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Abstract. In this paper we analyze the semantics of a higher-order
functional language with concurrent threads, monadic IO and synchro-
nizing variables as in Concurrent Haskell. To assure declarativeness of
concurrent programming we extend the language by implicit, monadic,
and concurrent futures. As semantic model we introduce and analyze
the process calculus CHF, which represents a typed core language of
Concurrent Haskell extended by concurrent futures. Evaluation in CHF
is defined by a small-step reduction relation. Using contextual equiva-
lence based on may- and should-convergence as program equivalence, we
show that various transformations preserve program equivalence. We es-
tablish a context lemma easing those correctness proofs. An important
result is that call-by-need and call-by-name evaluation are equivalent in
CHF, since they induce the same program equivalence. Finally we show
that the monad laws hold in CHF under mild restrictions on Haskell’s
seq-operator, which for instance justifies the use of the do-notation.

1 Introduction

Futures are variables whose value is initially not known, but becomes avail-
able in the future when the corresponding computation is finished (see
e.g. [BHT7/Hal85]). For functional programming languages the call-by-need eval-
uation implements futures (implicitly) on the functional level, since shared ex-
pressions are evaluated at the time their value is demanded. Nevertheless in this
paper we will consider concurrent futures on the imperative level in the functional
programming language Haskell [Pey03].
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The futures presented in this paper are concurrent, since the computation
necessary to obtain the value of a future is performed in a concurrent thread. We
consider the imperative level, since the value of a future is obtained by performing
stateful programming, i.e. it is performed as a monadic computation in Haskell’s
I0-monad (see e.g. [PW93|Wad95[Pey01]).

One also distinguishes between ezplicit futures, i.e. where the value of a
future must be explicitly forced and implicit futures where the value is computed
automatically if the value is demanded by data dependency, i.e. there is no need
to explicitly force the future.

We will see below that explicit futures can be implemented in Concurrent
Haskell while implicit futures need some primitives which are outside the Con-
current Haskell language.

The advantage of futures is their easy use: for a lot of applications futures
can be used as basic concurrency primitive without explicitly taking care about
the synchronization of concurrent threads. Moreover, the futures perform this
synchronization automatically. Futures can also be used in functional-logic pro-
gramming to model the unknown value of logical variables as e.g in Mozart
[Moz11].

Concurrent Haskell was proposed in [PGEF96], but its current implementation
in the Glasgow Haskell Compiler is slightly modified. We refer to the current
implementation in the GHC (a description can also be found in [Pey01/PS09]),
and give a short overview of some basic constructs of Concurrent Haskell.

Concurrent Haskell extends Haskell by a primitive forkI0 and by synchro-
nizing variables MVar. MVars behave like single one-place buffers: MVars are either
empty or filled. The primitive operation newEmptyMVar creates an empty MVar.
The operation takeMVar reads the value of a filled MVar and empties it. All
threads that want to execute takeMVar on this empty MVar are blocked until the
MVar becomes filled again. Similarly, putMVar v e writes the expression e into
the MVar v, if v is empty, and blocks otherwise until the MVar becomes empty. The
primitive for thread creation in Concurrent Haskell is forkI0 :: I0 () -> IO
ThreadId. Applied to an IO-action, a concurrent thread is immediately started
to compute the action concurrently. From the perspective of the calling thread,
the result is a unique identifier of the concurrent thread, which for instance can
be used to kill the concurrent thread using killThread. As already observable
by the type of forkIO, the result of the concurrently started I0-action must be
the unit type () (packed into the I0-monad), and the result of forkIO0 itself is
only a thread identifier.

Ezxplicit Futures can be implemented in Concurrent Haskell using forkIO and
MVars. An implementation in Haskell is:

type EFuture a = MVar a
efuture :: I0 a — I0 (EFuture a)

efuture act =
do ack < newEmptyMVar
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forkI0 (act >>=putMVar ack)
return ack

force :: EFuture a — I0 a
force x = takeMVar x >>= (A\r — putMVar x r >> return r)

An explicit future is represented by an MVar. The creation of an explicit future
first creates an empty MVar and then starts the computation of the action cor-
responding to the future in a concurrent thread such that after finishing the
computation the result is written into the empty MVar. From the view of the
calling thread a future in form of an MVar is immediately returned. If the value
of the future is needed then the future must be forced explicitly by calling force
which reads the MVar. If the future value is not computed already, then a wait
situation arises until the concurrent computation is finished.

Note, that programming with explicit futures is often uncomfortable, since
the programmer must be careful to explicitly force the future at the right time.
It is more desirable that the future gets (automatically) forced when it is needed
through data dependencies such that the programmer does not need to care
about explicit forces. Unfortunately, this behavior is not implementable using
explicit futures.

Implicit Futures can be implemented by using a well-known technique to de-
lay the computation of a sequential monadic IO-computation: We use Haskell’s
unsafeInterleaveI0 which is well-used to delay computations in the IO-monad
and to break sequentiality (i.e. to implement lazy I0) (sce e.g. [PW93[Pey01]).
For instance, the standard implementation of readFile for lazy file reading uses
unsafelInterleavelO to delay the reading of the single characters of a file. An
implementation of implicit futures is as follows:

future :: I0 a — I0 a
future code = do ack <«—newEmptyMVar
thread « forkIO (code >>=putMVar ack)
unsafelnterleaveI0 (do result « takeMVar ack
killThread thread
return result)

First an empty MVar is created, which will be used to store the result of the con-
current computation. This computation is created using forkI0 which writes
its result into the future when it becomes available. The last part consists
of taking the result, killing the concurrent thread and returning the result.
This part is delayed using unsafeInterleaveIO. Note, that without the use of
unsafeInterleavel0 the calling thread would be blocked until the concurrent
computation has finished which would not implement the desired behavior of
futures. For the shown implementation the calling thread only becomes blocked
if it demands the result of an unevaluated future.

Thus it is possible to implement implicit futures in Haskell using the
unsafeInterleaveIO-primitive (which is outside the Haskell-Standard). But the
general use of unsafeInterleavelO breaks referential transparency, since im-
pure effects may become visible using pure functions. Nevertheless we believe
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that the use in the encoding of futures is “safe”. In this paper we make a first
step in showing this claim by analyzing the calculus CHF (Concurrent Haskell
with Futures): We will show that the usual laws like indifference of call-by-need
and call-by-name evaluation and the correctness of the monad laws are valid for
CHF.

The Calculus CHF We investigate the extension of Concurrent Haskell where
the above future-operation is built-in as a primitive using the calculus CHF
as a model. CHF is a process calculus which comprises (unlike the m-calculus
[MiI99JSWO01]) shared memory in form of Haskell’s MVars, threads (i.e. futures)
and heap bindings. On the expression level we allow monadic IO-computations as
well as usual pure functional expressions extending the lambda calculus by data
constructors, case-expressions, recursive let-expressions, as well as Haskell’s seg-
operator for sequential evaluation. We add a monomorphic type system to CHF
with recursive types and where polymorphic data constructors are monomorphi-
cally instantiated. Since we want to keep the formalism and proofs simple, we
keep the type system as small as possible, nevertheless we believe that our results
are transferable to a polymorphic type system. We present an operational seman-
tics for CHF as a (call-by-need) small-step reduction relation (called standard
reduction) where the monadic operations are performed as rewriting steps which
relieves us from the issue how to implement the bind-operator in Haskell (those
correctness issues are analyzed e.g. in [AS98]). That is we follow a suggestion
made by Simon Peyton Jones in [Pey0I] and add the bind-operator as a prim-
itive of the language. We will show in this paper that CHF has a well-behaved
semantical underpinning. Our calculus is closely related to the process calcu-
lus presented in [Pey0I] where the differences are: We provide an operational
semantics for the monadic and the functional part while [Pey0I] assumes an a
priori given denotational semantics for functional expressions. We do not model
the delay-operator and external input and output, and thus use an unlabeled
reduction while [Pey01] uses a labelled transition system.

Compared to threads in Concurrent Haskell, CHF does not include a primi-
tive to kill running threads, which is reasonable since threads are futures which
may be referenced somewhere else. In CHF a successfully evaluated thread will
become a usual heap binding, that is the result is kept while the thread is re-
moved. Running threads that do not longer contribute to the final result can be
garbage collected.

As program equivalence we will use contextual equivalence (see
e.g. [Mor68/Plo75]), that is two programs are equal iff their observable
behavior is indistinguishable even if the programs are used as a subprogram
of any other program (i.e. if the programs are plugged into any arbitrary
context). For nondeterministic and concurrent programming languages it is
usually not enough to observe termination, only. Thus we will use a combination
of two tests: Can a program terminate (called may-convergence) and does
a program never loose the ability to converge (called should-convergence, or
sometimes must-convergence, see e.g. [CHSO5INSSSSO7/RVO7ISSS08])? In the
literature there is often another test used (instead of should-convergence), called
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must-convergence (for instance, [DH84]), which holds if a program terminates
along all possible computation paths. The difference between should- and
must-convergence is that should-convergence is insensible w.r.t. weakly divergent
programs [NCO95], i.e. programs that may run infinitely long but always may
terminate along another computation path are should-convergent (but not
must-convergent).

Nevertheless this difference is small and we believe that correctness of com-
monly used program transformations is valid for both predicates. Some advan-
tages of should-convergence (compared to must-convergence) are that restrict-
ing the evaluator to fair scheduling does not modify the predicate and also not
the contextual equivalence, that the equivalence based on may- and should-
convergence is invariant under a whole class of test-predicates (see [SSS10]), and
inductive reasoning is available as a tool to prove should-convergence.

Results We provide a semantic foundation for Concurrent Haskell extended by
futures. In detail we prove a context lemma for expressions which is a helpful
tool to prove that expressions are contextually equal. We show that all reduction
rules are correct program transformations (i.e. they do not change the contex-
tual semantics) except for the rules which take or put an expression from or into
an MVar (which are in general incorrect). Using the technique of rewriting on
infinite trees (see e.g. [KKSdV97ISS07]), we show that the (call-by-need) stan-
dard reduction can be replaced by a call-by-name reduction, which also implies
that inlining of expressions is a correct program transformation. Optimizations
that are based on sharing or unsharing followed by partial evaluation without
take/put on MVars are thus justified by the semantics. We show that (infinite)
fairness of reductions can be enforced without changing the contextual semantics
based on may-and should-convergence. Finally, we show that our implementa-
tion of the IO-monad in CHF satisfies the monad laws if the seq-operator’s first
argument is restricted to non IO0-types. This justifies the correctness of using the
do-notation and its usual compilation.

Related Work Concurrent futures in Multilisp and their applications are dis-
cussed e.g. in [BH77/Hal85]. Our calculus CHF is also related to the (call-by-
value) lambda-calculus with futures A(fut) ([NSS06]) which models the core
language of Alice ML [Alill] and has concurrent futures similar to ours, in
INSSSS07] a program equivalence based on contextual equivalence with may-
and should-convergence is defined for A(fut) and a set of program transforma-
tions is shown correct. In [SSSSNQ9] variants of A(fut) are presented and their
equivalence is shown. In difference to CHF, the calculus A(fut) is a model of an
impure programming language, and thus there is no distinction between func-
tional and imperative computations. Moreover, A(fut) has so-called lazy futures,
which are not included in CHF.

[FF99] present a semantics for a (pure) call-by-value calculus extended with
futures and analyze an optimization in the abstract machine, to avoid unneces-
sary dereferencing operations on evaluated futures (so called “touches”). Since
their calculus has no side-effects and futures compute functional expressions, the
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futures are different from our futures, but they are similar to Haskell’s par op-
erator. In [BEKTO00] an operational (and a denotational) semantics for Glasgow
parallel Haskell [Glall] is presented. They analyze a pure functional non-strict
language extended with an par-operator. par can be seen as an annotation,
that implements explicit parallelism i.e. in (par e; e;) the expression e; can
be evaluated in parallel, while eg is the result of the par-expression. Thus par
implements futures for pure functional expressions, e.g. consider the expression
let x = e; in par x es. Since z (and thus e;) can be evaluated in parallel, one
can view x as a future for the value of e;. Programming with parallel Haskell us-
ing strategies was proposed in [THLP98] and recently redesigned in [MML™10).

Finally, [PS09] gives an overview to several techniques for parallel and con-
current programming in Haskell, i.e. into Parallel Haskell, Concurrent Haskell,
and Software Transactional Memory [HMPJHO5].

A parallel extension of Haskell using processes, but no explicit concurrency,
is the programming language Eden [LOMPMO5].

Outline In Section [2| we introduce the syntax of the calculus CHF. In Section
the operational semantics in form of a small-step reduction relation implementing
the call-by-need strategy is defined for CHF. In Section [4] we define contextual
equivalence for CHF, we show that this program equivalence remains unchanged
if fair evaluation is used and we prove a context lemma for expressions. In Sec-
tion [5| some first correctness results on program transformations are shown. In
Section [6] we show that call-by-name evaluation is correct for CHF and prove
correctness of a general copy rule. In Section [7] we use the developed techniques
and results to show correctness of the monad laws in CHF. Finally, we conclude
in Section

2 Syntax and Typing of CHF

In this section we present the syntax of the calculus CHF and provide a type
system for the underlying language. The syntax has two layers: On the top-
layer are processes and the second layer are expressions. Processes may have
expressions as subterms. Let Var be a countably infinite set of variables. We
denote variables with u, w, z,y, z (maybe indexed by natural numbers).

2.1 Syntax of Processes

The syntax of processes Proc is given by the following grammar where e € Expr
is an arbitrary expression (defined below):

P,Q,P;,Q; € Proc ::= Py | P, (parallel composition)
| z<e (concurrent thread)
| vz.P (name restriction)

| zme (filled MVar)

| £m— (empty MVar)

| z=e (binding)
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We give an informal meaning of these language constructs: Parallel composition
and name restriction act like the corresponding constructs in the m-calculus,
i.e. parallel composition constructs concurrently running threads (or other com-
ponents) and v-binders restrict the scope of variables. A concurrent thread z < e
evaluates the expression e and binds the result of the evaluation to the variable x.
We call the variable = the thread identifier or alternatively the future x. There is
no guarantee that all such threads will eventually be evaluated, an aspect which
will be discussed later. MVars are mutable variables which behave like one place
buffers, i.e. if a thread wants to fill an already filled MVar, the thread blocks,
and a thread also blocks if it tries to take something from an empty MVar. In
xme or x m— we call x the name of the M Var. Bindings x = e model the global
heap of shared expressions, where we say x is a binding variable. For a process
P we say a variable x is an introduced variable if x is a thread identifier, a name
of an MVar, or a binding variable. An introduced variable is visible to the whole
process unless its scope is restricted by a v-binder, i.e. in Q | vx.P the scope of
xis P.

