With φ−n(−~p) = φ∗n(~p) for real
fields the action can be evaluated to

SE =
1
2

β2 ∑
n

∑
~p

(

ω2
n +~p2 +m2) φn(~p)φ

∗
n(~p) . (C.5)

The integrand in (3.4) does not depend on the phase of φ but only on its amplitude An

Z = N
∫

periodic
Dφ ∏

n
∏
~p

∫ ∞

−∞
dAn(~p) exp

[

−1
2

β2(ω2
n + ω2)A2

n(~p)

]

, (C.6)

with ω =
√

~p2 +m2. Gauss integration gives by ignoring a volume and temperature in-
dependent factor, which does not affect the thermodynamics,

Z = ∏
n

∏
~p

(β2(ω2
n + ω2))−1/2 . (C.7)

Then, taking the logarithm gives

lnZ = −1
2 ∑

n
∑
~p

ln
[

β2(ω2
n + ω2)

]

. (C.8)

With the Matsubara frequencies (3.17a) the frequency sums can be evaluated by using the
identities

∫ β2ω2

1
dθ2

1
θ2 + (2πn)2

= ln[β2ω2 + (2πn)2]− ln[1+ (2πn)2] (C.9)

and
∞

∑
n=−∞

1
n2 + (θ/2π)2

=
2π2

θ

(

1+
2

exp θ − 1

)

. (C.10)

Neglecting temperature independent terms yields

lnZ = −∑
~p

(

1
2

βω + ln(1− exp(−βω))

)

= V
∫ d3p

(2π)3

(

1
2

βω + ln(1− exp(−βω))

)

.

(C.11)
The first term in (C.11) is not finite. It corresponds to the zero-temperature energy

E0 = −
∂

∂β
lnZ0 = V

∫ d3p

(2π)2
ω , (C.12)

and pressure

p0 = T
∂

∂V
lnZ0 = −

E0

V
. (C.13)
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C.3. Partition function for free fermions

For a proper definition of the vacuum it should be subtracted.
Starting from (C.3) one can express the partition function as

Z = N
∫

periodic
Dφ exp

[

−1
2

φDφ

]

= N ′(detD)−1/2 (C.14)

with the functional determinant of D = β2(ω2
n + ω2) in momentum space and D =

−∂2/∂2τ + ~∇2 + m2 in coordinate space. This formulation allows for a simple extension
to a charged field Φ = (φ1, φ2). Φ is complex and describes particles and antiparticles. A
chemical potential µ is associated with the conserved charge corresponding to the U(1)
symmetry of a complex Klein-Gordon field. For this theory

D = β2
(

ω2
n + ω2 − µ2 −2µωn

2µωn ω2
n + ω2 − µ2

)

(C.15)

and

lnZ = −1
2
ln(detD)

= −1
2
ln

(

∏
n

∏
~p

β4((ω2
n + ω2 − µ)2 + 4µ2ω2

n)

)

= −1
2
ln

(

∏
n

∏
~p

β2(ω2
n + (ω− µ)2)

)

− 1
2
ln

(

∏
n

∏
~p

β2(ω2
n + (ω + µ)2)

)

.

(C.16)

Thus, with a simple substitution ω 7→ ω± µ for the terms in (C.16) the results from (C.11)
can be transferred to

lnZ = −V
∫ d3p

(2π)2
(βω + ln [1− exp(−β(ω − µ))] + ln [1− exp(−β(ω + µ))]) . (C.17)

C.3. Partition function for free fermions

The partition function of noninteracting fermions can be evaluated very analogously to
the case of free bosons, but we have to take into account that fermionic operators obey the
anticommutation relations

[

ψ̂α(x), ψ̂†
β(y)

]

+
= h̄δαβδ(x− y) (C.18)

[

ψ̂α(x), ψ̂β(y)
]

+
=

[

ψ̂†
α(x), ψ̂

†
β(y)

]

+
= 0 . (C.19)

In the path integral formulation of the partition function one integrates over classical
fields, which in the limit h̄ → 0 anticommute. Fermions must, therefore, be described
by Grassmann numbers, see appendix B.
The Euclidean action for free fermions is

SE =
∫ β

0
dτ
∫

d3xLE = ψ(γ0 ∂

∂τ
− i~γ · ~∇+m− µγ0)ψ . (C.20)
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After Fourier transformation of the fields the partition function reads

Z = N
∫

antiper.
Dψ

∫

antiper.
Dψ exp

[

−β ∑
n

∑
~p

ψn(~p)
(

iγ0(ωn + iµ) + ~γ~p+m
)

ψn(~p)

]

= det
[

β(iγ0(ωn + iµ) + ~γ~p+m)
]

