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Abstract

Background: The Radical-Pair-Model postulates that the reception of magnetic compass directions in birds is based on spin-
chemical reactions in specialized photopigments in the eye, with cryptochromes discussed as candidate molecules. But so
far, the exact subcellular characterization of these molecules in the retina remained unknown.

Methodology/Principal Findings: We here describe the localization of cryptochrome 1a (Cry1a) in the retina of European
robins, Erithacus rubecula, and domestic chickens, Gallus gallus, two species that have been shown to use the magnetic field
for compass orientation. In both species, Cry1a is present exclusively in the ultraviolet/violet (UV/V) cones that are
distributed across the entire retina. Electron microscopy shows Cry1a in ordered bands along the membrane discs of the
outer segment, and cell fractionation reveals Cry1a in the membrane fraction, suggesting the possibility that Cry1a is
anchored along membranes.

Conclusions/Significance: We provide first structural evidence that Cry1a occurs within a sensory structure arranged in a
way that fulfils essential requirements of the Radical-Pair-Model. Our findings, identifying the UV/V-cones as probable
magnetoreceptors, support the assumption that Cry1a is indeed the receptor molecule mediating information on magnetic
directions, and thus provide the Radical-Pair-Model with a profound histological background.
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Introduction

The magnetic compass of birds was first described in the 1960s

for European robins, Erithacus rubecula, a small passerine migrant

[1]. Since then, this compass mechanism has been demonstrated

in a variety of migratory and non-migratory birds of different

orders [2], among them the domestic chickens, Gallus gallus [3].

According to behavioral experiments, it is an ‘inclination compass’

based on the axial course of the field lines rather than on their

polarity, and it is light-dependent, requiring light in the short-

wavelength part of the spectrum (see [2] for review).

How birds perceive magnetic directions remained largely

unknown. Several hypotheses were forwarded; the one presently

favored is the Radical Pair Model by Ritz and colleagues [4]: it

proposes that photon absorption in specialized receptor molecules

leads to an electron transfer and the formation of radical pairs.

These occur in two states, singlet and triplet, which are in a

chemical balance that depends on the alignment of the receptor

molecules in the magnetic field. To obtain information on

magnetic directions, the singlet or triplet yield in the various

spatial directions would have to be compared. Hence, for a

magnetic compass based on radical pair processes, three crucial

requirements must be fulfilled: (1) light has to reach the receptor

molecules to induce the formation of radical pairs, (2) the

arrangement of the receptor cells has to cover all spatial directions

to allow the comparison of the respective singlet or triplet yields,

and (3) within any one receptor cell, all receptor molecules have to

be aligned in the same direction to act as a functional unit. The

eye with its spherical shape meets the first conditions and was

therefore suggested as site for magnetoreception [4]. This has been

supported by experimental evidence: magnetoreception is indeed

mediated by the eye [5], and, by using radio frequency fields as

diagnostic tools, the underlying mechanism could be identified as

radical pair process [6–8].

Ritz and colleagues [4] already discussed cryptochromes as

suitable candidates for the receptor molecules. Cryptochromes are

blue light-sensitive flavoproteins that can form radical pairs [9,10];

they are related to the photolyases which catalyze DNA repair in

plants via electron transfer [11]. Cryptochromes were first identified

in plants, but then also found in animals, where they are e.g.

involved in the circadian clock [12,13]. Cryptochrome-controlled

processes were found to be affected by magnetic fields [14,15],

indicating that this molecule has the potential to mediate magnetic

information. A study subjecting birds to different radio-frequencies
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and intensities revealed features of the receptor molecule that would

be met by cryptochrome [8].

Cryptochromes have been reported in the retina of several bird

species, among them domestic chickens [16] and migratory

passerines [11,17,18]. Two forms of cryptochrome 1, Cry1a and

Cry1b, which are splice products of the same gene, and

cryptochrome 2 were identified [17]. Yet presence in the retina

is only one prerequisite for cryptochrome to serve as receptor

molecule for magnetic compass information; the other require-

ments mentioned above must also be met. It is therefore important

to determine which of the cryptochromes forms the crucial radical

pairs and where within the eye and also where inside the respective

cells this cryptochrome is located.