2.2 Syntax of Expressions

We assume that the syntax contains a set of data constructors ¢ which is parti-
tioned into sets, such that each family represents a type T'. For a fixed type T
we assume that the corresponding data constructors are ordered (denoted with
c1, ..., ¢, where |T| is the number of constructors belonging to type T'). Each
data constructor ¢ has a fixed arity ar(c) > 0. For examples we assume that
we have a type Bool with data constructors True, False and a type List with
constructors Nil and : (written infix as in Haskell).

The syntax of expressions is shown in Fig. Expressions Fzpr comprise
the constructs of a usual call-by-need lambda calculus and monadic expressions
MEzpr C Ezpr which are used to model I0-operations (inside the I0-monad)
by built-in primitives. We explain the syntactic constructs and fix some side
conditions: The functional language has the usual constructs of the lambda cal-
culus, i.e. variables, abstractions \x.e, and applications (e es). It is extended by
constructor applications (c e1 ... €5()) Which allow constructors to occur fully
saturated, only. As selectors case-expressions are part of the language, where
for every type T there is one casep-construct. We sometimes abbreviate case-
expressions with caser e of Alts where Alts are the case-alternatives. The
case-alternatives must have exactly one alternative (cr; 1 ... Tar(es,) — €i)
for every constructor cr; of type T'. The left hand side cr; 1 .. - Tar(er.;) of
a case-alternative is called a pattern where the variables x1, ..., Za(cp ) must
be pairwise distinct. In the alternative (cr; 1 ... Tar(er,;) — e;) the variables
x; become bound with scope e;. In examples we will also use if-then-else-
expressions written as if e then e; else es. These expressions are an abbrevi-
ation for the case-expression case e of (True — e;) (False — e3). A further
construct of the language are seq-expressions (seq e; es) which model Haskell’s
seq-operator for strict evaluation. Finally the language has letrec-expressions
which implement local sharing and enables one to declare recursive bindings.
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e,e; € Bxpru=ax | me | Ax.e | (e1e2) | cei1...ea(c) | seqer e
| caser e of (cr1 1... Tar(epy) = ei)...
(er ) 1+ Tar(eq 1) = €7)
| letrecx1 =e€1 ... Tn =€, ine wheren >1

me € MEzpr ::=returne | e; >= ey | forkIOe
| takeMVar e | newMVar e | putMVar e; e

Fig. 1. Syntax of Expressions

In letrec z; = ey,...,x, = e, in e the variables x1,...,x, must be pair-
wise distinct and the bindings x; = e; are recursive, i.e. the scope of z; is
e1,...,en and e. We sometime abbreviate letrec-environments as Env, i.e. we
write letrec Env in e. We finally explain the monadic primitives: The con-
structs newMVar, takeMVar, and putMVar are used to create and access MVars.
The primitive “bind” operator >>= implements the sequential composition of
IO-operations, the forkIO-operator is used for thread creation, and the return-
operator lifts expressions to monadic expressions. Note that all these primitives
must occur with all their arguments present.

Functional values are defined as abstractions and constructor applications.
The monadic expressions (return e), (e >>= e3), (forkIO e), (takeMVar e),
(newMVar e), (putMVar e; es) where e, e; are arbitrary expressions are called
monadic values. A value is either a functional value or a monadic value.

2.3 Well-Formedness, the Distinct Variable Convention and
Structural Congruence

We assume that for a process at most one thread is labeled with “main” (i.e. as

notation we use z <2 e). We call this thread the main thread. A process is
well-formed, if all introduced variables are pairwise distinct, and there exists at

. main
most one main thread z <—— e.

On the expression layer variable binders are introduced by abstractions,
letrec-expressions, and case-alternatives, and on the process layer by name
restriction vz.P. This induces a notion of free and bound variables as well as
a-renaming and a-equivalence (denoted by =,) on the process and on the ex-
pression layer. With FV (P) (F'V (e), resp) we denote the free variables of process
P (expression e, resp.). We assume the distinct variable convention to hold, i.e.
free variables are distinct from bound variables, and bound variables are pair-
wise distinct. We also assume that reductions implicitly perform a-renaming to
obey this convention.

For processes we define a structural congruence to equate obviously equal
processes, i.e. structural congruence allows one to interchange parallel processes,
interchange and move v-binders, and to a-rename processes:



A Contextual Semantics for Concurrent Haskell with Futures 9

Definition 2.1. Structural congruence = is the least congruence satisfying the

equations:
P lP=PRI|P

(Pl P) | Ps=P | (P | Ps)
(ve.P1) | Po=ve.(P1 | P) ifx & FV(P,)
ve,.vee. P = ves.ve) P
PIEPQ ’LfPl :aPQ

2.4 A Monomorphic Type System

In this section we provide a type system for CHF which mainly distinguishes be-
tween processes, functional expressions and monadic expressions. For simplicity
we choose a monomorphic type system, (types must be invariant during reduc-
tion) for correctness proofs in later sections. If we would use a polymorphic type
system then this would require more effort (e.g. one could use a system F like
type-system, but there are also other approaches using explicit type labels, for
instance [SSSHQ9)).

Nevertheless we “overload” the data constructors and thus we assume that
data types used in case-constructs have a fixed arity, and that the data construc-
tors of every type have a polymorphic type according to the usual conventions. In
the language the constructors are used monomorphic. The set of monomorphic
types of constructor ¢ is denoted as types(c).

The syntax of types is:

Tuo=107|(T71 ... ) |MVar 7 | 71 — 7

Here (I0 7) means that an expression of type 7 is packed into a monadic
action, and (MVar 7) stands for an MVar-reference with content type 7. 71 — T2
is a function type.

To fix the types during reduction, we assume that every variable is explicitly
typed, i.e. we assume that every variable z has a built-in type. We denote the
global typing function for variables with I'; i.e. I'(x) is the type of variable z.
The notation I' - e :: 7 means that type 7 can be derived for expression e using
the global typing function I'. For processes the notation I" - P :: wt means that
the process P can be well-typed using the global typing function I

The typing rules are in Figure [2l Note that we disallow a reference type
or an IO0-type for the first argument of seg-expressions. This restriction is
not valid in Haskell, but is indispensable for the validity of several semanti-
cal rules and the correctness of program transformations, like the monad laws
(see Section . Note that the type system can easily be transformed into a
“more standard one” if I' is viewed as a type environment and the rules for
variable binders are adjusted such that they add type assumptions to the en-
vironment. Note also that for our type system it is essential that processes
fulfill the distinct variable convention before type checking is performed. For
instance, the process z; <= (Az.return z) True | 2o < (A\x.return z) Nil can-
not be typed (since the type of x in both abstractions is different), while
z1 < (Ax.return z) True | 25 < (Az’.return z’) Nil can be typed.
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I'Fe:I0T I'kteuT I'EP wt, I'EPy:wt
I'rx<ewt I'Fz=e:wt I'EP | Pswt

I'z)=Wart, I'bexT I'(x)=MVarr I'EP:wt

I'Fzme: wt I'Fzm—:wt [I'Fvx.P:wt
I'Fe:T I'te 21071, I'kFex:m —I0T I'Fe:I0T
I'Freturne:: I0 7 I'Fei1>>=es :: I0 T '+ forkIOe:: I0 T
I'ke::MVar 7 I'te =MVarr, I'kFes::T I'Fe:uT

I' + takeMVar e :: I0 7 I' - putMVar e; ez :: 10 () I' - newMVar e :: I0 (MVar 7)

Vi:['be =7y, T1—...—Tn —Tnt1 €types(c) I'bFeirum —m, [Fe:um

'+ (C er ... ear(c)) U Tn+1 I'k+ (61 62) I T2

I'te im, TI'kFesx:im
Fz)y=mn, I'kFezmn I'x)=7 mn=m—morn=(T..)
't (Aze) :m — 7 I'FxzoT I't (seq e e2) T2

I'teuxm andm=(T ...), Vi:I'F(cixii ... Tnge) T, Viilbeim

I't (caser e of(c1 1,1 -+ Ty —€1) ... (Cm Ti,m -+ Tnppym — €m)) 5 T2

Vi:['(x;) =7, Vi:['beum, [beuT

I't (letreczi=e€1, ... Tn =€ ine) T

Fig. 2. Typing rules

Definition 2.2. A process P is well-typed iff P is well-formed and I' - P :: wt
holds. An expression e is well-typed with type 7 (written ase :: 7) iff e T
holds.

3 Operational Semantics of CHF

In this section we define the operational semantics of the calculus CHF as a
small-step reduction relation called standard reduction. As a first definition we
introduce successful processes, i.e. processes which are seen as successful out-
comes of the standard reduction.

Definition 3.1. A well-formed process P is successful, if P has a main thread

of the form & <= return e, i.e. P = vx;....vx,.(x <= return ¢ | P’).

We allow standard reductions only for well-formed processes which are not
successful, i.e. successful as well as non-well-formed processes are irreducible by
definition. This can be justified as follows: Non-well-formed processes can be
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singled out by the parser of a compiler, successful processes may have reducible
threads (but not in the main thread x <= ¢), but in Haskell all concurrent
threads are terminated, if the main-thread terminates.

For the definition of the standard reduction we require the notion of contexts.
In general a context is an expression with a hole [], i.e. a special constant which
occurs once in the expression. We assume that the hole [-] is typed and carries
a type label, which we write as [-7] if we want to make the type explicit. The
typing rules are accordingly extended by the rule for the hole:

Given a context C[-7] and an expression e :: 7, Cle] denotes the result of
replacing the hole in C' wit expression e, where a variable capture is permitted.
Since our syntax has different syntactic categories, we require different contexts:

— Process contexts that are processes with a hole at process position.

— Expression contexts that are expressions with a hole at expression position.

— Process contexts with an expression hole, i.e. processes with a hole at ex-
pression position.

On the process level we define the process contexts PCtzt as follows, where
P € Proc:

D,D; € PCtzt:=[] | DIP | PID | vaD

The standard reduction rules use process contexts (together with the structural
congruence) to select some components for the reductions. In general, these
components are:

— a single thread, or

— a thread and a (filled or empty) MVar

— athread and a set of bindings (which are referenced and used by the selected
thread)

Although we require further classes of contexts for the complete definition of
the standard reduction, we introduce the standard reduction at this point. We
will then explain further contexts and thereafter we explain the reduction rules
in detail.

Definition 3.2. The standard reduction rules are given in Fig. [J where the
outer PCtat-context is omitted. But we assume reductions to be closed w.r.t.
PCtxt-contexts and w.r.t. structural congruence, i.e. the standard reduction re-
lation =% is the union of the rules in Fig. @ and if Py = D[P} and P, = D[P}]
such that P{ =5 Py, then also P, = P;.

With <% we denote the transitive closure of 25, and with 2, we denote

. .y ST
the reflexive-transitive closure of —.
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Monadic Computations

(lunit) y<=M][return e; >>= €] Ly < Mlez e1]
tmvar)  y<=M]|takeMVar z] | tme 25 y <=M|return €] | zm —
pmvar) y <= M|putMVar z €] | zm — 2% y <= M][return ()] | zme
nmvar) y <= MnewMVar ¢] 25 vz.(y <= M[return z] | 2 me)
fork) y <= MJ[forkI0 e] 25 vz.(y <= M][return 2] | z <e)

where z is fresh and the created thread is not the main thread
(unI0)  y<returne sy =e
if the thread is not the main-thread

Functional Evaluation

(cp) Lzl lz=v 5L lz=v
if v is an abstraction or a variable
(cpex) Lzl lz=cei... en
i>1/;1/1,...yn.(]l/:[cy1 o] lz=cyr ooynlyi=el oo lyn =en)

if ¢ is a constructor, or return, >>=, takeMVar, putMVar
newMVar, or forkIO

(mkbinds) L[letrec z1 = e1,...,Tn = €, in €]
il/x1,...7xn.(]]_4[e] lzi=e1l ... lzn =e€4)
(Ibeta)  L[(Az.e1) e2)] 5 va.(Llea] | ¢ = e2)
(case) Llcaser (ce1 ... en)of ...((cy1 ... yn) —€)...]
v,z L] lyr =€ | ... Ly = en)) ifn>0
(case) Llcaser cof ...(c —e)...] 2 Lle]
(seq) Li(seq v €)] 25 Lle] if v is a functional value

Fig. 3. Standard reduction rules

For the evaluation of monadic expressions we define the monadic contexts
MCtzt. They are used to “find” the first monadic action in a sequence of actions.

M,M; € MCtxt =[] | M>>=e¢

On expressions we use usual (call-by-name) expression evaluation contexts

ECtzt defined as follows:

E,E, € ECtzt:=[] | (Ee) | (case E of alts) | (seqE e)

Sometimes, the evaluation of the (first) argument of the monadic operations
takeMVar and putMVar must be forced. (i.e. before the corresponding monadic
action can be performed). For example, the process

x < (takeMVar ((A\z.z) y)) >>= Az.(return ()) | ymTrue

must first evaluate the subexpression ((Az.x) y) before performing the takeMVar-
operation. To model these cases correctly (i.e. as in Haskell) we introduce the
forcing contexts FCtxt.
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F,F, € FCtat :==E | (takeMVar E) | (putMVar E e)

Finally, we define the contexts LCtaxt which model the search for a redex
after one thread was already selected. The necessary reduction may either be
a monadic computation, or a “functional evaluation”. If the thread needs the
value of a binding, then the functional evaluation may be performed inside a
binding. For instance consider the process

o L2 y True | y = z False | z = (Az1.\z3.\x3.return x3) False
The main-thread needs the value of y, the binding for y needs the result of z.
Hence, the standard reduction is:

sr,lbeta main
0 ¢ &5 y True | y = 2 False | 2 = Azp. Axs.return a3 | ; = False

The contexts LCtzt model this redex search, they are defined as follows:

L,L; € LCtxt := x < M]F]
| x<=M[F[z,]] | 2, =Ep[zn_1] | ... | 22 = Eg[zq] | 21 = Eq
where Eo, ... [E, are not the empty context.

For the copying rules (i.e. the rules (cp) and (cpcx)) we define a special class of

LCtxt-contexts, the contexts LCtxt, which require that the context E; must not
be empty

—

L,L; € LCtxt ::= z < M][F]
‘ I@M[F[In“ | Ty = En[zn—l] | I ]EQ[JJl] | 21 = E4
where Eq, E,,...E, are not the empty context.