,
(C.21)

with antiperiodic boundary conditions in the fermionic path integral.
It is useful to evaluate the determinant over Dirac indices first and then use ln detA =
Tr ln A to trace over momenta and frequencies

lnZ = 2∑
n

∑
~p

ln
[

β2((ωn + iµ)2 + ω2)
]

= ∑
n

∑
~p

(

ln
[

β2(ω2
n + (ω− µ)2)

]

+ ln
[

β2(ω2
n + (ω + µ)2)

])

,
(C.22)

where it was used that the sum over Matsubara frequencies is symmetric. The subsequent
evaluation of the Matsubara sums is carried out by using (C.9) and similarly to (C.10)

∞

∑
n=−∞

1
(2n+ 1)2π2 + θ2

=
1
θ

(

1
2
+

1
exp θ + 1

)

. (C.23)

By neglecting terms independent of β and V the final integration yields

lnZ = 2V
∫ d3p

(2π)3
(βω + ln [1+ exp(−β(ω − µ))] + ln [1+ exp(−β(ω + µ))]) . (C.24)

The factor 2 describes the two spin degrees of freedom accounting for the spin-1/2 nature
of fermions. Again, we have to subtract the zero-temperature energy.
Imaginary-time formalism in its path integral formulation is analogous to field theoretical
methods at zero temperature. It is, therefore, not astonishing that the diagrammatic per-
turbation expansion and the Feynman rules can be derived from the path integral in ex-
actly the same manner [Kap94]. The only difference is in the boundary conditions, which
give rise to the temperature dependence.
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Appendix D.

Parametrization of the equation of state

In the relativistic fluid dynamic code one often needs the equation of state, which is the
relation between the energy density and the pressure in the local rest frame of the fluid
p = p(e). In order to obtain the local pressure p(x) = p(φ(x), T(x)) one has to invert the
local energy density e(x) = e(φ(x), T(x)) (4.25) for a given local energy density of the fluid
efluid(x) and a given local value of the chiral fields φ(x). This gives the local temperature
T(x) from the solution of

efluid(x)− e(φ(x), T(x)) = 0 . (D.1)

The local temperature T(x) is then inserted in (4.24). Finding the solution of (D.1) is very
time consuming. It is, therefore, numerically not feasible to do the invertion every time
the equation of state p = p(e) is needed. The dependence on the chiral fields is through
the energy of the quarks, E =

√

p2 + g2|φ|2. It can be parametrized with

p(e) = a0(|φ|)e+ a1(|φ|)e2 + a2(|φ|)e3 (D.2)

and with the coefficients for g|φ| < 500 MeV:

a0(|φ|) =0.333333+ 1.63924 · 10−05g|φ| − 3.40087 · 10−06(g|φ|)2

+ 1.32825 · 10−08(g|φ|)3 − 2.46749 · 10−11(g|φ|)4 + 2.31484 · 10−14(g|φ|)5

− 8.73269 · 10−18(g|φ|)6
(D.3)

a1(|φ|) =− 1.18556 · 10−08(g|φ|) + 1.91555 · 10−09(g|φ|)2 − 1.00771 · 10−11(g|φ|)3

+ 2.35985 · 10−14(g|φ|)4 − 2.73812 · 10−17(g|φ|)5 + 1.28238 · 10−20(g|φ|)6
(D.4)

a2(|φ|) =2.56706 · 10−12(g|φ|) − 3.78345 · 10−13(g|φ|)2 + 2.13608 · 10−15(g|φ|)3

− 5.33201 · 10−18(g|φ|)4 + 6.55426 · 10−21(g|φ|)5 − 3.23409 · 10−24(g|φ|)6
(D.5)

and for larger values of g|φ|:

a0(|φ|) =0.343264− 0.000485805(g|φ|) + 5.22853 · 10−07(g|φ|)2

− 3.34684 · 10−10(g|φ|)3 + 1.24058 · 10−13(g|φ|)4 − 2.4531 · 10−17(g|φ|)5

+ 2.00151 · 10−21(g|φ|)6
(D.6)

a1(|φ|) =3.17691 · 10−05 + 2.83658 · 10−08(g|φ|)− 8.03578 · 10−11(g|φ|)2

+ 7.11458 · 10−14(g|φ|)3 − 3.10115 · 10−17(g|φ|)4 + 6.79465 · 10−21(g|φ|)5

− 5.96383 · 10−25(g|φ|)6
(D.7)
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Appendix D. Parametrization of the equation of state

a2(|φ|) =− 6.71523 · 10−09 + 1.82283 · 10−12(g|φ|) + 4.17458 · 10−15(g|φ|)2

− 5.20079 · 10−18(g|φ|)3 + 2.5609 · 10−21(g|φ|)4 − 6.03135 · 10−25(g|φ|)5

+ 5.57109 · 10−29(g|φ|)6
(D.8)

These two parts connect continuously.
Alternatively, the equation of state can be read in from a table, which is the appropriate
way when including more quantities like the baryochemical potential or the Polyakov-
loop variable.
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Appendix E.