Cryptochrome 2 seemed a less plausible candidate, because its

sequence contains a nuclear localization signal [17,18], which is

not characteristic for a receptor molecule. The two forms of

cryptochrome 1, in contrast, are cytosolic. They are not trans-

membrane proteins, but they could be fixed to a membrane or to

the cytoskeleton to keep them in a specific alignment. We therefore

focused our search on the two forms of cryptochrome 1. In the

present paper, we report that Cry1a is located in the retina in a

way that is in accordance with a function as magnetoreceptor

molecule [4]. Our study involves two bird species, domestic

chickens and European robins. The two are not closely related,

show marked differences in behavior and habitat, but have the

same type of magnetic compass mechanism [2,3].

Results

Quantitative comparison of the immunolabeling intensity of

retinae sampled at different times of day and at different seasons

did not indicate any differences between these samples. Further-

more, there were no obvious difference between the right and the

left eye. This was true for chickens and robins alike. Hence we

here show only one representative example of each of the data sets.

The results in both species were the same: Cry1a was found in

one specific population of very slender photoreceptors of the single

cone type (Fig. 1). Double labeling with the Cry1a antiserum and

the UV/V opsin antiserum showed that this receptor is the UV/V

(SWS1) cone, which has a higher population density in robins than

in chickens (Fig. 1). Birds have four color cone types [19]; the long

wavelength-sensitive (LWS) cones did not contain Cry1a labels

and the same appears to hold for the other two cone types (SWS,

MWS). Cry1a was found only in UV/V cones, and all these cones

contained Cry1a in chickens as well as in robins. Avian cone outer

and inner segments are clearly separated by an oil droplet; in these

cones, Cry1a label was present in the outer, but not in the inner

segment (Fig. 1A,C). Since Cry1a occupied a smaller region within

the outer segment than the opsin, it may appear as if in the section

shown in Fig.1C some UV/V cones do not contain Cry1a.

However, focusing through the section and the flat view in the

whole mounts clearly showed that Cry1a label was present in

every UV/V cone. The topographic distribution of the Cry1a-

containing cone was assessed in flattened whole retinae, showing

that these cones were present across the entire retina in both

species, with no obvious density peaks (Fig. 1B,D).

A further demand to act as receptor molecule for magnetic

directions is a uniform alignment of the Cry1a molecules within

the receptor cell. The outer segment is composed of disc

membranes, a highly ordered structure offering a scaffold for

such an orderly alignment. Immuno-electronmicroscopy was used

to assess whether Cry1a is associated with structures of the outer

segment. In electron micrographs, the oil droplet between the

inner and outer segment of the cones was visible (Fig. 2A). Cry1a

label was found in highly ordered bands alongside some disc

membranes of the outer segment of a special very slender cone

type (Fig. 2A,B,C), that morphologically corresponds to the UV/V

cone identified by light microscopy. At the base and in the middle

of the outer segment, Cry1a-labelled zones alternated with

unlabelled zones, which resulted in a striped pattern. The observed

orderly array suggests that Cry1a could be bound to the

membranes. Another aspect of the localization of Cry1a in the

outer segment is also visible in the electron micrographs: Cry1a

label was extending to the outer membrane limiting the receptor

on the side of the connecting cilium where the proteins are

transported from the inner to the outer segment, but not on the

opposite side (Fig. 2B). Like in the light microscopic staining,

Cry1a was immuno-labeled only in the outer segment, not in the

inner segment (see Discussion and supplemental Fig. S1).

The ordered arrays of Cry1a along the membrane discs in the

outer segment seen at the electron microscope indicated that this

protein could be membrane-bound. Hence we subjected chicken

and robin retinae to a differential cell fractionation protocol. The

increasing dissolving strength of the buffers separates cytosolic,

membrane, nuclear and cytoskeleton fractions. In both species,

Cry1a was detected in the cytosolic and membranous fraction

(Fig.2 D,E). In line with the electron microscopy data, this suggests

that soluble, cytosolic Cry1a is recruited and then probably bound

to membranes.

Discussion

The present study demonstrates that Cry1a is located in the outer

segment of all UV/V cones in the retina of chickens and robins.

This cone type is distributed across the entire retina. The ultra-

structural analysis suggests that Cry1a is associated with the disc

membranes, which is supported by the subcellular fractionation

data showing Cry1a in the membrane fraction in both species.