This distinction is necessary for the case of variable-to-variable bindings, i.e. if
a thread demands the value of z and x = y is a binding, then evaluation does
not follow this binding, but copies the name y. For instance, for the process

main

z——uzl|lz=yl|y=return ()

the standard reduction proceeds as follows:

sr,cp main

——z<——=ylz=y|y=return ()

2P, s & returnw |z =y |y = return w | w = ()

We will now explain the standard reduction rules of Fig. [3] in detail. The
rules are divided into two sets of reductions: The first part of the rules performs
monadic computations while the second part performs functional evaluation on
the expression level. The redez is the subexpression together with its position de-
fined as follows: For (lunit), (tmvar), (pmvar),(nmvar), (fork), it is the monadic
expression in the context M, for the rule (unlO), it is y < return e, for (mk-
binds), (Ibeta), (case), (seq), it is the functional expression in the context L, and
for (cp), (cpex) it is the variable x in the context L.
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The rule (lunit) is the direct implementation of the monadic sequencing op-
erator >>=: Consider a sequence a>>=b. If a is of the form return e then the
monadic computation of a is finished (with the result e), hence the next computa-
tion (b) of the sequence can be started. Since the result e of the first computation
may be used by b, the evaluation proceeds with (b e).

The rules (tmvar) and (pmvar) perform a takeMVar- or putMVar-operation
on a filled (or empty, resp.) MVar. Note that there is no rule for a takeMVar-
operation on an empty MVar (and also no rule for a putMVar-operation on a
filled MVar), which models the blocking behavior of MVars. The rule (nmvar)
creates a new filled MVar.

The rule (fork) spawns a new thread for a concurrent computation. In Haskell
the return value of a forkIO-operation is a thread identifier (usually a number).
Since our model uses variables to identify threads, the corresponding variable is
returned.

The rule (unlO) binds the result of a monadic computation to a functional
binding, i.e. the value of a concurrent future becomes accessible.

The rules (cp) and (cpex) are used to inline a demanded binding z = e. Here
e must be an abstraction, a variable, a constructor application or a monadic
expression. For the correct treatment of call-by-need evaluation for constructor
applications (c e ... e,) (and also for monadic expressions) the (maybe non-
value) arguments are shared by new bindings.

The rule (mkbinds) moves the bindings of a letrec-expression into the global
bindings. v-binders are introduced to restrict the access to the bindings of the
concurrent thread only. The rule (Ibeta) is the call-by-need variant of classical
B-reduction, where the argument is not substituted in the body of the abstrac-
tion but shared by a new global binding. The (case)-reduction reduces a case-
expression, where — if the scrutinee is not a constant — also bindings are created
to implement sharing. The (seq)-rules evaluate a seg-expression: If the first ar-
gument is a functional value, then the seq-expression is replaced by its second
argument.

Proposition 3.3. The following properties hold for the standard reduction =

— If P25 P’ and P is well-formed, then P’ remains well-formed.

— If P25 P’ and P is well-typed, then P’ remains well-typed.

— Reduction is unique for threads. I.e. If P contains only one thread, then for
all Py, Py with P 2% P; (i=1,2): P, = P,.

— Reduction cannot introduce or remove a main-thread.

Proof. The first part holds, since the reduction rules only introduce process
identifiers which are fresh and never introduce a main thread. Type preservation
holds since every redex keeps the type of subexpressions. The remaining parts
can be shown by induction on the process structure.

Ezample 3.4. The following example shows that standard reduction is non-
deterministic. Consider the process P:

main

x < takeMVar y | z < takeMVar y >>= \w.(putMVar y False) | ym True
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If first the main-thread is reduced, then we obtain a successful process (we omit
v-binders):

sr,tmvar
_

P
x &2 return True | z < takeMVar y >>= ) w.(putMVar y False) | ym —.

If first the thread with identifier z is reduced four times and then the main-thread
is reduced, then we also obtain a successful process, but the result is different:

sr,tmuvar
_—

P
x &2 takeMVar y | z<return True >>= A\w.(putMVar y False) | ym —

sr,lunit main
-

x <= takeMVar y | z < (Aw.(putMVar y False)) True | ym —

sr,lbeta main
_—

r < takeMVar y | z < putMVar y False | w = True | ym —

sr,pmuvar
—_—

o Z20 takeMVar y | z<return () | w = True | ymFalse

Snimver, . M9 return False | z <= return ) lw=True |l ym—
Note that after the first (sr,tmvar)-reduction the main-thread is blocked until
the MVar y becomes filled.

Ezample 3.5. As a further example we demonstrate how a (monadic) binary
amb-operator can be implemented:

amb = Az, xo.
newMVar x; >>=
Am.takeMVar >>=
A_.(forkIO (seq x1 (putMVar m x1))>>=
A_.(forkIO (seq xo (putMVar m x3)) >>=
A_.takeMVar m

This expression implements McCarthy’s bottom-avoiding choice [McC63], that
is applied to two arguments eq, e, the result of amb e; es is the monadic action
returning the value of e; or ey (if both evaluate to a value), or the value of e;
if e; diverges (for (i,7) € {(1,2),(2,1)}). With futures we can ecasily extend the
binary operator for a whole list of arguments as follows

letrec ambList = Axs.caser;s s of

(Nil — return 1),

(y : ys — £orkI0 (ambList ys)>>=Ays’.amb y ys’)
in ambList

where L is any closed diverging expression, e.g. (letrec x =z in x)

4 Program Equivalence and Context Lemmas

In this section we introduce a notion of program equivalence for processes as
well as for expressions. We will use contextual equivalence by observing may-
and should-convergence. Subsequently, we will prove some context lemmas which
ease proofs of equivalences.
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4.1 Contextual Equivalence

Contextual equivalence equates two processes Py, P if their observable behavior
is indistinguishable if P; and P» are plugged into any process context.

For nondeterministic (and also concurrent) calculi the observation of may-
convergence, i.e. the question whether or a not a process can be reduced to a suc-
cessful process, is not sufficient to distinguish obviously different processes. It is
also necessary to analyze the possibility of introducing errors or non-termination.
Thus we will observe may-convergence and a variant of must-convergence which
we call should-convergence (see [RV07ISSS08]). The definitions are as follows:

Definition 4.1. A process P may-converges (written as P|), iff P is well-
formed and P reduces to a successful process, i.e.

ST, %

P| iff P is well-formed and 3P’ : P —= P’ A P’ successful

If a process P is not may-convergent, then P must-diverges written as P1{}.
A process P should-converges (written as P\ ), iff P is well-formed and P
remains may-convergent under reduction, i.e.

ST, %

P\ iff P is well-formed and YP' : P —~ P’ = P'|

If P is not should-convergent then we say P may-diverges written as PT.
ST %

We sometimes write PP’ (or PP, respectively) if P —— P’ and P’ is a
successful (or must-divergent, respectively) process.

In the literature there is one other main notion of must-convergence which
requires that all reduction sequences of a process are finite and end successfully.
Note that should-convergence allows infinite reduction sequences if the ability
to converge is never lost. Although the two notions of must-convergence induce
slightly different notions of contextual equivalence, but there appears to be no
difference w.r.t. usual program transformations.

Note also that may-divergence can alternatively be characterized by: A pro-
cess P is may-divergent if there is a finite reduction sequence P 2%, P’ such
that P’ cannot converge, i.e. P'{}.

Our definition of reduction implies that non-wellformed processes are always
must-divergent, since they are irreducible and never successful. Also, the process
construction by D[P] is always well-typed if P is well-typed, since we assume
that variables have a built-in type.

Definition 4.2. Contextual approximation <. and contextual equivalence ~. on
processes are defined as follows:

P, <, P, iff VD € PCizt: D[P\l — D[P
<= Ny
~e = SN2
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Remark 4.3. Let Py, P, be wellformed processes and I; be the free introduced
variables of P;, for ¢ = 1,2. If P; and P, do not have a main thread and I # I
then P; 4. Py: W.lo.g. assume « € I; but x ¢ I, and consider the context

D :=y <= return() | z = | [-] where y & I} N I. Then D[P;] is successful,
and thus D[P,]]. On the other hand D[P;]f}, since D[P;] is not well-formed.

The previous definition only equates (or distinguishes) processes. We now de-
fine contextual approximation and equivalence on expressions. Let CCtxt be the
class of process contexts that have their (typed) hole at an arbitrary expression
position. We use C, C; for CCtzt-contexts.

Definition 4.4. Let 7 be a type. Contextual approzimation <., and contextual
equivalence ~. , on expressions are defined as follows, where ey, e are expres-
sions of type T

e1 <|r ez iff VC[7] € CCtxt: Cle1]|] = Cleq]!
e1 <y, ez iff VC[7] € CCtat: Cle1]} = Cle2]|
SC,T = Sl,'r N Sl},T
~e,r = Sc,'r N ZC,T

Remark 4.5. An interesting fact on the contextual preorder is that closed must-
divergent expressions are not least elements w.r.t. <.. The reason is, that amb
is definable in CHF (see Example [3.5)). Consider the context

C =2z <2 amb True [] >>= Ar.(if r then return True else 1)
and let L be a closed must-divergent expression of type Bool. Then C[L]{}, but
C[False]l and thus L €. po01 False.

As a first result we show that structural congruence preserves contextual
equivalence:

Proposition 4.6. Let P;, P, be well-formed processes such that P, = P,. Then
P ~. Ps.

Proof. The claim follows easily from the following two observations:

— For every process context I and process Ps: D[P] 2= P iff D[Py] 25 Ps,
since = is a congruence and since ~— is closed w.r.t. structural congruence.

— D[P;] is successful iff D[P] is successful, since structural congruence does
not remove nor introduce a main thread.

4.2 Fairness

In this section we show that contextual equivalence is unchanged if we disallow
unfair reduction sequences. I.e. we assume that fair scheduling is performed for a
real implementation of CHF, but since we will show that contextual equivalence
is unchanged we do not need to take care about it in our further reasoning.

We first introduce a notion for all maximal reduction sequences for a given
process:
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Definition 4.7. For a process P let M(P) be the set of all maximal sr-reduction
sequences starting with P, i.e. all finite reductions sequences ending in an
irreducible process and all infinite reduction sequences. With M<“(P) we de-
note the reduction sequences of M(P) which are infinite, and let M*(P) =
M(P)\ M¥(P).

We repeat the definitions of may- and should-convergence in terms of M:

— A process P is may-convergent, iff M*(P) contains a reduction sequence
ending in a successful process.

— A process P is should-convergent, iff all reduction sequences of M*(P) end
in a successful process and for every infinite reduction sequence RED,, €
M (P) the following holds: for every finite prefix RED of RED,, there exists
a finite reduction sequence RED’ in M*(P) such that RED is a prefix of
RED'.

For a process P = D[x < €] we say thread x is enabled if there is a standard
reduction applicable to P, such that x <e is a part of the redex or e (with its
position in thread x) is a superexpression of the redex. In a reduction sequence
we say thread z is reduced, if there exists a reduction step where x is enabled
and the corresponding standard reduction is used.

Now we define a notion of fairness for reduction sequences:

Definition 4.8. For a process P a reduction sequence RED € M(P) is called
unfair if there is an infinite suffic RED' of RED and there exists a thread x
which is enabled in infinitely many processes of RED' but x is never reduced.
Otherwise, we say RED is a fair reduction sequence. With My(P) C M(P) we
denote the set of fair reduction sequences of process P. We use M3(P) (M%(P),
resp.) for the finite (infinite, resp.) sequences of My (P).

Fair may-convergence and fair should-convergence are defined as may- and
should-convergence, where the set M(P) is replaced by the set M;(P).

The definitions imply that may-convergence and fair may-convergence coin-
cide. We now consider should-convergence. One direction is easy:

Lemma 4.9. If a process P is should-convergent, then P 1is fair should-
convergent.

Proof. For finite reductions sequences this obvious, since M*(P) = M3}(P).
For infinite reductions sequences we have M%(P) C M®“(P) and thus every
prefix RED; of a reduction sequence RED € M‘;(P) is also a prefix of RED €
M¥(P) and for any RED" € M*(P), that has RED; as a prefix, it holds
RED' € M3(P).

For the other direction we first prove a helpful lemma:

Lemma 4.10. For every process P there exists a reduction sequence REDy €

M;(P).
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Proof. If there exists a finite reduction sequence RED such that RED is a
maximal reduction sequence, then we choose this sequence and we are finished.
Otherwise, we use the following scheduling procedure: For every MVar z, we
built two FIFO-queues:

— The take-queue for pending takeMVar-operations (i.e. a list of the corre-
sponding thread identifiers)
— The put-queue for pending putMVar-operations.

We also order all threads in another FIFO-queue Q. Now we define a scheduling
on the process together with the queues: Let = be the first thread in Q.

— If the thread « is enabled and the corresponding reduction is not a (sr,tmvar)-
or a (sr,pmvar)-reduction, then the thread is reduced and then appended to
the end of Q. If the thread z has now (sr,tmvar)- or a (sr,tmvar)-redex for
MVar y, then the thread is also appended at the end of the corresponding
MVar-queue of y. If a new thread is created by a (sr,fork)-reduction, then this
thread is also appended to the end of Q. If the new thread has an (sr,tmvar)-
or a (sr,tmvar)-redex for MVar y, then the thread is also appended at the
end of the corresponding MVar-queue of y.

— If the thread z is enabled, and a (tmvar)- or (pmvar)-reduction is the corre-
sponding reduction, and the thread x is the first one in corresponding take-
or put-queue of the MVar, then the thread is reduced, and the thread iden-
tifier is removed from the FIFO-queue of the MVar, otherwise, the thread
z is not reduced and appended to the end of Q. If the thread z after the
reduction has now (sr,tmvar)- or a (sr,tmvar)-redex for MVar y, then the
thread is also appended at the end of the corresponding MVar-queue of y.

— If the thread z is not enabled, or the corresponding reduction is a (tmvar)-
or (pmvar)-reduction, but x is not at the front of the corresponding take- or
put-queue of the MVar, then the thread is moved to the end of Q, but also
remains at its place in the take- or put-queue of the MVar.