Feynman rules on the closed time path

The diagrammatic Feynman rules for the calculation of Γ2 on the closed time path are
taken from [Iva99]. For a Yukawa interaction Lint(x) = −gq̄(x)σ(x)q(x) the vertex factor
is v(x) = −ig. The sigmamean-field σ is given by zigzag lines closed by a cross to indicate
that it is not an external line.

1. Draw all topological distinct, connected diagrams with N internal vertices x1, ..., xN
contributing to Γ2. There are no external lines.

2. Keep only two-particle irreducible diagrams, i.e. those that cannot be separated by
cutting two lines.

3. Assign a sign ik ∈ {+, −} for the contour branch to each interal vertex x
ik
k . Each line,

which connects two vertices xikk and x
il
l gives a factor iSik,il(xk, xy).

4. Assign a sigma mean-field σ(xk) to all zigzag lines at xk.

5. Assign a vertex factor v(x) to each vertex xk.

6. Integrate over all internal vertices x1, ..., xN on the real-time axis, multiply each in-
ternal +-vertex by (−1) and sum over all internal contour branches i1, ..., iN with
ik ∈ {+ ,−}.

7. Sum all diagrams, including an extra factor of 1/N for each diagram.

8. Multiply all fermion loops with a factor (−1).
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Appendix F.

Energy conservation in nonequilibrium
chiral fluid dynamics

F.1. Constant damping coefficient η = 2.2/fm
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Figure F.1.: The total energy of the system for η = 2.2/fm and a critical point scenario
(left) and a scenario with a first order phase transition (right).

F.2. Constant damping coefficient η = 10/fm
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Figure F.2.: The total energy of the system for η = 10/fm and a critical point scenario (left)
and a scenario with a first order phase transition (right).
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Appendix F. Energy conservation in nonequilibrium chiral fluid dynamics

F.3. Temperature dependent damping coefficient η = η(T)
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Figure F.3.: The total energy of the system for η = η(T) and a critical point scenario (left)
and a scenario with a first order phase transition (right).
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Appendix G.

Energy density in nonequilibrium chiral
fluid dynamics

G.1. Constant damping coefficient η = 2.2/fm
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Figure G.1.: Time evolution of the energy density for η = 2.2/fm and a critical point sce-
nario (left) and a scenario with a first order phase transition (right).

G.2. Constant damping coefficient η = 10/fm

t/
fm

e/
e 0

x/fm
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

t/
fm

e/
e 0

x/fm
-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure G.2.: Time evolution of the energy density for η = 10/fm and a critical point sce-
nario (left) and a scenario with a first order phase transition (right).
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Appendix G. Energy density in nonequilibrium chiral fluid dynamics

G.3. Temperature dependent damping coefficient η = η(T)
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Figure G.3.: Time evolution of the energy density for η = η(T) and a critical point scenario
(left) and a scenario with a first order phase transition (right).
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Appendix H.

Sigma field in nonequilibrium chiral fluid
dynamics

H.1. Constant damping coefficient η = 2.2/fm
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Figure H.1.: Time evolution of the sigma field for η = 2.2/fm and a critical point scenario
(left) and a scenario with a first order phase transition (right).

H.2. Constant damping coefficient η = 10/fm
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Figure H.2.: Time evolution of the sigma field for η = 10/fm and a critical point scenario
(left) and a scenario with a first order phase transition (right).
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Appendix H. Sigma field in nonequilibrium chiral fluid dynamics

H.3. Temperature dependent damping coefficient η = η(T)
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Figure H.3.: Time evolution of the sigma field for η = η(T) and a critical point scenario
(left) and a scenario with a first order phase transition (right).
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Einleitung: Das Phasendiagramm der Quantenchromodynamik

Mehr als 99% der Masse der sichtbaren Materie in unserem Universum entsteht am Pha-
senübergang von einem Plasma aus Quarks und Gluonen zu einerWelt, die hauptsächlich
aus Hadronen, Protonen und Neutronen, aufgebaut ist. In der Natur ereignete sich dieser
Phasenübergang zirka 10−5 Sekunden nach dem Urknall bei einer Temperatur von etwa
1012 Kelvin. Neben dem frühen Universum kann der Phasenübergang auch im Inneren
extrem dichter Sterne vorkommen.