Location of Cry1a
Light and electron microscopic immuno-labeling showed Cry1a

in the outer segments of the UV cones, but not inside the inner

segment, where all proteins, including Cry1a and the opsins, are

synthesized. Possibly, Cry1a is present in the inner segment only in

concentrations too low for detection by the anti-Cry1a antiserum,

or it is in a configuration that does not allow the antiserum to bind.

Similarly, the UV/V opsin was immuno-labeled in the outer

segment only, so this may not be an uncommon phenomenon.

Alternatively, Cry1a formation in the inner segment and its

transport to the outer segment did not take place at the time of

retina fixation. Rod and cone outer segment renewal, by disc

addition at the basal end and disc shedding at the apical end, is

known to underlie a circadian rhythm. This could also explain the

Cry1a bands seen in the outer segment, reflecting alternating

active and inactive phases of moving Cry1a to the disks. Young

[20] estimated chicken cones to renew ca. 40 discs per day, with a

peak renewal phase early in the dark period (see also [16]). The

Cry1a bands in our material have a closer spacing than 40 discs,

which may suggests several daily production peaks, or a different

renewal rate in UV/V cones.

We found no indications that Cry1a is released from the outer

segment. Apparently, Cry1a is not transported from the photore-

ceptor to the pigment epithelium, as is the retinal of the visual

pigments – retinal cannot be re-isomerized within the photoreceptor

cells, but has to be transported into the pigment epithelium for

regeneration. In case of magnetoreception by cryptochrome, the

situation is different insofar as not photoreduction, but re-oxidation

appears to be the crucial reaction mediating compass information

Avian UV/V Cones as Magnetoreceptors
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[8]. Hence the re-oxidation process has to take place within the

photoreceptor to induce an output signal. At the apex, however,

where the photoreceptor outer segment is decomposed, this involves

the entire membrane with all proteins.

The Radical Pair Model of magnetoreception [4] requires that

the receptor molecules within any one cell be all aligned in the

same direction to act as a functional unit. This requirement

appears to be met, as Cry1a seems to be arranged along the

membranes of the disks. Such proteins can usually move or rotate

to some degree; calculations by Hill and Ritz [21] indicate that a

certain amount of movements is permitted without disrupting the

receptor function.

Figure 1. Immuno-labeling for Cry1a and UV cone opsin, and their co-localization in the retina. (A), Vertical section of chicken retina; (B),
whole mount of chicken retina; (C), vertical section of European robin retina; (D), whole mount of robin retina. The different layers in the vertical
sections are indicated: 1 outer and inner segments of the photoreceptors with the oil droplets in between; 2 outer nuclear layer; 3 outer plexiform
layer; 4 inner nuclear layer; 5 inner plexiform layer; 6 ganglion cell layer. Left column: (A1 to D1): Cry1a immunofluorescence (rendered in green) is
inside the outer segment of a very slender photoreceptor type. Middle column: (A2 to D2): UV/V cone opsin immunofluorescence (rendered in blue)
in the same section. Right column: (A3 to D3): Merge of the images, indicating that Cry1a and the UV/V cone opsin co-localize. In robins, the the
population density of the Cry1a/UV appers to be higher than in chickens.
doi:10.1371/journal.pone.0020091.g001
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While we find Cry1a only in the outer segments of the UV/V

cones, Mouritsen et al. [18] reported cryptochrome 1 in the

ganglion cell layer of migrating garden warblers, Sylvia borin. That

study used a commercial antibody for cryptochrome 1 that would

label Cry1a and Cry1b alike. Hence, rather than indicating a

species difference, it seems most likely that the cryptochrome 1

signal in the ganglion cells represented Cry1b.