Now we argue that this scheduling cannot lead to an unfair reduction sequence
starting with P: It is impossible that there is an infinite suffix of the reduction
sequence where a thread z is enabled in every process, since the FIFO-queue Q
ensures that = is reduced after finitely many steps. It is also impossible, that
a thread x is enabled infinitely often, but disabled finitely often, since then we
could choose another infinite suffix where x is enabled in all processes. If a thread
x is enabled and disabled infinitely often, then x can only become disabled,
if z wants to perform a takeMVar- (or a putMVar-operation, 1resp.)7 and after
being enabled another thread has emptied (or filled, resp.) the corresponding
MVar, which was in the MVar queue at a place before x. Nevertheless this
case is impossible, since the take-queue (put-queue, resp.) on the MVar ensures
that after some putMVar- and takeMVar-operations thread x is the only thread
that can access the MVar. These operations must happen, since £ must become
enabled. Due to the queue Q thread x is eventually reduced.
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Corollary 4.11. Let RED be a finite sr-reduction sequence starting with pro-
cess P. Then there exists a reduction sequence RED; € M(P) which has RED
as prefiz.

Proof. This follows by the previous lemma (Lemma [4.10): We assume that

P BEP. proand then we extend the reduction sequence by a fair reduction
sequence for P’. The derived reduction sequence for P is obviously fair.

Lemma 4.12. If P is fair should-convergent, then P is should-convergent.

Proof. The only non-trivial case is: There is a reduction sequence RED,, €
Me(P) with RED,, ¢ M%(P). Let RED be a (finite) prefix of RED,,. By
Corollary there must exist a reduction sequence RED; € Mj¢(P) such
that RED is a prefix of RED,. If RED; is finite then RED; must end in a
successful process, and since M*(P) = M3}(P) we have RED, € M*(P). If
RED; is infinite then there exists another reduction sequence REDy € M}(P)
which has RED as a prefix and ends in a successful process. Again it also holds
that REDy € M*(P) and the claim follows.

Theorem 4.13. Contextual equivalence is unchanged if unfair reduction se-
quences are forbidden.

Proof. This follows since the convergence predicates do not change.

Remark 4.14. Note that must-convergence (i.e. the test whether M“(P) = 0)
does not coincide with fair must-convergence (i.e. the test whether M%(P) = 0).
A counter-example is the (should-convergent) process

main

P:= 1z <= (Az. return ) True
| y< forever (return ())
| forever = Aa.a>>= A_.(forever a)

M¥(P) # 0, since an unfair reduction sequence is to always reduce thread y
and ignoring the main thread z. On the other hand M$(P) = (), since any fair
reduction sequence eventually must reduce the main thread. Note, that successful
threads are irreducible by definition.

4.3 Context Lemma for Processes

Definition 4.15. For a process P we say P is in prenex normal form iff P =
vy, ... Zn (Pr | ... | Py) and for 1 <i < m: P; does not contain v-binders.

Lemma 4.16. For every process P there exists a process P’ with P = P’ and
P’ is in prenex normal form.

Proof. This follows by structural induction on P.

The following lemma in connection with the previous result implies, that we
can more or less ignore v-binders for reasoning on convergency and thus also on
contextual equivalence.
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Lemma 4.17. Let P = vx.P' Then P| <= P’| and P| < P’|.

Proof. Let D := va.[-], It is easy to verify (since reduction is closed wrt. PCtxt-
contexts) that for every process Q: Q 25 Q' iff D[Q] 25 D[Q'], Q is successful
iff D[Q] is successful, and D[Q] 2 Q" always implies Q" = D[Q"”] for some Q"".

Corollary 4.18. Let P = vxy,...x,.P’ be in prenex-normal form such that P’
contains no v-binders. Then P| <= P’'| and P| < P'|.

Lemma 4.19. For every process context I there exists a process context

Lemma 4.20 (Prenex Context Lemma). For all well-formed processes
Py, P it holds:

— If for all v-free process contexts D € PCtxt and all variable-substitutions o:
]D)[O(Pl)]l — D[U(PQ)]l, then P, él Ps.

— If for all v-free process contexts D € PCtxt and all variable-substitutions o:
]D)[U(Pl)]ll« — D[O’(Pg)]l}, then Py Sl Ps.

Proof. We only show the first part for may-convergence, since the proof for
should-convergence is completely analogous: Assume that for all v-free process-
contexts D € PCtxt and all variable-substitutions o: D[o(P;)]] = D[o(P)]].
Now assume that there is a PCtrt-context D such that D[P;]|. We show that
D[Ps]].Lemma shows that D[P] = vay,...,z,.D[o0(Py)] where Dy is a
v-free process context und o is a variable substitution. By Proposition we
have vay,...,z,.Dolog(P1)]]. Corollary shows that Dg[oo(Py)]]. Now the
precondition of the lemma shows Dg[oo(P2)]]. Applying Corollary again
yields vay, ..., z,.Do[oo(P)]| and Lemma [4.19shows vay, ..., z,.Do[oo(P)] =
D[Pz]. Finally, Proposition implies D[P]].

4.4 Context Lemmas for Expressions

For the following lemmas we require expression multicontexts, i.e. contexts with

several holes. We use C for processes with several holes all on expression position.

We write Cl[-1,...,-,] for such a multicontext (C[-T*,..., 7] to make the types

rn
of the holes explicit) and Cley, ..., e,] for the process that results after replacing
the holes by the expressions e; where e; :: 7.

Remark 4.21. Let (E[-?,...,-ZL”] be a multicontext with n holes and e

Ti,...,€n i T, be expressions such that ((N:[el, ..., ey] is well-formed (not well-

f~ormed, resp.). Then for any expressions €] :: 7y,...,e, = 7, the process

Clet, ..., ep] is well-formed (not well-formed, resp.). This holds, since the holes

of C are at expression position.
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Lemma 4.22. Let C[-T',...,-™] be a multicontext with n holes and for i €

rn
{1,...,n} let e; :: 7; be expressions such that Cley,...,€i—1,,€it1,--.,€n] S
a D[L[-]]-context. Then there exists a hole -; such that for arbitrary expressions

/

€| 7y ... €, 7, the context Cle),. . ., € 1541 €j41,- -+ €p] is a DIL[]]-context.

Proof. Let the preconditions be met and @[el, ey @iy iy €ig 1y €n) = D[L[]]
for some D € PCtxt and 1L € LCtxt. We distinguish the cases:

— L = MJF]. Then @[e’l,...,eg_l,-i,egﬂ,... el ] is always a context of the

form D/ [M'[F'[-]]], since the holes -1,. .., _1, ':-17 ..., of C cannot be on
the path from the root to the hole -; (where C is seen as an expression tree).
—L = z&M[F[z,)] 2z, = Eplzp_1]l ... lze = Eg[zy] lzy = E;. If
Clel,..., €1, €iy1s- -6y is not an D[L[-]]-context, then at least one hole

g # o of C must be on the path from the root to -; in C. Moreover, this
hole must be at one of the following positions:

° J?@M[F[k]] |.13n :En[mn—l] | ... lzo = Eg[l‘l] | 21 = E4
o x =MFlz,]] | ... oy =E[%]| ... 21 =E;
Let -; be such a hole such that no other hole of -,...,-, is on the

path to -;. It is easy to see that for all expressions e; the context

Clei,...,€j—1,"j,€j+1,...,e,] must also be an D[L]-context. O
Lemma 4.23. For all variable permutations p:

— If for expressions e1,eq and all D € PCtxt and oll L € LCtzt it holds that
D[Lle1]]l = DI[L[ez]]l. Then for all D € PCtzt and all L € LCtxt:
DL{p(en)]]l = DIL{p(es)]]L-

— If for expressions ey1,es and oll D € PCtxt and all L € LCtxt it holds that
D[Lles]]T = D[L[es]]T. Then for all D € PCtxt and all L € LCtat:
D[L{p(e)]]T = DIL[p(e2)]].

Lemma 4.24. For all n > 0 and all multicontexts C[-T', ..., -7»] with n holes

and for all expressions ey = T1,...,€n Ty and €} 2 T1,. .., €} = Ty holds:
If foralli =1,...,n and all D[L[-"]]-contexts: D[L[e;]]] = D[L[ef]]!, then
Clet,...,en]l = Clél, ... el]l

Proof. Let (NZ, e;, €} be given, such that the precondition holds for all e;, e; and
assume Cley, . . ., e,]]. We prove Cle}, . .., €/,]] by induction on the measure (I, n)
(ordered lexicographically) where
— [ is the length of a shortest standard reduction @[el, . ord, @ where
Q is successful. B
— n is the number of holes of C.

The base case holds, since for n = 0 there is nothing to show. For the induction
step we distinguish two cases:
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— There is an index j such that (E[el,...,ej_l,-j,ej+1,...,en] is a D[L]-
context. Then by Lemma [£22 there is an index 4, such that both
Cle1,...,€i—1,"i,€it1,-..,6n] and C := Cle},...,€j_1,i,€j4q,...,€,] are
DI[L]-contexts. Since the context (E[-l, ey tim15€iy k1, - - - 5 'n) has n—1 holes
the induction hypothesis implies ((Nj[e’l, sy € _qs€i,€, ... en]l. The pre-
condition now shows that (Nj[e'l, € 1,€5,€ 1, ..., €e]] holds, since Cis a
D[L]-context.

— For no index j the context @[el, e €51y, €541, - - -, €] I8 & D[L]-context.
If Cley, ..., en] is successful then obviously Cle), ..., €] is successful, too.
Thus let I > 0 and @[61, ..yen] 25 Q be the first reduction step of a
shortest reduction sequence for @[el, ey en] that ends in a successful pro-

cess. This reduction can modify the context C, can remove or duplicate
the expressions e;, change the position of the expressions e; and may re-
name the expressions e; to establish the distinct variable convention. One
can verify that @ must be of the form C'[p(ey(1)), .-, p(€s(m))] such that

Cle),. .. e] = (C’[p’(ef,(l)% e 7P/(€:7(m))]

e p, p' are variable permutations of expressions

e o:{l,....m}—{l,...,n},
i.e. every modification, move, and remove done for (E[eh...,en] can also
be done for ((N:[e'l, ...,en]. Moreover, since a-renaming can be chosen ar-
bitrarily we can replace the renamings p, p’ by one renaming p” such
that Cle,...,en] — C'[p"(es1))s -5 0" (€o(m))] =a @ and Cley,... €] —
@[p”(e;(l)),...,p”(e;(m))}. From Lemma [4.23[ it follows that for all i €
{1,...,m} and all D € PCtat and L € LCtzt (with the the right type
at the hole) the implication D[L[p"(e;;))]]l == D[L[p" (e} ,;)]]] holds.

Since C/ (0" (ex(1));- -5 P"(ex(m))] has a shortest reduction sequence of length
I —1 to a successful process we can apply the induction hypothesis and have
C'lo"(e51))s - -+ " (€))L and thus also Cley, ... el ]l.

Lemma 4.25 (Context Lemma for May-Convergence). e; <| ; ez iff for
all D € PCtat and L[-"] € LCtat: D[L[e1]]] = D[Lle2]]|

Proof. One direction is obvious, the other direction is a special case of
Lemma [£.24] for n = 1.

Lemma 4.26. For all n > 0 and all multicontexts C[-7*, ..., -T»] with n holes

rn

and for all expressions €1 1 T1,...,€n i Ty and €5 1 11,..., €. 7, holds:
) ) 1 ) yvn

If for alli=1,...,n and all D[L[-"]]-contexts: D[L[e;]]T = DI[LIe}]]T, and
D[L[e}]]l => D[L[es]]|, then Cley, ... en]t = Cle},...,el]T

Proof. Let ((~:, e;, € be given, sugh that the precondition holds for all e;, e} and

assume Cley, . . ., e,]1. We prove Cle}, . .., ¢/,]1 by induction on the measure (I, n)
(ordered lexicographically) where
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— [ is the length of a shortest standard reduction (E[el, .o en] s, Q where

Q1

— n is the number of holes of C.

The base case holds, since for n = 0 there is nothing to show. For the induction
step we distinguish two cases:

— There is an index j such that @[el, €515, €41, -, €n] 15 an D[L]-
context. Then by Lemma [£22 there is an index ¢, such that both
Cle1,...,€i—1,"i,€it1,-..,en] and C := Cle},...,€j_1,i,€jq,...,¢,] are
D[L]-contexts. Since the multicontext C[-1,..., -1, €4, i41,---,'n) hasn—1
holes the induction hypothesis implies Clel,....ej_1,€i € 1,---, €] The
precondition now shows that Cley,...,ej_1,€j,ej,1,...,e,]1 holds, since C
is an D[L]-context.

— There is no index j such that Cle, ..., €j-1,j,€j41,. ., en] is an D[L]. If
Cle1, . . ., en] is must-divergent, then C[ef, . .., e} ] is must-divergent: The pre-

condition shows that for all D[L]-contexts: D[L[e}]]| = D[L[e;]]] and
Lemma shows Clel, ..., e, ]l = Cley,...,en]l. The last implication

is equivalent to Cley, ..., e, |t = Clel, ..., el ]
Now let I > 0 and Cley,...,e,] 2= @ is the first reduction step of a short-
est reduction sequence for Cley,...,e,]| that ends in a must-divergent pro-

cess. This reduction can modify the context C, can remove or duplicate
the expressions e;, change the position of the expressions e; and may re-
name the expressions e; to establish the distinct variable convention. One
can verify that @ must be of the form C'[p(ey(1)), ..., p(€s(m))] such that
C[ellv ) e;z} - (C/[pl(e:r(l))7 T 7p/(€/o(m))]

e p, p/ are variable permutations of expressions

e g:{l,....,m}—{1,...,n}, N
i.e. every modification, move, and remove done for Cley,...,e,] can also
be done for Cle},...,¢,]. Moreover, since a-renaming can be chosen ar-
bitrarily we can replace the renamings p, p’ by one renaming p” such
that Cley,...,en] — C'[p"(ex(1))s -5 0" (€o(m))] =a @ and Cley,... e ] —
((N:'[p”(e;(l))7...,p”(e;(m))}. From Lemma {4.23| it follows that for all i €
{1,...,m} and all D € PCtst and L. € LCtxt holds: D[L[p" (e,(;))]]T =
DIL[p" (€}, (;)]]T- Since @[p”(eg(l)), oo, P (€x(my)] has a shortest reduction
sequence of length I — 1 to a must-divergent process we can apply the
induction hypothesis and have C'[p"(e], ), ..., p" (€, (,,))]T and thus also

Cley, ... el

r n

Lemma 4.27 (Context Lemma for Expressions). Let eq, ey be expressions
of type T such that for allD € PCtazt and L[-7] € LCtzt: D[Lle1])]] = D[L[es]]]
and D[L]e1]]y = D[Lleq]]y. Then e; <., €.