Der Phasenübergang hat zwei interessante Aspekte: die spontane Brechung der chiralen
Symmetrie und den Übergang von partonischen zu hadronischen Freiheitsgraden. Ober-
halb der Übergangstemperatur haben die Up- und Down-Quarks sehr kleine aber endli-
che Massen von 1, 5 MeV und 3 MeV. Die Herkunft dieser Massen wird am Large Hadron
Collider (LHC) in Gestalt desHiggs-Bosons gesucht. Unterhalb der Übergangstemperatur
haben Protonen und Neutronen eine Masse von ungefähr 940 MeV, was einer Masse der
Konstituentenquarks von ungefähr 300 MeV entspricht. Diese Masse entsteht am chiralen
Phasenübergang.

Die grundlegende Theorie der starken Wechselwirkung zwischen Quarks und Gluonen
und zwischen Nukleonen im Atomkern ist die Quantenchromodynamik (QCD). Die La-
dung in der QCD heißt Farbe und hat drei Ausrichtungen: rot, blau und grün. In keinem
der in der Hochenergiephysik durchgeführten Experimente wurde jemals ein einzelnes
isoliertes Quark gefunden. Unterhalb der Phasenübergangstemperatur sind Quarks und
Gluonen immer in farbneutralen Hadronen gebunden. Dieses Phänomen heißt Farbein-
schluss und hat seinen Ursprung in der nicht-Abelschen Struktur der zugrunde liegenden
Eichgruppe. Da die Gluonen ebenfalls Farbladung tragen wechselwirken sie miteinander.
Durch die Quantisierung der Feldtheorie führt dies zu einer laufenden Kopplungskon-
stanten, die am Phasenübergang von der Ordnung eins ist. Dies ist technisch ein großes
Problem, da jede störungstheoretische Herangehensweise am Phasenübergang zwischen
Quarks und Gluonen und Hadronen zusammenbricht.

Genau wie der Phasenübergang von Wasser kann der Phasenübergang der QCD erster
oder zweiter Ordnung oder ein rascher Phasenwechsel sein. Am Phasenübergang ers-
ter Ordnung gibt es einen Bereich, in dem beide Phasen stabile Gleichgewichtszustän-
de darstellen. Dies wird Phasenkoexistenz genannt. Am Phasenübergang zweiter Ord-
nung verschwindet die Phasenkoexistenz. Stattdessen zeigen hier viele mikroskopisch
verschiedene Systememakroskopisch gleiches Verhalten, man spricht von Universalitäts-
eigenschaften. Die Fluktuationen und die Korrelationslänge am Phasenübergang zweiter
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Ordnung divergiert. Im Phasendiagramm von Wasser endet die Phasenübergangslinie
erster Ordnung in einem kritischen Punkt, der ein Phasenübergang zweiter Ordnung ist.
Hier wächst die Korrelationslänge der Fluktuationen bis in den Wellenlängenbereich des
sichtbaren Lichts an. Die eigentlich durchsichtige Flüssigkeit wird durch die Streuung des
Lichts undurchsichtig.

Die Untersuchung des QCD Phasendiagramms ist ungleich schwieriger. Es gibt drei ver-
schiedene Herangehensweisen:

• Erstens,man ist tapfer und berechnet die ZustandssummederQCD ausgehend vom
Lagrangian der Theorie mittels nichtstörungstheoretischer Methoden. Die vielver-
sprechendste ist die numerische Behandlung der QCD auf einem diskretisierten
Raumzeitgitter, die Gitter-QCD. Allerdings ist die Effektivität auf verschwindend
kleine baryochemische Potenziale beschränkt. Hier ist der Phasenübergang ein ra-
scher Phasenwechsel. Das linke Bild in Abbildung 1.1 zeigt, was wir von der Gitter-
QCD über das Phasendiagramm wissen.

• Zweitens, man ist stark und bringt Schwerionen bei ultrarelativistischen Energien
zur Kollision. Dies ist die einzige Methode stark wechselwirkende Materie unter
extremen Bedingungen im Labor herzustellen. Dieses Unternehmen startete mit re-
lativ niedrigen Energien zur Untersuchung der Kernstruktur und des Übergangs
zwischen flüssiger und gasförmiger Kernmaterie. Die Möglichkeit den Phasenüber-
gang der QCD zu untersuchen ermöglichte sich durch den Bau leistungsfähigerer
Beschleuniger und Detektoren am CERN (Organisation européenne pour la Recher-
che nucléaire) und am BNL (Brookhaven National Laboratory). Bislang konnten je-
doch noch keine Observablen gefunden werden, mittels derer die Daten eindeutig
zu erklären wären. Neue Messungen am RHIC (Relativistic Heavy Ion Collider),
BNL, bei verschiedenen Energien sollen Aufschluss über Existenz und Position ei-
nes kritischen Punkts geben. Die zukünftige Beschleunigungsanlage FAIR (Facility
for Antiproton and Ion Research) am GSI Helmholtzzentrum für Schwerionenfor-
schung bietet dem CBM (Compressed Baryonic Matter) Experiment hervorragende
Möglichkeiten das Phasendiagramm bei besonders hohen Dichten zu untersuchen.
Der bisherige experimentelle Kenntnisstand über das Phasendiagramm stark wech-
selwirkender Materie ist in Abbildung 1.1 rechts gezeigt.