The UV/V Cones as Magnetoreceptors
The observation that Cry1a is found in only one type of

photoreceptor cell, the UV/V cone, was rather unexpected. Of

the four avian single cone types, the UV/V cone covers the short-

wavelength end of the visual spectrum. Incidentally, the so-called

‘UV/V cone’ with the SWS1 opsin is probably tuned to ultraviolet

light in robins, but to violet light in chickens [19]. The UV/V

cones, comprising about 9% of the cones in chickens and a

somewhat different percentage in other species [22], are rather

evenly distributed across the entire retina [23]. The present data

confirm that the UV/V cones are regularly arranged. There is no

location in the retina where UV/Cry1a-containing receptors are

particularly densely packed – a special center for magnetorecep-

tion, something like a ‘magnetic fovea’, does not exist. This is in

accordance with the Radical Pair Model [4] where a rather even

distribution of magnetoreceptor cells over the entire retina is

postulated. Assuming that the location and binding of the Cry1a

protein is identical in all UV/V cones, their distribution within the

spherical shape of the eye ensures that the radical pairs formed by

Cry1a are in different alignments with the geomagnetic field –

according to their orientation with respect to the field lines, their

singlet/triplet ratio would differ. The assumed centrally symmetric

activation pattern on the retina illustrated by Ritz and colleagues

[4] thus does not seem unrealistic. If the birds turn their heads, this

magnetic field-induced activation pattern would shift as a whole

across the retina, so that the direction of the magnetic field can be

detected independent of the birds’ position.

The association of magnetoreception and ultraviolet/violet

vision suggests an interrelationship between the two and raises

the question whether magnetoreception is affected by the visually

induced activity of the UV/V cones. Behavioral tests with

migratory European robins under dim monochromatic light have

shown that the birds were well oriented in their migratory

direction under light from the entire short-wavelength range of the

spectrum, indicating that their magnetic compass worked properly

from below 372 nm UV to 565 nm green [24]. The spectral

emission of the green diodes (LEDs) used in these studies

(measured with Spectrometer 16-001293, Dual Faseroptik), does

not contain any light in the range to which the UV/V cone could

have responded. This indicates that magnetic directional infor-

mation is mediated regardless of whether the UV cone opsin is

light-activated or not – in the initial stage, magnetoreception

seems to occur independent of UV vision.

Another observation supports this idea: When the intensity of

monochromatic lights was increased above certain levels in the

behavioral tests, the robins failed to orient properly [25],

indicating an interference with their magnetic compass. This was

observed under bright UV, blue and green light alike. That is, a

strong activation of the UV cones, but also a strong activation of

the green cones with the UV cones not activated, disrupts the

function of the magnetic compass in a similar way. These effects,

restricted to monochromatic lights as rather unnatural stimuli,

Figure 2. Electron-microscopic image and Western blots. (A) Outer segment of a long, slender cone photoreceptor of the chicken retina, with
the large oil droplet visible at the base and the connecting cilium (marked by the arrow) on the left. Cry1a, labeled with diaminobenzidin and silver
intensification, is visible as dark dots along the disc membranes. (B) Higher magnification of the lower part of the outer segment in (A). Cry1a is found
along some, but not all disks. At the left side with the connecting cilium, Cry1a is transported to the outer segment, where it is to bind to the
membranes. (C) Outer segment of a cone photoreceptor of the robin retina, also showing ‘bands’ of Cry1a label. Western blot of robin (D) and of
chicken retina (E), respectively. F1, cytosolic fraction; F2, membrane fraction; F3; nuclear fraction, F4, cytoskeletal fraction, T, tongue tissue from the
same bird as control. Cry1a is found in the cytosolic and the membrane fraction in both species. Markers for the different fractions shown for chicken:
(E1) Protein Kinase C for cytosolic, (E2) E-cadherin for membrane, (E3) Histon H3 for nuclear in chicken, (E4) Actin for cytoskeletal fractions (35). The
markers show that F1 and F2 are free from other fractions (see Protein Kinase C and E-cadherin). E-cadherin is also bound to the actin cytoskeleton in
F4, but a low ‘spill-over’ in F3 is visible. The same is true for Actin, the control for the cytoskeletal fractions. Histon H3 is in F3 but also in F4, because of
its high abundance in the cell lysate.
doi:10.1371/journal.pone.0020091.g002
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suggest that the primary magnetoreception processes themselves

are largely independent of the visual activation of the cones, and

indicate interferences at higher processing levels [25].

This leads to the question of how the radical pair mechanism of

Cry1a generates the signal that mediates magnetic information.

Vertebrate photoreceptors have ion channels for Na+ and Ca2+ that

are kept open by cyclic GMP, and the resulting dark current leads to

slight depolarization. When the opsin is activated by photon

absorption, the G-protein Transducin starts the signaling cascade

that closes the ion channels and hyperpolarizes the receptor. To

transmit information on magnetic directions indicated by the

amount of Cry1a singlets or triplets, the radical pair mechanism

could either independently use the signaling cascade of UV/V

opsin, or it could have a separate signaling pathway that affects the

state of the ion channels in the outer membrane.