Proof. The inequation e; <| ; e follows from Lemma and the inequation
e1 <y,r ez is an instance of Lemma [.26]
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5 Equivalences and Correct Program Transformations

A program transformation vy on processes is a binary relation on processes. It is
called correct iff v C ~.. A program transformation v on expression is a binary
relation on equally typed expressions. It is called correct iff v C |, ~c,--

We show in this section that several transformations induced by standard
reductions are correct program transformations, and also that several reduction
rules are correct in any context.

We write (sr,a) (or alternatively ~—%) to denote the standard reduction

a. For a transformation v we write (D, ) (or alternatively D—7>) to denote the
closure of v w.r.t. PCtzt-contexts, i.e. (D,v) := {(D[P],D[P,]) | P, L P,,D €
PCtat}. We use this notation also for other context classes, e.g. (D[L],~) is the

closure of the transformation ~ applied inside all PCtzt- and LCtzi-contexts.

. . . . sr,a,k
We sometimes attach further information to reduction arrows, e.g. ——

means k standards reductions of type a; we use * and + to denote the reflexive-
transitive and the transitive closure. The notation a V b attached to a reduction
arrow means a reduction of kind a or of kind b.

Remark 5.1. Without typing, the transformation return ey >>= es — (es e1)
would be incorrect. Consider the (untyped) context

C = g &0 casepool [-] of (True — True) (False — False).
Then C[return False >>= Az.Truelf, but C[(Az.True) False|).

Proposition 5.2. The standard reductions (sr,lunit), (sr,nmuvar), (sr, fork)
are correct transformations.

Proof. Let a € {(lunit), (nmvar), (fork)}. We show that (sr,a) does not change

the convergence behavior in every PCtzt-context. If D[P)] D, D[Q] where P is

the thread of the (a)-reduction, then the (a)-reduction is always also a standard
reduction. Hence, @ <; P and P <y Q. For the remaining inequations we
first observe that a (D, a)-transformation always commutes with any standard
reduction, if the reductions are different. L.e.:

This follows, since the (D, a)-transformation is always a standard reduction and
since it is deterministic for the corresponding thread and it does not require
other components (like threads, MVars, bindings) for its applicability.

Now let D[P] D, [Q] and D[P]]. By induction on the length of a successful
standard reduction sequence for D[P] we show that there is a successful standard
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reduction sequence for D[Q)]. If the sr-reduction and the (D, a)-reduction are
different, the induction step is covered by the above diagram. If the reductions
are the same, then the we have a trivial case. For the induction base it clearly
holds that if D[P] is successful, then D[Q] is successful, since (D, a) cannot be
applicable to a terminated main thread. Thus (a) C <|.

The remaining part is to show that (a) C > 1~ We show the analogous claim
that if D[P]7 then D[Q]7. We use induction on a reduction sequence for D[P] that
ends with a must-divergent process. The induction step follows by the diagram
from above, the base case (D[P]ff == D|[Q]T) holds, since we have already
shown that D[Q]] = DI[P]|, and (D,a) does not modify well-formedness of
processes, thus D[Pl = D[Q]1-

Proposition 5.3. The reduction (unIO) is a correct transformation.

Proof. Note that for well-formed and reducible processes, the (unlO)-reduction is
always a standard-reduction. The same reasoning as for Proposition [5.2] applies,
since it is sufficient to check the (unIO)-reduction in PCtzt-contexts.

The source of nondeterminism in CHF is the ability to concurrently access
MVars from different threads. Hence, unsurprisingly the reduction rules for read-
ing and writing into an MVar are not correct:

Proposition 5.4. The reduction rules (sr,tmuvar) and (sr,pmuvar) are in gen-
eral not correct.

Proof. Consider the context
main
D := ¢ < putMVar y True | ym— | []

Then D[M[putMVar y True|] may-converges:

mai

r <2 putMVar y True | ym — | z < M[putMVar y True]

ST

S o £ return () l ymTrue | z <= M|putMVar y True]

After the other (sr, pmvar)-reduction we get

D[z < M[putMVar y True]]

sSr,pmuvar

g &2 putMVar y True | ymTrue | z < M]return ()]

and the resulting process is must-divergent, since the putMVar-operation of the
main thread is blocked indefinitely.

The counter example for (tmvar) is analogous, where all putMVar-operations
are replaced by takeMVar-operations and the MVar y in the context D is filled.

Nevertheless, if the execution of a (sr,tmuvar)- or (sr,pmuvar)-reduction is
deterministic, it is a correct program transformation. For formalizing this we
define further transformations related to reduction rules (we also add a rule for
garbage collection):
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Definition 5.5. The transformations (dtmvar), (dpmvar), and (gc) are defined
as follows, where we assume the transformations to be closed w.r.t. structural
congruence and w.r.t. PCtxt.

(dtmvar) ve.D[y<M|takeMVar z| | zme] — vz.Dy<M|return €] | zm—]

if for all DY € PCtxt and all 0%, _sequences starting with
D' [vz.(Dy < M[takeMVar z] | xme])] the first execution of any
(takeMVar x)-operation takes place in the y-thread

(dpmvar) ve.Djy <M|putMVar z €] | tm—] — vz.D[y<M]|return ()] | zme]

if for all D' € PCtxt and all DY, _sequences starting with
D'[vz.(Dly < MputMVar z €] | tm—])] the first execution of any
(putMVar x ¢')-operation takes place in the y-thread

(gc) vy, ..., on.(P | Comp(z1) | ... | Comp(z,)) — P
if for oll i € {1,...,n}: Comp(x;) is either a binding x; = e;, an
MVar x;me;, an empty MVar x;m—, and x1,...,x, do not occur

as free variables in P.

Remark 5.6. Note that there are sufficient criteria for the applicability of (dtm-
var) and (dpmvar), for example, if D = [], or if neither M, e nor I contain occur-
rences of z, or if vx.D[M[]] is closed and D does not contain any takeMVar nor
putMVar.

However, note that the reduction may be able to construct a disturbing
execution of (takeMVar z) or (putMVar z €’) also in non-obvious cases. For
instance, consider the process P := vx.(y <=takeMVar x | xme | zmx). It does
not fulfill the criteria of (dtmvar), since e.g. for the context

D' = ¢/ < takeMVar z>>= \2'.takeMVar 2’ | /]

the MVar 2 can be accessed in D'[P] by the y'-thread before the (takeMVar x)-
operation of the y-thread is executed.

Proposition 5.7. The transformations (gc), (dtmvar), and (dpmuvar) are cor-
rect program transformations.

Proof. For (gc), this is obvious, since (gc) is not among the standard reductions,
and there is no interaction with standard reductions. Now consider the trans-
formation (dtmvar), which is also a standard reduction. Let P (dtmvar) - pr
If P’|, then obviously P|, since (dtmvar) is a standard reduction. If P, then
P 2% Py, where Py is successful. The precondition for the application of (dt-
mvar), that no takeMVar can interfere during the reduction, shows that only a

square forking diagram holds, and thus either the same reduction can be used
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for P’, or the reduction is of the form:

(dtmwvar)

P P’
[
sr,*l | sT,%
v
P----- > P
! (dtmwvar) ‘2
| sT,%
v
50

Hence also P’|.

We have also proved that P{f <= P/{}. If P’7, then we also have P7, since
P [dbmvar) P’ is a standard reduction and by the previous equivalence.

Now assume PT. Le. P 2P, Py with Pyfy. The same argument on forking shows
that one of the following constructions of reduction holds:

(dtmwvar)

P

(dtmwvar) , |
P— ]ID Sn*i | s7,%

sr,*l fsroe D ]!

Al 1 (dtmvar) |2

Po— — — — - P

0 (dtmvar) 0 "IST’*

Fo

(dtmwvar)

In the first case, also Pjf, since is a standard reduction, and in the

second case, Py is already must-divergent.

The arguments for (dpmvar) are completely analogous.

In the following we speak of the transformations (lbeta), (case), (seq),
(mkbinds), and mean the reduction without the L-context, i.e. only the modifi-
cation of the redex.

Proposition 5.8. The transformations (lbeta), (case), (seq), (mkbinds) are cor-
rect as transformation in any context.

Proof. Let e1,es be equally typed expressions, such that e; — es. Let
DI[L[e4]] Ditde, D[LL]e2]] for a € {(Ibeta), (case), (seq), (mkbinds)} where ey is the
redex of the a-reduction. Then the a-reduction is always also a standard reduc-
tion. Hence, by the context lemma, ez <| e;. To show the remaining inequation
e1 <) eg, we first observe that a (D[L], a)-transformation always commutes with
any standard reduction, if the reductions are different. L.e.:

D[L],a
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This follows, since the (D[L[-]], a)-transformation is always a standard reduction

and since it is deterministic for the corresponding thread. Now let D[L[e1]] Dltla,

D[L[ez]] and D[L[e1]]]. By induction on the length of a successful standard re-
duction sequence for D[L[e;]] we show that there is a successful standard re-
duction sequence for D[L[es]]. The induction step is covered by the above dia-
gram. For the induction base it clearly holds that if D[L[e;]] is successful, then
D[L[e2]] is successful, since (D[L], a) cannot be applicable to the terminated main
thread. Thus the context lemma for may-convergence shows (a) C <, and hence
(@) S~

From D[L[eq]]
lemma, that e; < es.

To show the remaining inequation es <y e; we have to show that (D[L],a) C
>,. We show the equivalent claim that if D[L[e1]]T then D[L[e2]]T. Therefore
we use induction on a reduction sequence for D[L[e;]] that ends with a must-
divergent process. The induction step follows by the diagram from above, the
base case (D[L[e1]]lff = DI[L[ez]]T) holds, since we have already shown that
D[L[es]]| = D[L[es]]| and thus D[L[e;]]t = D[L[e2]]fr. Thus the context
lemma implies the last part es <y e;.

D, D[Lle:]] and (a) € ~ |, we now derive, using the context

It remains to show correctness of the copy reductions (cp) and (epcz) (i.e. the
reduction rules (sr,cp) and (sr,cpcx) where the L is replaced by an arbitrary
process context C with an expression hole). The correctness proof is not straight-
forward and thus requires further proof techniques. We will show the correctness
in the next section using infinite trees.

6 Correctness of Call-by-Name Reductions

This section contains proofs for the correctness of call-by-name reductions, and
the equivalence of call-by-need and call-by-name evaluation.

The main technique for the proof is to use infinite terms and the correspond-
ing reductions, which allows one to encode recursive bindings into expressions.
This technique was used in [SSOT] to show correctness of inlining in the deter-
ministic call-by-need lambda calculus with letrec and also in [SSSM10] to show
equivalence of the call-by-need lambda calculus with letrec and the lazy lambda
calculus [Abr9qQ].

6.1 Calculus for Infinite Trees

We define infinite expressions which are intended to be the letrec- and binding-
unfolding of the expression with the extra condition that cyclic variable chains
lead to local nontermination.

Definition 6.1. Infinite expressions IExpr are defined like expressions Expr
omitting the letrec-component, adding a constant Bot, and interpreting the gram-
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mar coinductively, i.e. the grammar is as follows

s,t,8i,t; € IEzpr=ax | ms | Bot | Ax.s | (s182) | ¢81...54(c) | s€q 81 82
| caser s of (cr1 T1..Tar(ep,) — S1)--- (C T 71 Zar(er, ) = s|7)

ms € IMExpr :=return s | s; >>= sy | forkIO s
| takeMVar s | newMVar s | putMVar s; so

Infinite processes (or tree processes) IProc are defined like usual processes Proc
using the same (inductive) grammar omitting bindings, with an additional pro-
cess 0, and infinite expressions instead of expressions. L.e. the grammar is:

S,T,8;,T; € IProc::=51 152 | x<s | va.S | ams | am— | O

The process 0 is like a process without any reduction rules. Structural congruence

on tree processes is defined as for processes where we add the congruence equation
01S=5S.

Thus there are finitely many process components, but perhaps infinite ex-
pressions in threads or MVars. In order to distinguish the following the usual
processes and expressions from the infinite ones, we say tree or infinite expres-
sions or tree process or infinite process in order to distinguish the usual notions
from the ones for infinite processes. In infinite processes there are no variables for
bindings, but variables corresponding to threads or MVars are there, and remain
as free variables within the infinite expressions. The constant Bot in expressions
is without any reduction rule. It will represent cyclic bindings that are only via
variables like x =y | y = .

In the following explicit definition of a mapping from processes to their in-
finite image, we sometimes use the explicit binary application operator @ for
applications inside the trees (i.e. an application in the tree is sometimes written
as (@ s; so) instead of (s1 s2)), since it is easier to explain, but stick to the
common notation in examples.

Definition 6.2. Let P be a process. The translation IT :: Proc — IProc trans-
lates a process P into its infinite tree process IT(P). Instead of providing a direct
definition of the mapping IT, we provide an algorithm that given a position p
of the infinite tree and a given process P it computes the label of IT(P) at po-
sition p. A position is a sequence of positive integers, where the empty position
is denoted as €. We use Dewey notation for positions, i.e. the position i.p is
the sequence starting with i followed by position p. The computation starts with
P|, and then proceeds with the rules given in Figure . The first rules define
the computed label for the position €, the second part of the rules describes the
general case for positions. If the computation fails (or is undefined), then the
position is not valid in the tree.