• Drittens, man ist kreativ und konstruiert phänomenologisch ein effektives, feldtheo-
retisches Modell der QCD. Die Kreativität ist jedoch nicht unbeschränkt, denn das
Modell soll eine möglichst gute quantitative Beschreibung messbarer Größen, wie
Wirkungsquerschnitte, liefern und wesentliche Aspekte des Phasendiagramms be-
schreiben, wie den chiralen Phasenübergang und/oder den Farbeinschluss. Diese
Modelle zeigen eine Phasenübergangslinie erster Ordnung bei hohen baryochemi-
schen Potenzialen, die in einem kritischen Punkt endet. Eine bildhafte Vorstellung
des Phasendiagramms der QCD ist in Abbildung 1.2 zu sehen.

Die vorliegende Arbeit leistet einen Beitrag zu dem ehrgeizigen Ziel den Phasenübergang
der QCD unter realistischen Bedingungen einer Schwerionenkollision theoretisch zu ver-
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stehen. Die Vorhersagen von Observablen am Phasenübergang sind hauptsächlich aus
thermodynamischen Systemen im Gleichgewicht abgeleitet. Es ist allerdings fraglich, ob
das System, das in einer Schwerionenkollision erzeugt wird am Phasenübergang, wo Re-
laxationszeiten lang werden, im thermodynamischen Gleichgewicht ist. Selbst wenn das
System oberhalb der Übergangstemperatur im Gleichgewicht ist, kommt es in einem dy-
namischen System am Phasenübergang aus dem Gleichgewicht. An einem Phasenüber-
gang zweiter Ordnung nennt man dies kritische Verlangsamung. Sie führt dazu, dass das
Anwachsen der Korrelationslänge beschränkt ist, und somit jedes Fluktuationssignal er-
heblich abgeschwächt wird. Im Nichtgleichgewicht gibt es jedoch interessante Phänome-
ne am Phasenübergang erster Ordnung, die auf dermöglichen Unterkühlung des Systems
basieren.

Wir untersuchen beide Fragen:

• Wieviel von denGleichgewichtssignalen eines kritischen Punkts übersteht die Nicht-
gleichgewichtssituation eines dynamischen Systems?

• Wie stark können Nichtgleichgewichtseffekte am Phasenübergang erster Ordnung
in einer Schwerionenkollision entwickelt werden?

Zu diesem Zweck entwickeln wir einen gekoppelten Nichtgleichgewichtsansatz, der auf
dem linearen Sigmamodell mit Konstituentenquarks beruht. Dieses Modell wird vielfach
zur Beschreibung der dynamischen Brechung der chiralen Symmetrie verwendet.

Chirale Fluiddynamik I

Inspiriert durch den Erfolg fluiddynamischer Beschreibungen von Schwerionenkollisio-
nen reduzieren wir die Dynamik der Quarkfelder zu einer Propagation von Dichten ge-
mäß Energie- und Impulserhaltung. Das Sigmafeld wird hingegen als Ordnungsparame-
ter des chiralen Phasenübergangs explizit propagiert. In einem ersten Ansatz verwen-
den wir hierfür die deterministische klassische Euler-Lagrange Bewegungsgleichung. Sie
besitzt einen nichttrivialen Quellterm, der über die Temperatur von der Expansion der
Quarkflüssigkeit abhängt. Die Zustandsgleichung erhalten wir durch das thermodynami-
sche Potenzial in Mittlerer-Feld-Näherung, das explizit vom lokalen Wert des Sigmafelds
abhängt. In den Gleichungen der relativistischen Fluiddynamik finden wir einen Quell-
term, der den Energie-Impuls-Austausch zwischen Feld und Flüssigkeit beschreibt. In der
numerischen Simulation sehen wir, dass die Expansion und Kühlung der Quarkflüssig-
keit das System durch den Phasenübergang führt. Das Sigmafeld erhält hier einen endli-
chen Erwartungswert, aber starke Oszillationen verhindern das Erreichen dieses Gleich-
gewichtszustands. Dieses Verhalten ist darauf zurück zu führen, dass Relaxationsprozes-
se in einer einfachen deterministischen Bewegungsgleichung im Sinne der klassischen
Mechanik nicht enthalten sind. Diese Ergebnisse finden sich in Kapitel 4. Das Haupt-
augenmerk dieser Arbeit liegt auf der Erweiterung der chiralen Fluiddynamik um eine
konsistente Beschreibung von Nichtgleichgewichtseffekten am Phasenübergang.
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Selbstkonsistente Kopplung von Feld und Flüssigkeit