Separating Visual and Magnetic Input
Identifying the UV/V cones as magnetoreceptors raises the

crucial question about the perceptual separation of visual and

magnetic information. At the photoreceptor level, the activation of

the Cry1a molecule is combined with that of the UV/V opsin to a

single output of the UV/V cone. Consequently, mechanisms are

needed to separate the two components of the common signal for

further processing. Zapka and colleagues [26] recently speculated

that if the detection of magnetic directions and daytime vision

occurred in the same type of photoreceptors, high light-induced

activation might override or mask the magnetic compass, and

considered the possibility of a second receptor mechanism for

magnetoreception during the day. However, when birds use their

magnetic compass under ‘white’ light of high intensity with all four

cone types activated, the primary processes of magnetoreception

are the same radical-pair processes as at night, as indicated by the

disrupting effect of radio-frequency fields [3,6,27].

Several mechanisms are conceivable for separating magnetically

induced and visual output, which could be performed directly at

the retinal level or more centrally. A comparison of the output of

adjacent UV/V cones with and without cryptochrome can be

ruled out, because the present study shows that every UV/V cone

contains Cry1a. Yet other comparisons, e.g. with the blue cones,

seem possible, as there is some overlap in the excitation range of

these two cones. Too strong asymmetry of activation by the visual

stimulus, e.g. if one of the receptors were strongly activated and

the other hardly at all, would hamper this comparison. Yet the

wiring of the retinal network is highly complex, so other potential

mechanisms to extract magnetic information already at the retinal

level seem possible. In that case, however, the extracted magnetic

information should then be transferred to the higher centers by an

extra set of ganglion cells.

Alternatively, extraction of magnetic directional information

could take place at higher processing levels. There is no doubt that

the UV/V cones in birds are integrated fully in a tetrachromatic

color system [28]. According to the Radical-Pair-Model [4], the

output of the magnetoreceptors would lead to an orientation-

dependent distinct pattern of differential activation which overlays

the representation of the visual scene. Within the brain, candidates

for processing of complete retinal images as needed for extraction

of the magnetic information would be areas containing a

topographic retinal projection. Two such retinotopic maps have

been described [29], one within the optic tectum, where early

electrophysiological recordings indicated an involvement in

magnetic perception [30], and another one within the visual

Wulst, where a subdivision was found to be active during magnetic

orientation [26,31]. In principle, extraction of magnetic informa-

tion from neuronal maps could be performed on static images

employing low pass filtering, because the pattern induced by the

magnetic field has low spatial frequency transitions while the visual

scene mostly consists of high spatial frequencies. This idea is in

accordance with a recent finding that blurring of the visual image

eliminating higher spatial frequencies and adding lower ones leads

to a break-down of magnetic orientation [32].

Information provided during movement could also contribute,

making use of image slip on the retina, called ‘optic flow’ [33].

When movement is translational, e.g. plain forward, the magnetic

field-induced pattern remains the same, while the objects in the

visual field are expanding and moving towards the subject.

Mechanisms of separating moving and stationary objects are

known from figure-ground discrimination, and neurons solving

this task have been described in the optic tectum of birds [34].

Conclusions
Our findings show that Cry1a seems to fulfill essential require-

ments discussed by Ritz and colleagues [4] for the receptor

molecule of the magnetic compass mechanism in birds: it can form

long-lived radical pairs [10,11]; in the eye, it is exposed to light;

the Cry1a proteins are associated with the disc membranes,

suggesting that within one receptor cell, they are ordered in a way

that they can act as a unit. The observed presence of the UV/V

cones across the entire retina results in different alignments of the

Cry1a molecules with respect to the magnetic field lines. With this

distribution, Cry1a appears well suited to act as primary receptor

molecule for the detection of directional information from the

Earth’s magnetic field. Also, the observation that Cry1a is always

present, regardless of time of day and season, supports this role:

the magnetic compass is always ready to tell the birds directions for

whatever activity they may need this information.