The equivalence of infinite processes is syntactic, where a-equal trees are
assumed to be equivalent.
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caser ...)|]

seq e1 e2)c]
cer...en)le]

a66600606898985858

CT1... Tn — €)|]

=
—rm
= Tm—
N 2
— |
— 0
— Q@

— caser
—(cx1 ... Tn)
— seq
—c

for a case-alternative

— Az

— T if x is a free variable, a thread-identifier,
a name of an MVar, a v-bound variable,
or a lambda-bound variable in Clz]

If the position € hits the same (let- or binding-bound) variable twice, using the rules
below, then the result is Bot. The general case is:

D{(@ < ¢)|1.,)

(

(
(ve.Q)l1.p)
(Q1 1 Q2)]1.5]
(Q11Q2)]2.p)
(Az.e)|1.p]

(

(

(seq e1 e2)]1.p]
(
(
(

seq e1 e2)|2.p]
case e of alty

aaoacaoaocacaoacaggggs

(cer...en)lip

ooaltn)]1.p]

case e of alty...altn)|(it1).p)
ez ooz —e)|ip.. ]

Cl[(1etrec Env in e)lp]

Ci[(Letrec = e, Env in Ca[z|p])]
Ci[(letrec z = e1,y = Caz|p], Env in e2)]
— Ci[(letrec z = e1lp,y = Caz], Env in e3)]

Diz = e, Clz,]]

— D[(z <elp)]

— D[(zmelp)]

— D[(vz.Qlp)]

= D[(Q1lp | Q2)]

= D[(Q1 | Q2[p)]

— C[Az.(e|p)]

— Cl(e1]p e2)]

— Cl(e1 e2p)]

— Cl(seq e1]p e2)]

— C[(seq e1 e2[p)]

— C|(case €|, of alty...alty)]
— Cl(case e ofalty ... alts|p ... alty)]
—Cl..(cx1 ... Tn —e|1p)..]
— Cl(cer...eilp...en)]

where ¢ is a constructor or a monadic constant

— C[(letrec Env in elp)]
— Ci[(letrec = = e|p, Env in Ca[z])]

— Dz = el,, Cla]]

where the notation ]]33[7 -] means a two-hole process context with process holes,
i.e. a process where two subprocesses are replaced by context holes.

Fig. 4. Infinite tree construction from positions for fixed P
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Ezample 6.3. The expression letrec x = x,y = (Az.2) z y in y has the corre-
sponding tree ((Az.z) Bot ((Az.z) Bot ((Az.z) Bot ...))) or written explicitly:

e
i’ Az Bot @/ \
V PR
z Az Bot
v

Ezxample 6.4. For the process vy.((x < putMVar y z | ym—) | z = Cons True z2)
the corresponding infinite tree is:

which is structural

Vvy congruent to: Vvy
I |
| / \ 0 x <:/ \z/ m—
T <:/ \y m— putl\\%[Var
putl‘%IVar Y / \Cons
Yy / \Cons True/ \Cons
True/ \Cons True/ \ -
True/ \ e

Similar as for processes we can use the prenex-normal form w.r.t. v for infinite
processes.

We use different classes of contexts for infinite processes and trees. In abuse of
notation we use the same symbols for these contexts as for the contexts defined
previously on (finite) processes and expressions.

Definition 6.5. Process contexts IProc, call-by-name evaluation contexts
IECtat, forcing contexts IFCtxzt, and monadic contexts IMCtxt are defined as
follows where all grammars are interpreted inductively and where S € IProc,
s € IExpr:

D,D; € IPCtat
M, M; € IMCtxt
F,F; € IFCtat
E,E; € IECtat

[] | DIS | SID | vaD

[] | M>>=s

E | (takeMVar E) | (putMVar E s)

[] ] (Es) | (case E of alts) | (seq E s)
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A reduction context R € IRCtzts for infinite processes is constructed as
D[V <MJF]] for D € IPCtxzt, M € IMCtzt, and F € IFCtut.

Lemma 6.6. Let P,Q be processes and P — @ by a rule (cp), (cpcx) or
(mkbinds). Then IT(P) = IT(Q).

Definition 6.7. The functional reduction rules on tree processes are allowed in
any context and are as follows:

(betaTr) ((Azx.s) r) — s[r/z]
(seqTr) (seq st) — t ifs is a functional value
(caseTr) (caser (¢ 81...8p) of ...(cx1...xyn) =8 — 8[$1/T1,...,5n/Tn]

The monadic computation rules are unchanged for (lunit), (tmwvar), (pmvar),
(nmwar), and (forkIO) (see Fig. [J where now M denotes an IMCtxt-context)
and adapted for the rule (unlO):

(unIOTr) Dly<return y] 2R, (D[0])[Bot/y]

(unIOTr) D[y<return s| 22 (D[0])[s//y]
if s # y; and the thread is not the main-thread
where // means the infinite recursive replacement of s for y;
and where D means the whole process that is in scope of y.

If a tree-process-reduction rule (betaTr), (caseTr), or (seqTr) is applied within

an IRCtxts-context, or it is a mondaic rule, then we call it a standard-reduction

(SR-reduction) on tree processes, and write T SEopr4 successful infinite

process is an infinite process where the main thread exists and is of the form
y<return e. We also use the convergence predicates |, 1, |}, T for infinite tree
processes, which are defined accordingly. The redex of a tree process reduction
is the (infinite) subtree which is modified by the reduction rule. Note that for
reduction rule (unIOTr) the redex is the whole infinite tree.

betaTr,SR caseTr,SR

Note that and only reduce a single redex, but may mod-
ify infinitely many positions, since there may be infinitely many positions of the
replaced variable z. E.g. a (SR,betaTr) of IT((Ax.(letrec z = (z x) in 2)) r) =
Az.((.. (.. x)x)x))r— ((-.. (... ) r) 7)) replaces the infinite number of
occurrences of x by r.

Lemma 6.8. Let P be a process. If P is successful then IT(P) is successful. If
IT(P) is successful, then P]|.

Proof. If P is successful, then obviously, IT(P) is successful.
If IT(P) is successful, then in P the main thread may be y <2== return s, and

the claim holds. The main thread may also be y Zain, x, where x is bound via sev-
eral bindings to (return s), perhaps decorated with letrec-environments. We



34 David Sabel and Manfred Schmidt-Schaufl

)V (epex)V (mkbinds),*,sr

claim that there exists a sequence of sr-reductions P (ep P,
where P’ is is successful. Since IT computes an infinite expression of the
form (return s) at the position of x, there is a chain of variables of length
n for = as follows: starting with x where all intermediate bindings are either
x; = LR;[z;41] in a process binding or a letrec-binding, and the last one is
x, = LR, [(return s)], and the contexts LRR; are contexts according to the gram-
mar LR ::=[] | (Letrec Env in LR). There is a sequence of sr-reductions of P
using (cp), (cpex), and (mkbinds) always modifying either y <=== x by copying a
variable for z, or performing a (mkbinds) on y €= x | x = (letrec Env in t),
or as the final reduction, a (cpcx) is performed. The sr-reduction sequence ter-
minates with a successful process, since it strictly decreases the label-computing

steps for position of z. Note that the reductions do not change the infinite process
due to Lemma [6.6

We will use a variant of infinite outside-in developments [Bar84/KKSdV97]
as a reduction on trees that may reduce infinitely many redexes in one step.

Definition 6.9. We define an infinite variant of Barendregt’s 1-reduction: Let
T € IProc be an infinite process. Let M be a set of (perhaps infinitely many)
labelled redexes of T. We require that the set M

— contains only redexes of the same reduction rule
— 148 a singleton, whenever the reduction rule is different from (betaTr), (seqTr),
or (caseTr)

Then by T LM 7 we denote the (perhaps infinite) development top down,
i.e. the reduction sequence constructs a new infinite tree T’ top-down by using
labelled reduction for every labelled redex, where the label of the redex is removed
before the reduction. If the reduction does not terminate for a subtree at the top
level of the subtree, then this subtree is replaced by the constant Bot in the result
T'. If the subtree is of the form (c s1...s,) where ¢ stands for any syntactic
construct, and no superexpression carries a reduction label, then for all i let s,
be the resulting infinite tree for the infinite development of s;. Then the resulting
tree is (¢ s} ...sl). This recursively defines the resulting tree top-down.

. I,M . .
If the reduction T —— T does not contain standard redexes, then we write

I,M,NSR , I,NSR , .
5T We write T —— T’ (T L, resp.) if there exists a set M

LALNSR, (T LM T', resp.).

T
such that T

Ezxample 6.10. We give two examples of corresponding infinite standard reduc-
tions.

An sr-reduction of a process corresponds to an LM, eduction and maybe cor-
responds to an infinite sequence of infinite SR-reductions. Consider z <y | y =
(Ax.y) a. The (sr,lbeta)-reduction results in z<y |y = y | © = a. The corre-
sponding infinite process will be z < (Ax.(Az.(...) a)) a, and the (SR,betaTr)-
reduction-sequence is infinite.
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Let the expression be z<yly = (seq ¢ (seq y d), where ¢,
d are constructor constants. Then the standard reduction results in
z<yly = (seq y d), which diverges. The corresponding infinite process is
z <= (seq ¢ (seq ((seq ¢ (seq (...) d)) d)), which has an infinite number of SR-
reductions, at an infinite number of deeper and deeper positions.

6.2 Equivalence of Tree-Convergence and Process-Convergence

In this section we will show that (may- and should-) convergence for processes P
coincides with (may- and should-) convergence for the corresponding infinite tree
IT(P). We will consider may-convergence, and thereafter we consider should-
convergence. Some easy facts are shown in the following two lemmas:

Lemma 6.11. Let P be a process such that P =% P'. If the reduction

is monadic, then IT(P) She, IT(P") If the reduction a is (cp), (cpcz) or

(mkbinds) then IT(P) = IT(P'). If the reduction a is (lbeta), (case), or (seq)

then IT(P) LM, IT(P') for some M, where o’ is (lbetaTr), (caseTr), or (se-

qTr), respectively, some M, and the set M contains standard redezes.

Proof. Only the latter needs a justification. Therefore, we label every redex in
IT(P) that is derived from the redex P 2% P’ by IT(.). This results in the set
M for IT(P). There will be at least one position in M that is a standard redex
of IT(P).

o I,NSR ,
Lemma 6.12. Let T be an infinite process. If T ——— T’, where T" is success-
ful. Then also T is successful.

i s
Proof. The successful thread y <=== return s cannot be generated by LNSE,

reductions: at least one reduction must be at a standard reduction position,
which would be a standard reduction.

6.2.1 Standardization of Tree Reduction for May-Convergence. In
this subsection we show that for an arbitrary reduction sequence on infinite trees
resulting in a successful process we can construct an SR-reduction sequence that
also results in a successful process. We prove this result in a series of lemma.

Definition 6.13. For tree processes we use the following notation for positions.
For a finite or infinite process T a position p where T'|p is an expression can be
split into a prefiz po and a suffizx p1 such that, p = pg.p1 and pg is the position
of the top-level expression of a process component, i.e. pg is the position of the
expression of the top-level expression of a concurrent thread, or of the expression
which is the content of a filled MVar. For empty M Vars the suffiz p1 is the empty
string.



36 David Sabel and Manfred Schmidt-Schaufl

Ezxzample 6.14. We consider the process
P =vzy.vxs.((ry <putMVar y z | (ym— | zam A w.w)) | z = Cons True z).

The infinite tree IT(P) in prenex normal form with removed 0 is structural
congruent to

IT(P) = vzy.vae.((r1 < putMVar y (Cons True ...)) | (ym— | zo mAw.w))).

The top level expression positions are 1.1.1.1 for the top-level expression
putMVar y (Cons True ...) in the thread z; < putMVar y (Cons True ...)) and
1.1.2.2.1 for the expression Aw.w in the filled MVar zo m Aw.w.

Consider a reduction T =25 T of type (betaTr), (caseTr) or (seqTr). This
reduction may have an SR-component and can be split into T’ LN Ty L.

This can be iterated, as long as the remaining 7} L7 has an SR-component.
Unfortunately, this split process may be non-terminating. Since this split is es-
sential for our proof technique, we have to introduce a new notion and notation:
We split the reduction into the parts for the different process components: We
partition the set M = (J,_; , Wi, where all positions of a set W; have cp;
as prefix and where cp; is the position of the top level expression of the com-
ponent with index ¢. This is possible since this split is only necessary for the
reduction rules (betaTr), (caseTr) and (seqTr), and since these reductions only

modify a single process component. If the split results for a component j in
s . . . I,W;,infSR
an infinite SR-reduction sequence then we write the reduction as ————.

Since the reductions are parallel, we can join all the sets and obtain a partial
. I, Mg, infSR . " .
reduction —————— where Mj,s contains all positions in process components,

where the corresponding SR-reduction sequence that follows from M is infinite.
Let Mg, = M\ My, i.e. the other labeled positions. This reduction can be split
SR, % I,M{nf,NSR

into Note that a component with an infinite SR-reduction
cannot have further SR-reductions in the reduction sequence.

Lemma 6.15. A reduction T =25 T' can be split into its finite SR-components,
and a reduction containing infinite SR-components and non-SR-components as

SR,* I,M,,NSR I,Ms,infSR . .
follows: T == T, —— Ts 2.0 T', where My contains all positions
that are in components with an infinite SR-reduction, and My are the positions
within the other process components.

L I,M
Proof. As already argued, the reductions in T —— T" are parallel on the process
components and can be split for the different components. There are the two
cases of an infinite or finite SR-reduction for every component.

I,M,infSR SR,k

Lemma 6.16. A reduction sequence T T T5 can be commuted
us T SR,k ., I,M,infSR

T! T.
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Lemma 6.17. Consider two reductions =% and 122 of type (betaTr),
(caseTr) or (seqTr). For all tree processes T, Ty, Ty: if T 1M, Ti, and T 1Ma,

Ty, and My C My, then there is a set Ms of positions, such that To LMs, T.

I,M;
T T

7
-

-

-
I,M, < I,Ms
-

15

Proof. The argument is that the set M3 is computed by labeling the positions
in T using M;, and then by performing the infinite development using the set
of redexes M, where we assume that the M;i-labels are inherited. The set of

- . . I,M.
positions of marked redexes in T that remain and are not reduced by Ty ——= T,
is exactly the set Ms.

SR

I,M,NSR .
e == T'. Then the reduction can be commuted

Lemma 6.18. LetT T
.M’

tOT*SB—)Tg —— T’ for some M’'.

Proof. The NSR-reduction can only be a functional reduction, and since the

NSR-reduction can only interact with the SR-reduction in deep positions or in
. . M

other process components, it is easy to construct the reduction sequence T35 ——

T.

Lemma 6.19. Let T

Then T is successful.

I,M,infSR I,M,NSR
_— B

T, orT T', where T is successful.

Proof. This follows from the definitions of the reductions, since neither 1M inf5R,

I,M,NSR .
nor —— can generate a successful main thread.

Lemma 6.20. Let T - T SRk,

T I,(infSRVNSR),* T
Proof. By induction on k:

The base case k = 0 is shown in Lemma [6.18]
Now let k > 1. The reduction T - T} can be split according to Lemma m

. SR,* I,My,NSR I,Ms,infSR . "
into T' T ! T2 2.inf Ty, where Ms contains all positions
that are in components with an infinite SR-reduction, and M; are the positions
within the other process components.