Um eine selbstkonsistente Kopplung der relaxierenden und expandierenden Dynami-
ken des Feldes und der Flüssigkeit herzuleiten wenden wir in Kapitel 5 zwei Metho-
den der Nichtgleichgewichtsquantenfeldtheorie an, das Influenzfunktional und die zwei-
Teilchen irreduzible (2PI) effektive Wirkung. Erstere hat breite Anwendung in Nicht-
gleichgewichtsstudien der Φ4-Theorie, von Eichtheorien und O(4)-Modellen gefunden.

Wir berechnen das Influenzfunktional für das lineare Sigmamodell mit Konstituenten-
quarks perturbativ. Es enthält damit die gesamte Wechselwirkung zwischen dem Sigma-
feld und dem lokalen Wärmebad der Quarks. Hieraus erhalten wir einen Dämpfungs-
term und ein stochastisches Feld in der Bewegungsgleichung des Sigmafelds. Innerhalb
dieser Methode ist es jedoch nicht ohne Weiteres möglich die lokalen Gleichgewichtsei-
genschaften der Quarkflüssigkeit konsistent herzuleiten. Deshalb berechnen wir im Wei-
teren die 2PI effektive Wirkung. Der große Vorteil ist, dass in den zu berücksichtigenden
Diagrammen bereits die vollen Propagatoren stehen, und somit große Klassen an Dia-
grammen summiert sind. In diesem Formalismus ist es möglich Transportgleichungen
herzuleiten, für die die makroskopischen Erhaltungssätze erfüllt sind, konsistente Gleich-
gewichtseigenschaften zu erhalten und die thermodynamischen Relationen zwischen die-
sen zu bewahren. Man erhält gekoppelte Gleichungen für das mittlere Sigmafeld und die
vollen Propagatoren der Quarks. Um diese allerdings zu lösen muss man weitere Nä-
herungen einführen. Es gelingt uns die vollständige Langevin-Bewegungsgleichung für
das mittlere Sigmafeld herzuleiten, deren Dämpfungs- und Rauschterm mit denen aus
der Influenzfunktionalmethode übereinstimmen. Da wir vor allem an den langreichwei-
tigen Fluktuationen interessiert sind, berechnen wir den Dämpfungskoeffizienten für die
Nullmode des mittleren Sigmafelds explizit. Hier finden wir, dass, obwohl der Farbein-
schluss in dem Modell nicht vorkommt, unterhalb des Phasenübergangs, wo die Quarks
durch die Symmetriebrechung eine Masse erhalten, der Zerfall des Sigmamesons in ein
Quark-Antiquarkpaar kinematisch nicht mehr möglich ist. Generell sollte hier die Wech-
selwirkung der langwelligen Moden mit den kurzwelligen Moden der chiralen Felder
zu weiteren Dämpfungsprozessen führen. Im Speziellen ist das für das Sigmameson der
Zerfall in zwei Pionen.

Darüberhinaus erhaltenwir den lokalen Druck der Quarkflüssigkeit und können für diese
aus der Schwinger-Dyson Gleichung für den vollen Propagator die Gleichungen der re-
lativistischen Fluiddynamik ableiten. Entscheidend ist nun, dass für die exakte Lösung
der gekoppelten Gleichungen bei vorgegebener 2PI effektiven Wirkung ein erhaltener
Energie-Impulstensor hergeleitet werden kann. Die gemachten Näherungen erzeugen je-
doch weitere Terme, die zum einen eine Korrektur zum Quarkanteil liefern, zum anderen
von der Dissipation des mittleren Sigmafelds stammen. Letztere führt zu einer Korrektur
über den herkömmlichen (siehe Kapitel 4) Anteil des Quellterms in den fluiddynamischen
Gleichungen hinaus und beschreibt somit den Energietransfer aus dem Feld in die Flüs-
sigkeit, zu der es aufgrund der Dämpfung während des Relaxationsprozesses kommt. In
der numerischen Umsetzung müssen wir schauen, ob die Korrekturen des Quarkanteils
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klein sind und ihre Vernachlässigung dadurch gerechtfertigt ist.