One additional remarkable aspect is that Cry1a is restricted to

the UV/V cones in both chickens and robins. This is in agreement

with behavioral data indicating the same type of magnetic

compass for both species [2,3]. The two species belong to avian

lineages that separated already about 95 million years ago in the

late Cretaceous [35]. Hence our histological data also support the

idea of a very early evolution of the avian magnetic compass,

which seems to have taken place already in the Mesozoic in the

common ancestor of modern birds.

Materials and Methods

Birds and Tissue preparation
Animal acquisition and all procedures complied with the

German law and regulations on animal protection. Ethic

committee approval or a special permit are not required for

collecting tissues from chickens (see 1 4, section 3 of the

Tierschutzgesetz, the German law regulating the protection and

welfare of animals). Robins were taken under permit 7922-1.62-

EA 07-0005 issued by the Untere Naturschutzbehörde of the City

of Frankfurt am Main (ethics and natural protection committee of

the City of Frankfurt am Main).

Retinae of ten chickens and five robins were used for this study.

The samples of the chickens were collected in the morning or

around noon. Three samples of robins were collected at ca 18:30

in the evening while the birds showed migratory restlessness, one

at 8:00 during migration season, and the other at 12:00 noon

about 4 weeks after the end of migration.

For both light and electron microscopy, retinae were fixed in the

eyecup with 4% paraformaldehyde (PFA) in 0.1 M phosphate

buffered saline (PBS, pH 7.4) for 4 h at RT and then the PFA was

washed out with PBS. For light microscopic immuno-histochem-

istry, retinae were cryoprotected in an ascending series of sucrose

Avian UV/V Cones as Magnetoreceptors
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solutions (10%, 20%, 30% in PBS), and embedded in tissue

freezing medium (Sakura). 12–15 mm transverse sections were cut

on a cryostat and mounted on Super Frost Plus slides. The slides

were stored at 220uC until further processing. For whole mount

light microscopic immuno-histochemistry, the material was

processed soon after fixation. For electron microscopy, after

fixation and PBS wash retinae were embedded in agarose, and 60–

100 mm sections were cut with a vibratome. The sections were

treated free floating. They were first incubated in sucrose (10%,

20%, 30%), frozen three times in liquid nitrogen and then stored

at 220uC until use. For Western blot analysis, retinae were

directly disintegrated in RIPA buffer or, for cell fractionation,

transferred to the F1 buffer according to the ProteoExtractH
Subcellular Proteome Extraction Kit manual (Calbiochem) (see

below).

Primary antibodies used for immuno-histochemistry
The following antibodies were used:

1. Guinea pig Cry1a antiserum (designed in our laboratory and

produced by GENOVAC GmbH, Freiburg, Germany), raised

against amino acids 601–621 of Cryptochrome 1a: (C-)

RPNPE EETQS VGPKV QRQST (-N). This peptide

sequence is identical in robins and chicken [17,36]. Western

blotting showed the antiserum to be specific for Cry1a in robins

and chicken, other bird species were not tested.

2. Goat antiserum sc-14363 raised against a 20-aa N-terminal

epitope of the human S (blue) cone opsin (Santa Cruz

Biotechnology Inc., Santa Cruz, CA, USA), characterized by

[37]. Phylogenetically, the mammalian blue-sensitive S cone

opsin is homologous to the UV/V (SWS1) cone opsin of birds

[38]; its sequence is very similar to that of the avian UV/V

opsin, but not to other avian opsin sequences (see Table 1).

This is supported by the fact that another antiserum against

mammalian S opsin, CERN 933, also specifically labels

chicken violet (SWS1) cones [39].

3. Rabbit antiserum JH492 raised against a C-terminal epitope of

human M/L cone opsin (kindly provided by J. Nathans, Johns

Hopkins University School of Medicine, Baltimore; see [40]. In

birds, this antibody labels the LWS (red) cone opsin, but

reactions with the MWS (green) cone opsin cannot be excluded.

Light microscopic immuno-histochemistry
For light microscopic immuno-histochemistry, retinal pigment

epithelium adhering to the isolated retina was bleached using 5 ml

of 1.8% NaCl in aqua dest., 4 ml of 30% H2O2, 1 ml aqua dest., 1

drop NH3 for 20–30 min [41]. This made the flat-mounted

retinae transparent for microscopy without interfering with the

subsequent immuno-labeling. After bleaching and washing in PBS,

the retinae were pre-incubated with 10% normal donkey serum

(NDS) in 0.25% Triton X-100, 2% BSA in PBS for 60 min at RT.