. . SR,*
T'. Then there is a reduction T ——

I,NSR I,infSR

T T; T
I 1 L2 !
SR SR
y y
!/ /
17, - - 7 T 72 SRk
| |
SR,* | SR,k—1|
y y
T// _____ > T// _____ > /
L GinfSRVNSR) + 2 I,infSR T
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SR,k I,infSR

T’ can be constructed.
SR.k—1

Using Lemma we see that 17 o 17,

We split into the first and the other reductions and obtain: 77 5 SR, 17 5

infSR . . .
17 ISR 1 Now we commute the NSR-reduction with the first SR-reduction
using Lemma The reduction sequence is T4 1 SR, 174 ER T 5, and we

. . . I SR,k—1
can use induction on k and the reduction sequence 77 ; — 77 5 175 to

SR, * ;L (infSRVNSR),* ’
T1,1 T1,2~

construct 717 ;

Proposition 6.21. Let P be process such that P|. Then IT(P)].

Proof. We assume that P 0%, P’ where P is successful. Using Lemma we
see that there is a finite sequence of reductions IT(P) I (P"). Using induc-
tion on the number of the reduction L, we show that there is an SR-reduction to

. . . I SR,k
a successful process. The induction step is to rearrange T — 177 —— T’ where

T’ is successful. Lemma [6.20] shows that the reduction can be commuted such
R gy LUnSRYNSR)«
i .

The properties of the reduction and that T is successful im-
ply that also T is successful by Lemma By induction on the number of

L, reductions we obtain IT(P)|.

. . . s
that we obtain the following reduction sequence T’
I,(infSRV NSR),*
LUngo VIV L) *

6.2.2 Infinite Tree Convergence Implies Call-by-Need Convergence.
We now show that for every process P: if IT(P) may-converges, then P may-
converges, too.

Lemma 6.22. Any overlapping between a SE, and an I’—a>—reducti0n, where s
not (tmvar) and not (pmwar), can be closed as follows. The trivial case that both
given reductions are identical is omitted. We have the following forking diagrams

. . . I, . .
for infinite processes between an SR-reduction and an L—r@ductzon, where a is
not (tmvar) and not (pmuvar).

T41>SQ T41>SQ T41>52
! 7 SR 7
SR SR SrR| 7 srR| "7
I
I \ s z
Si——=>1" S Si

Proof. This follows by checking the overlaps of L, with SR-reductions. Note that

if the type of the L and 22 reductions are different, then the first diagram
applies.

Note that for takeMVar and putMVar the diagram cannot be closed if the redexes
are in different processes and use the same Mvar.
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Lemma 6.23. Let T be an infinite process such that there is an SR-reduction
sequence to a successful process of length n, and let S be an infinite process with

I
T =% S, where a is not takeMVar and not putMVar. Then S has an SR-reduction
sequence to a successful process of length < n.

Proof. This follows from Lemma by induction.

Lemma 6.24. Let P be a process and let T := IT(P) %> T’ be an SR-
reduction. Then there is a process P', a reduction P - P’ using (mkbinds),
(ep) and (cpex)-reductions, a process P with P! ==% P", where a is the process

reduction corresponding to a’, such that there is a reduction T’ ELLIN IT(P").
In the case of a monadic reduction o' we can even choose T' = IT(P").
IT(-) IT(-)
1 pP————%T
IT() ~ ~ IT() -~
sr,b,* | ( )/ iSR,a' ~ s7,b,* | /()/
v -7 \ v -7
P’ T I 1,0’ P SR,a’
I \ / [
sr,a | | I,a’ s STya |
v IT( v o« \ I7(
P//,,,,(),>[T(p//) P//,,,,(),>.[T(p”)
a’ € {(betaTr), (seqTr), (caseTr)} a' a monadic rule
b = (cpex) V (ep) V (mkbinds) b = (epex) V (ep) V (mkbinds)

Proof. The processes P’, P" are constructed as follows: P’ is the resulting process
from a maximal sr-reduction of P consisting only of (cp), (cpcx) and (mkbinds)-

reductions. Similarly as in the proof of Lemma we can constructor a finite
(epcx)V(ep)V(mkbinds),sr

sr-reduction sequence triggered by the redex of the a-
reduction. Then obviously, T := IT(P) = IT(P’). The sr-(a)-redex in P’ and

. . . SR,a’ . .
its reduction uniquely correspond to T’ Z22%, T and is used for the reduction
P/ ST,Q Pl/.

For functional rules, further arguments are required: Note that the (a)-redex

in P’ may correspond to infinitely many redexes in 7. Lemma [6.11] shows that

there is a reduction T 2% IT(P"), and Lemma shows that also 7" 2%

IT(P").
Proposition 6.25. Let P be a process such that IT(P)|. Then P|.

Proof. The precondition IT(P)] implies that there is an SR-reduction sequence

of IT(P) to a successful process. The base case, where no SR-reductions are
. . SR,a’
necessary is treated in Lemma In the general case, let T ~—2 T’ be an SR-

reduction of a single redex. Lemma shows that there are processes P’, P”
with p (PR mkbinds) o2 oy s pi g = IT(P") for a monadic

)

reduction, and 7" 5 T T(P") for a functional reduction. For a functional re-
duction, Lemma shows that the number of SR-reductions of IT(P”) to a
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successful process is strictly smaller than the number of SR-reductions of T' to
a successful process. For both kinds of reductions we can use induction on this
length and obtain a sr-reduction of P to a successful process.

Propositions [6.21] and [6.25 imply the theorem
Theorem 6.26. Let P be a process. Then P| if and only if IT(P)].

6.2.3 Equivalence w.r.t Should-Convergence. We now consider the
should-convergence predicates for processes and infinite trees and show their
coincidence. We mostly work with the negation of should-convergence, i.e. we
show most of the results for may-divergence. The equivalence of convergence in
Theorem [6.26] now implies the base case for inductions for may-divergence:

Corollary 6.27. For a process P, we have Py < IT(P)f

Lemma 6.28. Let T be an infinite process. If T and T < T' for a reduction
(caseTr), (seqTr), (betaTr), or a monadic SR-reduction, then T'{.

Proof. For the monadic computations the claim follows, since the monadic reduc-
tions are SR-reductions. If the reduction is one of the functional ones, then as-

. . SR,
sume for contradiction that 7" |. Lemma shows that for a reduction 77 =~
. . . SR,* I,(infSRVNSR),*
T with T successful, there is a reduction T' TS (infSRY ) T, and the

same reasoning as in the proof of Proposition shows that T5 is successful,
hence T'|, which is a contradiction. Hence T"1}.

Lemma 6.29. Let T be an infinite process. If T LM 1 and T’ for a reduction
(caseTr), (seqTr), (betaTr), then T1.

Proof. Assume that T LM ,and T and T'|. The diagrams in Lemma
can be used for the induction on the length of an SR-reduction showing T’ SR,

T LR Ty and 7" SR, Ts, where T7 is successful. Then also T5 is successful, and
we have a contradiction. Thus 7).

Proposition 6.30. Let P be a process with P1. Then also IT(P)T.

Proof. The reduction sequence P 2B, P owith P! 1} is translated into a sequence

IT(P) LM, IT(P’) where IT(P’){ according to Corollary

L . . 1,
Using induction on the number of the reductions ——, we show that there
is a SR-reduction to a must-divergent process. The induction step is to rear-

SEF, T where T'{. Lemma shows that it can be rear-
Ty L, (infSRV NSR) + T'. Lemma shows that To1, since

can only be (caseTr), (betaTr), and (seqTr)-reductions.

I
range T' — T}
SR,*

ranged to T’
I,(infSRVNSR),*
_

This concludes the induction on —-reductions and we obtain T(P)1.
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Lemma 6.31. Let T be an infinite process such that there is a SR-reduction

sequence of length n to a must-divergent process, and let S be a process with

T L S, where a is a (caseTr), (betaTr), or (seqTr)-reduction. Then S SRm,

S'f with m < n.

Proof. The diagrams in Lemma [6.22| imply that there is a reduction sequence

g SEm g L, STt with m < n. Then Lemma shows that S'1{).

Proposition 6.32. Let P be a process such that IT(P)]. Then P1.

Proof. The precondition IT(P)7 implies that there is an SR-reduction se-

quence of T := IT(P) to a must-divergent process. The base case, where no
SR-reductions are necessary is treated in Corollary [6.27]
SR,a’

In the general case, let T ——— T’ be an SR-reduction.
Lemma  [6.24 shows that there are processes P/, P’  with
kbind

P (cpes)Viep)v (mbbinde),or:s P’ P”, and if o’ is a monadic reduction
then 77 = IT(P"”) and if o’ is a functional reduction, then T’ EN IT(P"). For
a functional reduction, Lemma shows that the number of SR-reductions
of IT(P") to a must-divergent process is strictly smaller than the number of
SR-reductions of T to a must-divergent process. For both kinds of reductions
we can use induction on this length and obtain a sr-reduction of P to a
must-divergent process.

sr,a

Proposition and imply the theorem
Theorem 6.33. Let P be a process. Then P71 if and only if IT(P)7.
Summarizing, we obtain the theorem:

Theorem 6.34. Let P be a process. Then P| if and only if IT(P)| and P71 if
and only if IT(P)7.

6.3 Correctness of General Copy

A consequence of the former theorem is that we can use infinite trees and infinite
tree convergences to prove contextual equivalences. Since the rules (cp) and
(cpex) applied to processes do not modify the corresponding infinite trees we
immediately have:

Proposition 6.35. The reduction rules (cp) and (cpecx) are correct program
transformations.

Proof. Let P, % Py where a € {(cp), (cpcr)}. Then for every PCtat-context
D the equation IT(D[P;]) = IT(D[P2]) holds. Applying Theorem yields
D[P]| <= D[P]] and D[P, ||} <= D[P]{}. Thus we have P; ~. Pxs.
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We can generalize this result.

Let the general copy rule for processes be defined as
(gep) Clz]lz=e—Cle]lz=e
Theorem 6.36. The general copy rule (gep) is correct.

Proof. Let D[P] 222, D[Py). Since IT(D[P1]) = IT(D[P3]) and by Theorem
we obtain that D[P;]] <= D[P]] and D[P]{ <= D[P]{. Hence we
obtain P1 ~ PQ.

6.4 Correctness of Call-By-Name Reduction for Processes

In this section we present a variant of the standard reduction which uses a call-
by-name instead of the call-by-need strategy. We show that the reduction does
not change the convergence predicates. The call-by-name reduction will then be
helpful for proving correctness of the monad laws in the subsequent section.

The call-by-name standard reduction is a variant of the standard reduction
2", where the rules (cp) and (cpex) are replaced by (cpce) and by using replacing
variants of (beta) and (case).

Definition 6.37 (Call-by-name Standard Reduction). The rules of the
call-by-name standard reduction == are defined in Fig. @ We additionally as-
sume that the rules are closed w.r.t. PCtxt and structural congruence, i.e. if
P =DI[P'], Q =D[Q'] and P' =5 Q' then also P 2% Q.

We also use the convergence predicates with their obvious definitions: The
predicates |, and |,. denote for may- and should-convergence, and the pred-

icates ... and T,,.. denote must- and may-divergence.

src src

Now we show equivalence of call-by-name and call-by-need reduction in a se-
ries of lemmas. The technique is to show that call-by-name convergences coincide
with tree convergences.

Lemma 6.38. Let P be a process and let T := IT(P) %> T’ be an SR-
reduction. Then there is a process P, a reduction P == P’ using (mkbinds)
and (cpee)-reductions, a process P with P' =% P where a is the process

reduction corresponding to a’, such that there is a reduction T’ LN IT(P").



A Contextual Semantics for Concurrent Haskell with Futures 43

Monadic Computations
(lunit) y<=M]return e; >>= ;] Ty < Mles e1]
(tmvar)  y<=M][takeMVar 2] | tme 2% y <= M][return ¢] | zm —
(pmvar) y<=M][putMVar z ¢] | zm — =% y <= Mjreturn ()] | zme
(nmvar) y <= M[newMVar e] =% vz.(y < M[return z] | zme)
(fork) y <= MJ[forkI0 e] =% vz.(y <= M[return 2] | z <e)
where z is fresh and the created thread is not a main thread
(unlO)  y<returne Ty =ce
if the thread is not the main-thread
Functional Evaluation
src

(cpce) y<=M[Fz]] |z =e — y<=M[Fle]] |l z=e

(mkbinds) y < M[F[letrec x1 = e1,...,Zn = €y in ¢€]]
AN V1, .., Zn.(y=MFle]] lzr=e1 | ... |z =en)
(nbeta)  y < M[F[((Az.e1) e2)]] 5 y < M[Fle1[ez2/]]]
(ncase) y fM[F[caseT (cer ... en)of ...((cyr ... yn) —€)...]]
= Y <:M[F[e[€1/y17.'”' 9 e"/yn]]
(seq) y<=MF[(seq v e)]] 2% y <= M][F[e]] if v is a functional value

Fig. 5. Call-by-name reduction rules

In the case of a monadic reduction a’, we can even choose T' = IT(P").
IT() IT()
p— "9 P————>7T
! Te)y -~ ~ ' e -~
sre,byx | /()/ \LSR,Q/ AN sre,b,x | /()/
v -7 \ v -7
Pl T/ |I7(ll Pl SR,G/
I I / I
srea | I Ia sre,a)
N IT(- v =~ A IT(-
P”————()—>IT(P”) P”————()—>IT(P”)
a’ € {(betaTr), (seqTr), (caseTr)} a' a monadic rule
b = (cpce) V (mkbinds) b = (cpce) V (mkbinds)

Proof. The processes P’, P" are constructed as follows: P’ is the resulting process
from an src-reduction of P consisting only of (cpce) and (mkbinds)-reductions.

Similarly as in the proof of Lemma [6.8| we can construct this finite src-reduction

kbinds),scr, . .
sequence (cpec)v(mRbinds) ser triggered by the redex of the a’-reduction. Then

obviously, T' = IT(P) = IT(P’) since (cpce) and (mkbinds) do not change the
infinite tree. The sre-(a)-redex in P’ and its reduction uniquely correspond to

T SR, T’ and is used for the reduction P’ =2% P”. For a monadic rule, we
have T' = IT(P").

For functional rules, further arguments are required: Note that the (a)-redex
in P’ may correspond to infinitely many redexes in 7. Lemma shows that
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there is a reduction T 2% IT(P"), and Lemma shows that also 7" 2%

IT(P").

Lemma 6.39. Let P be a process. If P is successful then IT(P) is successful.
If IT(P) is successful, then P|

src*

(epce)V(mkbinds),src,*

Proof. If IT(P) is successful, then P
cessful, hence P].