Äquilibrierung und Relaxationszeiten

In Kapitel 6 untersuchen wir zunächst das Relaxationsverhalten des mittleren Sigma-
felds bei einem globalen, d.h. räumlich homogenen, und isothermen Wärmebad. In der
Langevin-Gleichung verwenden wir in dem kinematisch erlaubten Bereich den berechne-
ten Dämpfungskoeffizienten aus Abbildung 5.2, wo die Masse der Quarks und des Sig-
mamesons über die Gleichgewichtswerte des mittleren Sigmafelds bestimmtwerden. Ver-
schwindet dieser Dämpfungskoeffizient, verwenden wir einen konstanten Dämpfungs-
koeffizienten, der als Ergebnis von Berechnungen in der gebrochenen Phase des O(4)-
Modells motiviert ist.

Wir initialisieren das Sigmafeld oberhalb der Phasenübergangstemperatur im Gleichge-
wicht mit demWärmebad bei vorgegebener Temperatur und lassen diese dann instantan
auf verschiedene Werte absinken. Der Relaxationsprozess verläuft sehr unterschiedlich
für die verschiedenen Phasenübergangsszenarien. In der Nähe der Übergangstemperatur
am Phasenübergang erster Ordnung, wo das Potenzial zwei Minima aufweist, beobach-
ten wir die Phasenkoexistenz. Ein Teil des Systems befindet sich im globalen Minimum,
während der andere Teil im lokalen Minimum ist. Die Relaxationszeiten sind sehr lang.
Direkt an der Phasenübergangstemperatur befinden sich ungefähr gleich große Teile des
Systems in den entarteten Minima.

Das Potenzial in einem Szenario mit einem kritischen Punkt hat nur ein Minimum. Bei
der kritischen Temperatur wird es extrem flach. Hier zeigt sich, dass die Relaxationszeit
sehr viel länger ist und selbst nach sehr großen Zeiten das System noch nicht relaxiert ist.

Im Folgenden untersuchen wir die Energiebilanz des Felds während des Relaxations-
prozesses. Einerseits verliert das Feld Energie durch die Dissipation. Dies wird durch
den Dämpfungsbeitrag im hergeleiteten Quellterm der fluiddynamischen Gleichungen
beschrieben. Darüber hinaus erhält das System Energie durch das stochastische Feld. Die-
ser Beitrag lässt sich ermitteln, indem man sich nach jedem Zeitschritt die Feldenergie
anschaut und mit der dissipierten Energie vergleicht. Die Differenz ist dann die Energie-
zufuhr vomWärmebad ins Feld. Aufgrund des Dissipations-Fluktuationstheorems heben
sich diese beiden Beiträge im Gleichgewicht auf. Während des Relaxationsprozesses hat
die Energiedissipation ein Maximum. Dieser Nettoenergiefluss vom Feld muss ins Wär-
mebad gehen. Nun erweitern wir das Modell um diesen Effekt der Rückreaktion auf das
Wärmebad und untersuchen erneut das Relaxationsverhalten des gekoppelten Systems.
Wieder initialisieren wir das Feld im Gleichgewicht bei einer Temperatur oberhalb der
Phasenübergangstemperatur und senken diese dann abrupt ab. Mit dieser neuen Tempe-
ratur berechnen wir nun über die Zustandsgleichung die Energiedichte des Wärmebads.
Durch den dissipativen Energiefluss vom Feld in das Wärmebad heizt diese sich auf, wor-
aufhin sich das effektive Potenzial des Felds ändert und so wiederrum den Relaxations-
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verlauf beeinflusst. In einem Szenario mit einem Phasenübergang erster Ordnung wird
das Wärmebad so stark aufgeheizt, dass der Phasenübergang erneut in die Hochtempe-
raturphase überquert wird. Da das System zu diesem Zeitpunkt bereits in das Minimum
der Niedrigtemperaturphase relaxiert ist und der weitere Energiefluss lokal einer Rela-
xations ins globale Minimum entgegen wirkt, bleibt das System für alle untersuchten,
großen Zeiträume im lokalen Minimum. Für ein anfängliches Absinken auf sehr niedri-
ge Temperaturen relaxiert das Gesamtsystem auf eine Temperatur, bei der das Feld im
Gleichgewicht ist. Für ein Szenario mit einem kritischen Punkt relaxiert das Feld immer
bei der Endtemperatur des Wärmebads. Kommt diese in die Nähe der kritischen Tempe-
ratur, so beobachten wir erneut den Effekt der kritischen Verlangsamung, nämlich sehr
große Relaxationszeiten.