Then the slides and the whole mounts were incubated with the

primary antibodies (anti-Cry1a 1:100, JH492 1:10,000; sc-14363

1:500) in 3% NDS, 0.25% Triton X-100, 2% BSA, in PBS

overnight at 4uC. After washing in PBS, the tissue was incubated

with appropriate secondary antibodies coupled to the fluorescent

dyes CY5 and CY3 (Dianova, Hamburg) in 3% NDS, 0.25%

Triton X-100, 2% BSA, in PBS for 1 h at RT. For whole mount

immuno-labeling, the pecten was removed for easier preparation

and the retinae were treated free floating. After staining, the

retinae were mounted photoreceptor side up on Super Frost Plus

slides and coverslipped with Aqua–Poly Mount (Polysciences

Europe). All slides were evaluated with a confocal laser-scanning

microscope (Zeiss Typ 510 META).

Several controls were performed to show the specificity of

immuno-labeling. For both antibodies against the cone opsins we

did only controls where we omitted the primary antibody. For

anti-Cry1a we did the following controls. A first control with pre-

immune serum taken before immunizing the animals showed that

there were no unspecific tissue reactions by other antibodies that

were already present in the immunized animals. The second

control was to omit the primary antibodies from the above

protocol, showing that the secondary antibodies reacted selectively

with the primary antibodies and produced no artifacts. The third

control was to combine guinea pig anti-Cry1a as primary antibody

with an anti-goat secondary antibody, and the goat antiserum sc-

14363 with an anti-guinea pig secondary antibody. This showed

for the double-labeling study that there was no cross-reactivity of

the primary antibodies with the inappropriate secondary antibod-

ies. A fourth control was performed with the Cry1a antibody and

the specific peptide that was used to produce the antibody. Before

applying the primary antiserum on the retina, it was blocked by

mixing it with this peptide. Here, any remaining label would

indicate that the Cry1a antibody additionally recognizes other

Table 1. Comparison of amino acid sequences.

Opsin Part of sequence GenBank

Epitope recognized by antiserum sc-14363 EFYLFKNISSVGPWDGPQYH

Gallus gallus, UV/V cone opsin (AA 6–25) DFYLFTNGS-VPGPWDGPQYH NP_990769.1

Gallus gallus, blue cone opsin (AA 13–37) DFYIPMALDAPNITALSPFLVPQTH NP_990848.1

Gallus gallus, green cone opsin (AA 8–30) NFYVPMSNKTGVVRSPFEYPQYY NP_990821.1

Gallus gallus, red cone opsin (AA 24–43) VFTYTNSNNTRGPFEGPNYH NP_990771.1

Serinus canaria, UV/V cone opsin (AA 5–24) EFYLFKNQSSVGPWDGPQYH CAB91993.1

Serinus canaria, blue cone opsin (AA 1–19) NLDTPNVTALSPFLVPQTH CAB91994.1

Serinus canaria, green cone opsin (AA 1–19) PMSNKTGVVRSPFEYPQYY CAB91995.1

Serinus canaria, red cone opsin (AA 1–19) FTYTNSNNTRGPFEGPNYH CAB91996.1

The amino acid sequence of the epitope of the mammalian SWS1 opsin recognized by antiserum sc-14363 and of the most similar sequences of the cone opsins in
chickens, Gallus gallus, and the Canary Serinus canaria, a passerine species are compared (cone opsins of European robins have not yet been sequenced). Sequence part
of the UV/V cone opsin corresponding to the epitome recognized by the antiserum, with identical amino acids given in bold.
doi:10.1371/journal.pone.0020091.t001
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epitopes than the immunizing peptides, or that there are other

antibodies in the serum that also bind to retinal structures. This

was not the case.

The controls are shown in Figure S2 in Supporting Information.

Pre-embedding immuno-electronmicroscopy
After pre-incubation in 10% normal goat serum (NGS) and 2%

bovine serum albumin (BSA) in PBS for 60 min at RT, retinal

vibratome sections were incubated with the primary antibody anti-

Cry1a 1:100 in 3% NGS, 2% BSA, in PBS over 3–4 days at 4uC.