P’, where P’ is suc-

Lemma 6.40. For every process P: P| iff P|

src*

Proof. The claim is shown by transferring it into the infinite processes. We show
that for all P: P|,, . iff IT(P)].
I,%

If P|,,., then there is a reduction IT(P) — T’ where T" is successful. The
proof of Proposition shows that IT(P)|.

To show the other direction, let IT(P)]. The precondition IT(P)] implies
that there is an SR-reduction sequence of IT(P) to a successful process. The
base case, where no SR-reductions are necessary is treated in Lemma|6.39} In the
general case, let T' LN T’ be an SR-reduction. Lemma shows that there
P (epce)V(mkbinds),src,* P sre,a P//7 and T' = IT(P,,)
for a monadic reduction, and T’ L T(P") for a functional reduction. For
a functional reduction, Lemma [6.23] shows that the number of SR-reductions
of IT(P") to a successful process is strictly smaller than the number of SR-
reductions of T' to a successful process. For both kinds of reductions we can use
induction on this length and obtain a src-reduction of P to a successful process.

Lemma 6.41. Let P be a process. Then P, iff IT(P){.
Proof. This follows from by logical operations.
Lemma 6.42. For every process P: PT iff P

src

are processes P’, P"” with

src*

Proof. Again the claim is shown by transferring it into the infinite processes. We
show that for all P: PT,,. iff IT(P)T.

If P7,,., then there is a reduction IT(P) L 7 where T’{}. The proof of
Proposition shows that IT(P)1.

To show the other direction, let IT(P)7. The precondition IT(P)7 implies
that there is an SR-reduction sequence of IT(P) to a must-divergent process. The

base case, where no SR-reductions are necessary is treated in Lemmal[6.41] In the

general case, let T’ SRS T be an SR-reduction. Lemma shows that there

(epce)V(mkbinds),sre,* p' src,a P”, and T' = ]T(P,,)

for a monadic reduction, and 7" % T T(P") for a functional reduction. For a
functional reduction, Lemma [6.23] shows that the number of SR-reductions of
IT(P") to a must-divergent process is strictly smaller than the number of SR-
reductions of T" to a must-divergent process. For both kinds of reductions we can
use induction on this length and obtain a src-reduction of P to a must-divergent
process.

are processes P’, P" with P
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Theorem 6.43. The call-by-name reduction = is equivalent to the reduction
2%, Le., for every process P: P| iff Pl,,. and Pl iff Pl,,..

Proof. This follows from Lemmas and and Theorem
The context lemma [£.27] also holds for the call-by-name reduction.

Lemma 6.44 (Context Lemma for Call-By-Name and Expressions).
Let eq, ea be expressions of type T such that for allD € PCtzt and L[-7] € LCtxt:
D[L[el]]lsrc = D[L[eQHlsrc and D[L[elﬂl}src - D[L[eﬂw’m‘c' Then e SCJ
€9.

Proof. This follows from the context lemma [£:27]and the equivalence of call-by-
need and call-by-name-reductions in Theorem [6.43]

7 Monad Laws

We show in this subsection that the three monad laws are correct for ~, i.e. the
laws are:

(M1) return e; >>= ey =e5 €1
(M2) e; >>= Az.return z =e
(M3) ep >>= ()\.’E.(eg €T >>= 63)) = (61 >>= 62) >>= eg3

Note, that the monad law (M1) is analogous to our reduction rule (lunit),
but defined on expressions.

Remark 7.1. The monad laws would be incorrect if seq can be used without
restrictions: Assume that the first argument of seq is not type restricted. Also
we adopt the natural assumption that the monadic operators are treated like
constructor in seq, i.e., (seq (¢ ...) s) reduces to s for the monadic operators c.
This behavior can also be observed in the GHC implementation of Haskell. Let
undefined be a diverging closed expression, e.g. letrec r = x in x.

The law (M1) does not hold under unrestricted seq:
(seq (return True >>= undefined) True) terminates, but (undefined True)
does not terminate.

The law (M2) does not hold under unrestricted seq:
(seq (undefined >>= A\x.return x) True) is permitted under unrestricted seq.
Since the operator >>= is treated like a constructor, it will result in True.
On the other hand, the monad law implies that this expression is equivalent to
seq (undefined) True, which does not terminate.

However, due to our restriction that the first argument of seq cannot be of
type (I0 a), the monad laws are valid in our calculus, as we will show.
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7.1 Restricted Contexts and Commutation

We show that the three monad laws are correct, where we use the call-by-name
reduction strategy —— for usual processes in the proofs and also for computing
the diagrams.

We define a further class of contexts: A, A; € ACtzts n= z<=M | z = M,
where M € MCtat. Let (M1A), (M2A), (M3A) be the reductions that permit to

perform (M1), (M2), (M3) in arbitrary D[A[]]-contexts. We write ——""s iff

the reduction is an (M1A)-reduction, but not an (lunit, src)-reduction. We also

M1A,src . . . a,nsr
use ———— for an (lunit, src)-reduction. We also use the notation —— for

the reduction rules of the call-by-name reduction, meaning that the reduction
rule a is applied, but not as an src-reduction, since either the context is not a M-
or M[F]-context, or the process where the rule is applied is already successful.

Lemma 7.2. If an expression t :: 10 7 is in a D[L[]]-context, then the context
is a D[A[]]-context.

Proof. The type system in Fig. [2] shows that all other contexts are ruled out by
the type restrictions.

Lemma 7.3. For all P: if P L5 P oand P bisre, Py, where the reductions

are at different redexes, and where a, b are not the same kind of src-reduction
(pmwar) or (tmvar) on the same MVar. Then there are three cases: If neither Py

a,src

nor Py are successful, then there is some Ps, such that Py basre, P3 and Py, ——

Ps. If Py is successful, then there is some P3 with Py bunsr, Py and Py, 225 ps.

If Py is successful, then there is some P3 with Py bosre, P; and Py 25 .

b,src b,src b,src
P——D P———P P —— P2 (succ.)
| | |
a,src | a,src a,srcl | a,src a,src | a,nsr
A A Y
P _ = > P Pl - — > P3 s P
L ae 13 (succ.) i (succ.) P b 3 (succ.)

Proof. The call-by-name standard reductions are non-overlapping, since they
make only changes in one thread with the exception of the Mvar-modifying
reductions.

b,src

Lemma 7.4. Let P —— P’ where b &€ {(pmwvar), (tmvar)}, then the following
holds:

1. If P srek, Py where Py is successful, then there is some successful P} and

m < k with P" 22" P},

2. If P! STk, P} where P} is successful, then there is some successful Py and
m < k+1 with P =5 Py,
8. If P srok, Py where Pyft, then there is some must-divergent P} and m < k

with P" 2= Py,
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4. If P’ srek, Py where PJfy , then there is some must-divergent Py and m <

sre,m

k+ 1 with P —— P.

Proof. This follows by induction on &, and from the fact that standard reductions
commute according to Lemma[7-3] In the induction proofs of the last two items,
the results of the first two items are used.

7.2 Correctness of M1.

Now we show that the monad law (M1) is correct.

Lemma 7.5. The overlappings for (M1A) with src-reductions are as fol-
lows, where we assume that the (M1A) and the src-reduction is different.

M1Ansr M1A,src M1Ansr
| | |
src,al | sTe,a src,al | sTe,a src,cpcei | sre,epee
A \i \
> > e e >
M1Amnsr M1A,src M1A,src M1A,nsr

Proof. Note that occurrences of the type I0 7 are severely restricted. The only
nontrivial overlap is with the (cpce)-rule which generates the second and last
diagram. The prototypical overlap is:

(C[x} M1A,nsr
| © = return e; >>= ey

Cla] | = |= (e2 e1)

src,cpcel | sre,cpee
\
Clreturn a >>= e Cl(ez €1)] Cl(e2 e1)]
| = return e; >>= ey MiAsre | x = return e; >>= ey MiAnsr = | 2 = (e2 e1)

Here the first bottom reduction must be an src-reduction, since the context C
must be a D[F]-context.

Lemma 7.6. Let P 22, pr with P|. Then also P’|.

& .
Proof. Let P 2%, Py be a reduction to a successful process Py. We use the

diagrams in Lemma to show that P’ 2™, P! with m < k. Scanning the

diagrams shows that the induction step is proved. The base case is that P MiA,

P’ where P’ is successful implies that P is successful.

Lemma 7.7. Let P M2, P/ with P’|. Then also P|.

Proof. For the proof we interpret the diagrams “commuting diagrams”, i.e.
M1A,nsr sre,a

the given sequence is . Note that we do not consider given
(M1a, src) reductions for this part. The diagrams also hold as commuting di-
agram which can be justified by the determinism within the threads. Now by
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induction on the length of a successful ending reduction sequence for P’ one can
show that also P|. The base case obviously holds, the induction step follows
by applying the induction hypothesis first. Then either a commuting diagram
is applied or the (M1A)-reduction is also an src-reduction and the claim also
holds.

Lemma 7.8. Let P M2, P/ Then P'1 iff P1.

Proof. The base case, i.e. the equivalence P’} iff P{ follows from Lemmas [7.6
and

We have to prove two parts.
*,87TC

Let P M2, prand p 27 P, with Pi{). The diagrams in Lemma show

. . MI1A,* S
that there is a process P, with P; Ml P, and P’ e, P>. Lemma shows

that Pof}, hence this part is proved.

Let P M2, pr/and pr 27¢, Py with Py{. The diagrams are now interpreted

as commuting diagrams (omitting the second diagram) and an induction on
*,87TC

the length of the sequence P/ —— P, using the diagrams and the induction
hypothesis shows that P7T.

Together with the context lemma and Lemma we have proved:
Proposition 7.9. The monad law (M1) is correct.

7.3 Correctness of M2

Let (M2A) be the reduction that permits to perform (M2) also in arbitrary
D[A[]]-contexts.

Lemma 7.10. The owverlappings for (M2A) with src-reductions are:

M2A l o M2A . M2A l
7
sre,a | sre,a lunit,sre P 7 sre,cpee sre,cpee |
\% - mbeta,src \s
s 1 e s s
M2A M2A M2A

Proof. One non-trivial overlap is with the (cpce, src)-rule similar to the dia-
gram in and the other nontrivial overlap is with the (lunit, src)-rule which
generates the second diagram.

M2A
return e>>= \x.return r r/eturn e
-
=
lunit,srcl 2 “
=
_ =z

(Az.return z) e _z

[ =7

~

nbeta,src | = =

Y = z

e
return e
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Lemma 7.11. Let P 224, P/ Then P| <= P'|, and P] <= P',

Proof. The diagrams in Lemma [7.10] are now used for a proof by induction:

sre,k

1. P| = P’|: We show a stronger claim: If P —— P, where P, is successful,
then there exists a successful process P} with P’ 2" P} such that m < k.
The proof is by induction on k. For the base case it obviously holds that

if P is successful, then P} is successful. For the induction step let P =%

P, 2okl poWe apply a diagram to P; <7 P 224, p/ and then apply

the induction hypothesis (once for the first diagram, twice for the third
diagram). The second diagram is covered by Lemma
. P| < P'|: Here we use the diagrams in Lemma [7.10] as commuting dia-

grams. The claim is: if P’ 2% P} where P} is successful and there are n
(cpee,sre)-reductions, then P’ 2%, Py where P is successful using at most

n (cpce,src)-reductions. The induction is on the reduction P’ 2% P} | where
the measure is the number of (cpce,src)-reductions, then the total number
of reductions. For the third diagram the induction is applicable, since the
number of (cpce,src)-reductions is strictly decreased, and thus we can ap-
ply the hypothesis twice. If the first diagram is applied, then the number
of reductions is strictly decreased, and for the second, the diagram can be
immediately applied.

2A

The base case is that P’ is successful, and that P M2A pr Then P =
main mai

D[z €= return e; >>=\y.return y| and P’ = D[z <=== return e;]. Then
the second diagram shows that P (Lunit)Vnbeta),sre.x P
. P = P’'7: We derive P} <= P’{} using the first two items. If P{, then

again the diagrams and a simple induction show the claim using the base
case.

. P71 < P'1: Using a similar reasoning as in item , i.e., the corresponding
induction claim and the same induction measure and using P <= P'{},
an induction shows the claim.

Together with the context lemma [6.44] and Lemma [7.2] we have proved:

Proposition 7.12. The monad law (M2) is correct w.r.t. ~..

7.4 (MB3) is correct

Lemma 7.13. The overlappings for (M3A) with src-reduction are:
M3A MS3A M3A
[ [ \
srmai | sTc,a lum’t,srcl | lunit,src \Lsrc,cpce src,cpce |
Y Y

v
= . P = = .

>
M3A nbeta,src M3A M3A
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Proof. The nontrivial overlaps are with the (lunit)-rule and the (cpce)-rule.

M3A
return e; >>= (A\x.eg £ >>= e3) — > (return e; >>=ey) >>= e3
|
lunit7srcl | lunit,src
\
(Aregx >>=e3)eg— — — — — — — — >e9 €1 >>= e3
nbeta,src

Lemma 7.14. Let P M2, P/, Then P| iff P'| and Pl iff P'l.

Proof. The diagrams in Lemma can be used for a proof by induction, very
similar to the proof for M2A in Lemma[7.11] The following differences have to be
obeyed: M3A cannot turn a non-successful process into a successful one, unlike
M2A, and in the second diagram an (lunit,src) is there instead of an equality,
which is only a minor difference. The proof is almost the same.

Together with Lemmas and [7.2] we have proved:

Proposition 7.15. The monad law (M3) is correct w.r.t. ~..

Propositions and show:

Theorem 7.16. The monad laws (M1), (M2), and (M3) are correct w.r.t. ~..

8 Conclusion and Further Work

We presented the calculus CHF as a model for Concurrent Haskell extended by
futures. We have shown the correctness of a lot of program transformations. In
particular we have shown that call-by-name evaluation is correct, which opens
a wide range of further program optimizations. We use a monomorphic type
system, but we are convinced that our results can be transferred to polymorphic
typing. We have shown that the monad laws are correct in CHF, but we needed to
restrict the first argument of the seqg-operator to function types and constructor
types. This result also applies to usual (sequential) Haskell, since the monad
laws for the I0-monad can be falsified using seqif the first argument may be an
action of 10-type.

Ongoing work is to prove that CHF is “referential transparent”, that is we try
to show that pure functions that are equivalent in a pure call-by-need calculus
(without IO and threads) are also equivalent in CHF.
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