Chirale Fluiddynamik II

Zur vollständigen Beschreibung der chiralen Fluiddynamik berücksichtigen wir in Kapi-
tel 7 zusätzlich die fluiddynamische Expansion der Quarkflüssigkeit. Hierfür wählen wir
einfache Anfangsbedingungen, die aber die Überlappregion einer Kern-Kern-Kollision
im Wesentlichen nachbilden. Dazu initialisieren wir das Feld im Gleichgewicht. Für je-
des Phasenübergangsszenario untersuchen wir die Expansion mit verschiedenen Dämp-
fungskoeffizienten: zwei konstantenWerten und einem temperaturabhängigen. Letzterer
besteht im kinematisch erlaubten Bereich aus demDämpfungskoeffizienten in Abbildung
5.2. Ist die Sigmamasse zu klein für den Zerfall in ein Quark-Antiquarkpaar, so kann das
Sigmameson noch in zwei Pionen zerfallen und daher eine Dämpfung erfahren. Wenn
die Sigmamasse auch hierfür zu klein ist, wie es am kritischen Punkt der Fall ist, so ver-
schwindet der Dämpfungskoeffizient.

Wir überzeugen uns in allen beschriebenen Szenarien, dass auch in dem dynamischen
Modell die Gesamtenergie während der Expansion sehr gut erhalten ist. Beim Betrach-
ten einzelner Komponenten sieht man sehr schön, dass die Energie aus dem Feld in die
Quarkflüssigkeit dissipiert.

Die Zeitentwicklung des Sigmafelds, der Temperatur und der Energiedichte sind quali-
tativ sehr unterschiedlich für die verschiedenen Dämpfungs- und Phasenübergangssze-
narien. Am Phasenübergang erster Ordnung finden wir die Effekte der Unterkühlung
des Systems und das Aufheizen der Quarkflüssigkeit, so dass auch in dem gekoppelten
System die Phasenübergangstemperatur wieder überschritten wird. Durch die weitere
Expansion der Quarkflüssigkeit relaxiert das mittlere Sigmafeld schließlich zum Vaku-
umserwartungswert.

Wir untersuchen für alle Szenarien die Intensität der Fluktuationen des Sigmafelds. Zu
späteren Zeiten, wenn Nichtlinearitäten klein sind, ergibt sie die Anzahl der aus dem
kohärenten Zerfall des Felds produzierten Sigmamesonen. Wir finden, dass die Nicht-
gleichgewichtseffekte in einem Szenario mit einem Phasenübergang erster Ordnung die
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Intensität dieser Fluktuationen stark erhöhen gegenüber einem Szenario mit einem kriti-
schen Punkt. Wir zeigen die Spektren des transversalen Impulses der Sigmamesonen.

Die Korrelationslänge in einem Szenario mit einem kritischen Punkt kann dynamisch be-
rechnet werden. Wir finden ein leichtes Anwachsen am Phasenübergang.

Schließlich berechnen wir während der Expansion die Impulsanisotropie. Für einen tem-
peraturabhängigen Dämpfungskoeffizienten ist diese in einem Szenario mit einem Pha-
senübergang erster Ordnung kleiner als für ein Szenario mit einem kritischen Punkt.

Zusammenfassung und Ausblick

Die wesentlichen Errungenschaften dieser Arbeit sind die folgenden:

• Die Entwicklung eines vollständigen und selbstkonsistenten quantenfeldtheoreti-
schen Ansatzes zur dynamischen Untersuchung von Phasenübergängen im Nicht-
gleichgewicht.

• Die erfolgreiche Untersuchung von Nichtgleichgewichtseffekten am Phasenüber-
gang innerhalb einer realistischen fluiddynamischen Entwicklung einer Schwerio-
nenkollision. Wir konnten die Phänomene der Unterkühlung, des Aufheizens und
der kritischenVerlangsamung untersuchenund zeigen, dass die Intensität derNicht-
gleichgewichtsfluktuationen am Phasenübergang erster Ordnung stark anwächst.

Über die Verbesserung des verwendeten Modells hinaus, wie die Betrachtung bei end-
lichen baryonischen Dichten und die Einbeziehung der Polyakov-Schleife, werden wir
in zukünftiger Arbeit die Pionen berücksichtigen. Diese sind einerseits wichtig als ex-
plizit propagierte Freiheitsgrade, andererseits spielen sie eine wichtige Rolle bei zusätz-
lichen Dämpfungsprozessen des mittleren Sigmafelds. Darüber hinaus ist es interessant
vollständige Pionenspektren zu errechnen, also auch das Wärmebad durch Ausfrieren in
Pionen zu überführen. So sollten in Zukunft auch Fluktuationen zwischen verschiedenen
Kollisionen zu untersuchen sein.
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