The secondary antibody was a biotinylated anti-guinea pig IgG

(Vector laboratories, catalog nr. BA 7000) applied for 2 hours.

Then a peroxidase-based enzymatic detection system (Vectastain

Elite ABC kit; Vector) was used. For visualizing the antibody

bindings, the sections were treated with 0.025% diaminobenzidine

for 15 minutes. For amplification of the immune signal, a silver

intensification was used [42]. The sections were incubated in 0.5%

osmium tetroxide for 30 minutes at 4uC, dehydrated by an ethanol

series and propylene oxide and embedded in Agar Low Viscosity

Resin (Plano GmbH, Agar Scientific Limited, Essex). Ultra-thin

sections (50–60 nm) were cut with Ultra S microtome (Reichert,

Leica) and placed on copper grids, stained with uranyl acetate and

lead citrate and evaluated with a transmission electron microscope

(CM12, Philips, Hamburg). Here we also performed controls with

pre-immune serum and controls without the primary antibody.

Western blot and cell fractionation
Chicken retinae were dissociated in RIPA buffer (0.5% sodium

desoxycholate, 1% Nonidet P 40, 0.1% SDS, 1 mM EDTA in

PBS, supplemented with complete Protease Inhibitor (Roche) for

30 minutes on ice. Cell fractionation of robin and chicken retinae

was performed with the ProteoExtractH Subcellular Proteome

Extraction Kit (Calbiochem) according to the manufacturer’s

manual. Lysates were cleared by centrifugation, and 20 mg of

protein sample were subjected to 10% SDS-polyacrylamide gel

electrophoresis and electroblotted onto nitrocellulose membrane

for 2 hours at 180 mA. After blocking with 5% BSA, the

membranes were incubated with the guinea pig Cry1a antiserum

(1:500), followed by horseradish peroxidase-conjugated goat anti-

guinea pig IgG polyclonal antiserum (Dianova, Hamburg,

Germany). Immunoblots were visualized using a solution of

2.5 mM luminol, 0.4 mM p-coumaric acid, 100 mM Tris-HCl,

pH 8.5 and freshly added 0.009% H2O2.

Tongue of the respective birds, a tissue without cryptochrome,

was used as a control. Purity of fractions was tested by staining for

proteins such as Protein Kinase C (Santa Cruz Biotechnology Inc.,

Santa Cruz, CA, USA) for cytosolic, E-cadherin (clone 36, BD

Transduction Laboratories, Los Angeles, CA, USA) for membrane,

Histon H3 (Sigma, St. Louis, MO, USA) for nuclear and Actin

(Sigma Aldrich, Munich, Germany) for cytoskeleton fractions.

Supporting Information

Figure S1 Electron-microscopic image of the inner segment of a

Cry1a-immunoreactive cone in the chicken retina.

(PDF)

Figure S2 Controls for the immuno-labelling

(PDF)
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5. Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002)

Lateralization of magnetic compass orientation in a migratory bird. Nature

419: 467–470.

6. Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance
effects indicate a radical-pair mechanism for avian magnetic compass. Nature

429: 177–180.

7. Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W (2005) Magnetic

compass orientation of migratory birds in the presence of a 1.315 MHz
oscillating field. Naturwissenschaften 92: 86–90.

8. Ritz T, Wiltschko R, Hore PJ, Rodgers CT, Stapput K, et al. (2009) Magnetic

compass of birds is based on a molecule with optimal directional sensitivity.

Biophys J 96: 3451–3457.

9. Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer
in a cryptochrome blue-light photoreceptor. Nature Struct Biol 6: 489–490.

10. Liedvogel M, Maeda K, Henbest K, Schleicher E, Simon T, et al. (2007)

Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and

forms long-lived radical-pairs. PLoS ONE 2: e1106.

11. Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with
characteristics of a blue-light photoreceptor. Nature 366: 162–166.

12. Sancar A (2003) Structure and function of DNA photolyase and cryptochrome

blue-light photoreceptors. Chem Rev 103: 2203–2237.

13. Lin C, Todo T (2005) The cryptochromes. Genome Biol 6: 220.1–220.9.

14. Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W (2007) Magnetic

intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta
225: 615–624.
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